CN113770577B - 工件装在机器人上的轨迹生成实现方法 - Google Patents

工件装在机器人上的轨迹生成实现方法 Download PDF

Info

Publication number
CN113770577B
CN113770577B CN202111098985.2A CN202111098985A CN113770577B CN 113770577 B CN113770577 B CN 113770577B CN 202111098985 A CN202111098985 A CN 202111098985A CN 113770577 B CN113770577 B CN 113770577B
Authority
CN
China
Prior art keywords
coordinate system
robot
welding
point
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111098985.2A
Other languages
English (en)
Other versions
CN113770577A (zh
Inventor
王一刚
程荣源
徐亚男
瞿波
吕隆斐
余舫
刘思彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Boschda Welding Robot Co ltd
Original Assignee
Ningbo Boschda Welding Robot Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Boschda Welding Robot Co ltd filed Critical Ningbo Boschda Welding Robot Co ltd
Priority to CN202111098985.2A priority Critical patent/CN113770577B/zh
Publication of CN113770577A publication Critical patent/CN113770577A/zh
Application granted granted Critical
Publication of CN113770577B publication Critical patent/CN113770577B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

本发明所设计的工件装在机器人上的轨迹生成实现方法,使用工件参数或实际扫描得出的较优点集建立多个虚拟坐标系,所述的虚拟坐标系只进行轨迹计算,不参与控制机器人运动;通过上述建立的虚拟坐标系之间的旋转平移关系和工件焊缝模型计算得出轨迹,控制机器人使用自带的法兰盘坐标系行走计算出的轨迹,使得焊缝点集都经过同一点,以进行扫描或焊接。这种机器人焊接轨迹生成的方法通过所建立的虚拟坐标系计算轨迹后,直接由法兰盘坐标系控制机器人的行走轨迹,从而规避了手动标定TCP对机器人绝对精度的影响;规避了除机器人以外进行的机械运动,减少了机械复杂度的同时,提高了工件焊接精度,且可适用于所有存在焊缝模型且可安装在机器人上的工件。

Description

工件装在机器人上的轨迹生成实现方法
技术领域
本发明涉及机器人控制领域,具体涉及工件装在机器人上的轨迹生成实现方法。
背景技术
在现有技术中在现有技术中随着机器人的普及,在工业上逐步替代了人工的焊接方式,来进行多种类型的工件焊接,一般通过两种方法控制机器人的行走,一种是手操器示教位置,使机器人按照示教的位置重复行走,这种方法适应性差,对工件拼装以及定位要求高,同时需要一定的机器人工作经验;另一种由外部程序生成焊接轨迹,发送轨迹控制机器人的行走,一般是工件放置在机器人周围,根据工件参数与放置位置生成机器人焊枪的移动轨迹,使得焊枪围绕着工件进行扫描焊接,这种方法需要标定外部工具TCP,难以校准绝对精度,且对于某些工件需配合变位机或外部轴,增加了***复杂性。
发明内容
为了解决上述问题,本发明提供了规避了手动标定的TCP精度对机器人变姿态行走的绝对精度的影响,规避了除机器人外的机械,提高了精度,减少了机械复杂度的工件装在机器人上的轨迹生成实现方法。
为了到达上述目的,本发明设计的工件装在机器人上轨迹生成实现方法,其特征在于分为以下步骤:
S1.已知机器人固有坐标系为机器人法兰盘坐标系CF,机器人基座坐标系Cb,且根据焊接工件和焊缝形成的截面上分别建立工件坐标系Ct与焊缝坐标系Cf
S2.通过已知的焊接工件参数,求取工件坐标系Ct与焊缝