CN113777471A - 一种标定测量模块相对电压偏置误差的方法 - Google Patents

一种标定测量模块相对电压偏置误差的方法 Download PDF

Info

Publication number
CN113777471A
CN113777471A CN202111055621.6A CN202111055621A CN113777471A CN 113777471 A CN113777471 A CN 113777471A CN 202111055621 A CN202111055621 A CN 202111055621A CN 113777471 A CN113777471 A CN 113777471A
Authority
CN
China
Prior art keywords
measurement
module
relative voltage
measuring module
calibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111055621.6A
Other languages
English (en)
Other versions
CN113777471B (zh
Inventor
毛渲
郑勇军
杨靖
吴鑫
陈巍
成家柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Guangli Test Equipment Co ltd
Original Assignee
Hangzhou Guangli Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Guangli Microelectronics Co ltd filed Critical Hangzhou Guangli Microelectronics Co ltd
Priority to CN202111055621.6A priority Critical patent/CN113777471B/zh
Publication of CN113777471A publication Critical patent/CN113777471A/zh
Application granted granted Critical
Publication of CN113777471B publication Critical patent/CN113777471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本发明提供标定测量模块相对电压偏差误差方法,包括选择固定电阻与四个测量模块;固定电阻引出四端A、B、C、D;对任意两个测量模块进行标定包括测量模块1在A端施加电流I,测量模块2在B端施加电压V;测量模块3和测量模块4量测C、D两端的电势V1、V2,得到固定电阻的阻值R1;测量模块1在A端施加电压V,测量模块2在B端施加电流I;测量模块3和测量模块4量测C、D两端的电势V1’、V2’,得到固定电阻的阻值R2;平均计算得到真实电阻R;通过R1或R2与R的差值,得到测量模块3和测量模块4的相对电压偏置误差为ΔV。通过对测量模块之间的相对电压偏置误差的标定,避免测量模块的电压偏置误差对测试设备的测量精度产生较大影响。

Description

一种标定测量模块相对电压偏置误差的方法
技术领域
本发明涉及半导体器件测试技术领域,特别涉及一种用于电性测试设备中标定测量模块相对电压偏置误差的方法。
背景技术
半导体器件的电性测试中需要用到多种测量模块,例如选择模块化源测量单元等。选择模块化源测量单元(SMU)是一种精密的仪器,具有较高的灵敏度和精确度。SMU在同一引脚或连接器上结合了源功能和测量功能,它不仅可以提供测量分辨率小于1mV的电压源,还可以提供测量分辨率低于1uA的电流源,可同时对同一通道的电流和电压进行同步源测量。SMU还提供了远端检测功能,并拥有集成了双极型电压和吸收功率能力的四象限输出功能。SMU可以提供线性扫描电压和扫描电流,能够获得仪器的IV特性曲线。目前,SMU已经广泛使用于工业中,并且成为了许多自动化测试***中的常用组成部件。
开尔文四线检测(Kelvin Four-terminal sensing),也被称之为四端子检测(4T检测,4T sensing)、四线检测或4点探针法,它是一种电阻抗测量技术,通过测量待测电阻两端电压和流经的电流来确定电阻数值,凭借其能消除接触点电阻和引线电阻的优势,被广泛地应用于电阻、尤其是低阻电阻的测量,相比传统的两个终端(2T)传感能够进行更精确的测量。
在集成电路电性测试领域,KLV方法同样发挥着重要的作用。在电性参数测试时,某些电阻的阻值低于1Ω甚至0.1Ω,为了保护这部分器件,通常测试时流经这些电阻的电流只有mA级别。根据欧姆定律,待测电阻两端电压差只有mV级别甚至更低,而常用于电性测试设备KLV测试的SMU的电压量测精度在0.1mV级别,这时SMU的量测误差可与真实电压值相比拟,造成KLV测试误差较大,无法得到精确的电阻值。
电性参数测试中KLV常用测试方法如图1中所示,待测电阻引出四端I1、I2、V1、V2。I1端施加电流信号I,V1、V2端使用SMU量测得到电压VM1、VM2,其中VM1>VM2,那么待测电阻值RKLV=(VM1-VM2)/I。
KLV测试方法的误差主要来源于待测电阻两端量测电压差,即VM1-VM2。用于量测电压信号的SMU误差(Error)主要由偏置误差和增益误差两部分构成,偏置误差为SMU的绝对误差,增益误差为SMU量测电压读数的百分比。以常用于电性参数测试的一种SMU为例,当量测电压只有mV甚至更低时,适用量程下其绝对误差为0.3mV,增益误差为电压读数VM的0.02%,即Error=0.02%*VM+0.3mV,增益误差只占0.02%的比例,可以忽略,而偏置误差可与真实值相比拟,是KLV测试误差的主要来源。
为了解决电性测试设备中KLV测试误差的问题,需要寻求一种标定SMU偏置误差的方法。
发明内容
本发明提供一种标定测量模块相对电压偏置误差的方法,可对SMU的偏置误差进行标定,避免SMU的量测误差对KLV测试的影响,提高KLV量测电阻值的准确性。
本发明的其他目的和优点可以从本发明所揭露的技术特征中得到进一步的了解。
为达上述之一或部分或全部目的或是其他目的,本发明一实施例所提供的标定测量模块相对电压偏差误差的方法,包括:步骤1:选择一个固定电阻与四个测量模块,标记为测量模块1、测量模块2、测量模块3和测量模块4;步骤2:所述固定电阻引出四端A、B、C、D;步骤3:对所述四个测量模块中的任意两个测量模块的相对电压偏置误差进行标定。
其中,所述标定包括:第一次量测:所述测量模块1在A端施加电流信号I,所述测量模块2在B端施加电压信号V;所述测量模块3和所述测量模块4分别量测C、D两端的电势,分别记为V1、V2,计算得出第一量测的固定电阻的电阻值R1;所述测量模块1在A端施加电压信号V,所述测量模块2在B端施加电流信号I;所述测量模块3和所述测量模块4分别量测C、D两端的电势V1’、V2’,计算得出第一量测的固定电阻的电阻值R2;由上述两次量测平均计算得到固定电阻的真实电阻的电阻值R;通过第一次量测的固定电阻的电阻值R1或第二次量测所得的固定电阻的电阻值R2与固定电阻的真实电阻的电阻值R之间的差值,计算得出所述测量模块3和所述测量模块4的相对电压偏置误差为ΔV。
还包括步骤4:将任意两个测量模块的相对电压偏置误差写入测试设备的测试软件中,在测试中通过修正测量模块的相对电压偏置误差输出正确的结果。该技术方案的有益效果为,通过对测量模块之间的相对电压偏置误差的标定,并将误差写入测试设备,从而在测试中修正测量模块得出正确结果,避免测量模块的电压偏置误差对测试设备的测量精度产生较大影响,特别是针对测试灵敏度在pA、mV级别的集成电路的电性测试中,具有非常重要的意义。
所述步骤3中的测量模块1和测量模块2替换为所述四个测量模块中的任意两个测量模块,以测得每任意两个测量模块的相对电压偏置误差。
其中,所述电压信号V的取值可正可负,所述电流信号I的取值可正可负。优选的,为简化测量步骤和计算,所述电压信号V取值为零;所述电流信号I的取值大于零。
所述步骤3中通过手动测试和计算,实现对任意两个测量模块的相对电压偏置误差的标定。或者,所述步骤3中通过将代码写入测试设备的控制软件中,控制软件通过连续测试,实现对任意两个测量模块的相对电压偏差误差的标定。
所述测量模块为源测量单元。
与现有技术相比,本发明的有益效果主要包括:通过上述的标定测量模块相对电压偏置误差的方法,可以实现电性测试设备中对测量模块之间的相对电压偏置误差的标定,从而避免电压偏置误差对测试设备的测量精度产生较大影响。由于在集成电路的电性测试中,电流和电压都非常小,测试的灵敏度都在pA、mV级别,因此该方法在集成电路的电性测试领域有着非常重要的意义。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中电性参数测试KLV的测试方法示意图。
图2为本发明实施例的标定测量模块相对电压偏置误差方法的示意图。
图3为本发明实施例的标定测量模块相对电压偏置误差方法的流程图。
具体实施方式
有关本发明的前述及其他技术内容、特点与功效,在以下配合参考图式的一优选实施例的详细说明中,将可清楚的呈现。以下实施例中所提得到的方向用语,例如:上、下、左、右、前或后等,仅是参考附加图式的方向。因此,使用的方向用语是用来说明并非用来限制本发明。
图2和图3为本发明实施例的标定测量模块相对电压偏置误差方法的示意图和流程图。请结合参考图2和图3,该方法包括:步骤1.选择一个固定电阻R与四个测量模块,本实施例中的测量模块为源测量单元SMU,以下简称SMU。将这四个测量模块分别标记为SMU1、SMU2、SMU3、SMU4。
步骤2.在固定电阻R上引出四端,分别标记为A、B、C、D。
步骤3.对上述四个测量模块中的任意两个测量模块的相对电压偏置误差进行标定。以SMU1和SMU2示例说明,该标定包括:第一次量测:SMU1在A端施加电流信号I,SMU2在B端施加电压信号V;SMU3、SMU4分别量测C、D两端的电势,记为V1、V2,即C、D两端的电压为V1-V2;此时,测得固定电阻的电阻值R1=|V1-V2|/ I。
第二次量测:SMU1在A端施加电压信号V,SMU2在B端施加电流信号I;SMU3和SMU4分别量测C、D两端的电势V1’、V2’,即C、D两端的电压为V1’-V2’;此时,测得固定电阻的电阻值R2=|V1’- V2’|/ I。
由上述两次量测平均计算得到固定电阻的真实电阻的电阻值R=(R1+ R2)/2。
通过第一次量测的固定电子的电阻值R1与固定电阻的真实电阻的电阻值R之间的差值,计算得出SMU3和SMU4的相对电压偏置误差为ΔV=(R1-R)*I。
当然,在其他实施例中,也可以通过第二次量测所得的固定电阻的电阻值R2与固定电阻的真实电阻的电阻值R之间的差值,计算得出SMU3和SMU4的相对电压偏置误差为ΔV=(R2-R)*I。
还包括步骤4.将任意两个测量模块的相对电压偏置误差写入测试设备的测试软件中,在测试中通过修正测量模块的相对电压偏置误差输出正确的结果。
上述的电压信号V和电流信号I的取值可正可负。为了方便量测和计算,在本实施例中,电压信号V取零值,电流信号I取值大于零。
此外,本实施例中,步骤3中通过人工手动测试和计算来实现对SMU3和SMU4的相对电压偏置误差的标定;当然,在其他实施例中,也可以通过代码形式,将测试代码写入测试设备的控制软件中,控制软件通过连续测试实现对SMU3和SMU4的相对电压偏置误差的标定。
需要说明的是,本实施例步骤3中的SMU1和SMU2可以替换为四个测量模块中的任意两个测量模块,以测得每任意两个测量模块的相对电压偏置误差。例如,将SMU2替换到A端,SMU3替换到B端,重复步骤3中的标定步骤,SMU1和SMU4分别量测C、D两端的电势,以计算得到SMU1和SMU4的相对电压偏置误差;又例如,将SMU3替换到A端,SMU4替换到B端,重复步骤3中的标定步骤,SMU1和SMU2分别量测C、D两端的电势,以计算得到SMU1和SMU2的相对电压偏置误差。同理,重复步骤3,还可以分别获得SMU1和SMU3、SMU2和SMU3等的相对电压偏置误差。
以上所述,仅为本发明的优选实施例而已,当不能以此限定本发明实施的范围,即所有依本发明权利要求书及说明书所作的简单的等效变化与修改,皆仍属本发明专利涵盖的范围内。另外,本发明的任一实施例或权利要求不须达成本发明所揭露的全部目的或优点或特点。此外,摘要部分和发明名称仅是用来辅助专利文件检索之用,并非用来限制本发明的权利范围。此外,本说明书或权利要求书中提及的“第一”、“第二”等用语仅用以命名元件(element)的名称或区别不同实施例或范围,而并非用来限制元件数量上的上限或下限。

Claims (7)

1.一种标定测量模块相对电压偏置误差的方法,其特征在于,包括:
步骤1:选择一个固定电阻与四个测量模块,标记为测量模块1、测量模块2、测量模块3和测量模块4;
步骤2:所述固定电阻引出四端A、B、C、D;
步骤3:对所述四个测量模块中的任意两个测量模块的相对电压偏置误差进行标定;其中,所述标定包括:
第一次量测:所述测量模块1在A端施加电流信号I,所述测量模块2在B端施加电压信号V;所述测量模块3和所述测量模块4分别量测C、D两端的电势,分别记为V1、V2,计算得出第一量测的固体电阻的电阻值R1
第二次量测:所述测量模块1在A端施加电压信号V,所述测量模块2在B端施加电流信号I;所述测量模块3和所述测量模块4分别量测C、D两端的电势V1’、V2’,计算得出第一量测的固体电阻的电阻值R2
由上述两次量测平均计算得到固定电阻的真实电阻的电阻值R;
通过第一次量测的固定电阻的电阻值R1或第二次量测所得的固定电阻的电阻值R2与固定电阻的真实电阻的电阻值R之间的差值,计算得出所述测量模块3和所述测量模块4的相对电压偏置误差ΔV;
还包括步骤4:将任意两个测量模块的相对电压偏置误差写入测试设备的测试软件中,在测试中通过修正测量模块的相对电压偏置误差输出正确的结果。
2.根据权利要求1所述的标定测量模块相对电压偏置误差的方法,其特征在于,所述步骤3中的测量模块1和测量模块2替换为所述四个测量模块中的任意两个测量模块,以测得每任意两个测量模块的相对电压偏置误差。
3.根据权利要求1所述的标定测量模块相对电压偏置误差的方法,其特征在于,所述电压信号V取值为零。
4.根据权利要求1所述的标定测量模块相对电压偏置误差的方法,其特征在于,所述电流信号I取值大于零。
5.根据权利要求1所述的标定测量模块相对电压偏置误差的方法,其特征在于,所述步骤3中通过手动测试和计算,实现对任意两个测量模块的相对电压偏置误差的标定。
6.根据权利要求1所述的标定测量模块相对电压偏置误差的方法,其特征在于,所述步骤3中通过将代码写入测试设备的控制软件中,控制软件通过连续测试,实现对任意两个测量模块的相对电压偏差误差的标定。
7.根据权利要求1至6任一项所述的标定测量模块相对电压偏置误差的方法,其特征在于,所述测量模块为源测量单元。
CN202111055621.6A 2021-09-09 2021-09-09 一种标定测量模块相对电压偏置误差的方法 Active CN113777471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111055621.6A CN113777471B (zh) 2021-09-09 2021-09-09 一种标定测量模块相对电压偏置误差的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111055621.6A CN113777471B (zh) 2021-09-09 2021-09-09 一种标定测量模块相对电压偏置误差的方法

Publications (2)

Publication Number Publication Date
CN113777471A true CN113777471A (zh) 2021-12-10
CN113777471B CN113777471B (zh) 2024-06-21

Family

ID=78841923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111055621.6A Active CN113777471B (zh) 2021-09-09 2021-09-09 一种标定测量模块相对电压偏置误差的方法

Country Status (1)

Country Link
CN (1) CN113777471B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203764A (ja) * 1996-01-25 1997-08-05 Hioki Ee Corp 四端子測定法による接続不良リードの有無判別方法
JPH10123189A (ja) * 1996-10-16 1998-05-15 Adetsukusu Kk 抵抗値測定方法および抵抗値測定装置
JP2001153902A (ja) * 1999-11-30 2001-06-08 Hioki Ee Corp 抵抗測定方法
JP2007192723A (ja) * 2006-01-20 2007-08-02 Nissan Motor Co Ltd 電流センサ補正システム及び電流センサ補正方法
CN102829888A (zh) * 2011-06-15 2012-12-19 上海电器科学研究院 消减三线制热电阻测量误差的方法
CN107664739A (zh) * 2016-07-28 2018-02-06 全球能源互联网研究院 一种hvdc晶闸管级阻尼电阻动态参数在线监测方法
CN109142870A (zh) * 2018-09-23 2019-01-04 东南大学 一种对多通道热电阻阻值进行无线精密测量的方法
KR102079454B1 (ko) * 2018-10-01 2020-02-19 동의대학교 산학협력단 양방향 단상 펄스폭변조 컨버터의 전류 측정 방법
CN111025016A (zh) * 2019-12-18 2020-04-17 华虹半导体(无锡)有限公司 开尔文结构的电阻测试方法
CN111736104A (zh) * 2020-08-03 2020-10-02 苏州华兴源创科技股份有限公司 一种电流检测校准方法及装置、显示装置
CN112098899A (zh) * 2020-10-13 2020-12-18 中国人民解放***箭军工程大学 一种用于微小电流多芯电缆测试的便携式智能检测仪及检测方法
TWI729631B (zh) * 2019-12-18 2021-06-01 致茂電子股份有限公司 阻抗量測方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203764A (ja) * 1996-01-25 1997-08-05 Hioki Ee Corp 四端子測定法による接続不良リードの有無判別方法
JPH10123189A (ja) * 1996-10-16 1998-05-15 Adetsukusu Kk 抵抗値測定方法および抵抗値測定装置
JP2001153902A (ja) * 1999-11-30 2001-06-08 Hioki Ee Corp 抵抗測定方法
JP2007192723A (ja) * 2006-01-20 2007-08-02 Nissan Motor Co Ltd 電流センサ補正システム及び電流センサ補正方法
CN102829888A (zh) * 2011-06-15 2012-12-19 上海电器科学研究院 消减三线制热电阻测量误差的方法
CN107664739A (zh) * 2016-07-28 2018-02-06 全球能源互联网研究院 一种hvdc晶闸管级阻尼电阻动态参数在线监测方法
CN109142870A (zh) * 2018-09-23 2019-01-04 东南大学 一种对多通道热电阻阻值进行无线精密测量的方法
KR102079454B1 (ko) * 2018-10-01 2020-02-19 동의대학교 산학협력단 양방향 단상 펄스폭변조 컨버터의 전류 측정 방법
CN111025016A (zh) * 2019-12-18 2020-04-17 华虹半导体(无锡)有限公司 开尔文结构的电阻测试方法
TWI729631B (zh) * 2019-12-18 2021-06-01 致茂電子股份有限公司 阻抗量測方法
CN111736104A (zh) * 2020-08-03 2020-10-02 苏州华兴源创科技股份有限公司 一种电流检测校准方法及装置、显示装置
CN112098899A (zh) * 2020-10-13 2020-12-18 中国人民解放***箭军工程大学 一种用于微小电流多芯电缆测试的便携式智能检测仪及检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周翔;雷民;严强虎: "一种改进的高压高阻标准箱设计", 中国测试, vol. 46, no. 011, 31 December 2020 (2020-12-31) *
李楚元;: "基于相频特性的电流传感器相位校准", 电气技术, no. 10, 15 October 2018 (2018-10-15) *

Also Published As

Publication number Publication date
CN113777471B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
US5691648A (en) Method and apparatus for measuring sheet resistance and thickness of thin films and substrates
US9140734B2 (en) Measuring apparatus and measuring method
CN101957243B (zh) 一种高精度温度测量装置及测量方法
US11500020B2 (en) Sensor defect diagnostic circuit
Yu et al. Comparison of Multiple Methods for Obtaining P $\Omega $ Resistances With Low Uncertainties
JP2003098010A (ja) 電子回路の温度を測定する装置
CN112731241B (zh) 晶圆测试机台的校准工具和校准方法
JP2019060767A (ja) 抵抗測定装置の校正方法、抵抗測定装置、基板検査装置、及び基準抵抗器
CN1019147B (zh) 欧姆表的校准方法和校准电路
CN115038982A (zh) 校准差分测量电路
CN113777471B (zh) 一种标定测量模块相对电压偏置误差的方法
CN100449322C (zh) 具有改进精度的测量电路
Oldham et al. Low-voltage standards in the 10 Hz to 1 MHz range
CN219738060U (zh) 一种uA级别高精度恒流源***
US7397253B2 (en) Transmission line pulse (TLP) system calibration technique
CN111103560A (zh) 传感器诊断设备和方法
CN110220606B (zh) 具有校准功能的测温装置及方法
CN216013480U (zh) 一种电压测量芯片以及电压测量电路
CN220490937U (zh) 一种电桥电源噪声检测装置
TWI775479B (zh) 電路感測裝置
CN215639834U (zh) 一种双恒流源热电阻测温电路
CN113985243B (zh) 一种高精度运算放大器测试***校准方法及装置
CN109001538B (zh) 一种使用非精密器件达到高精度测量电阻的方法
WO2023137848A1 (zh) 半导体结构的检测方法、装置、设备及存储介质
CN114019443A (zh) 一种电能表的温度校准方法、装置及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230909

Address after: Room 1106, Floor 1, Building A, Paradise Software Park, No. 3, Xidoumen Road, Xihu District, Hangzhou City, Zhejiang Province, 310012

Applicant after: Hangzhou Guangli Test Equipment Co.,Ltd.

Address before: 310012 building F1, 15 / F, building a, Paradise Software Park, 3 xidoumen Road, Xihu District, Hangzhou City, Zhejiang Province

Applicant before: Hangzhou Guangli Microelectronics Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant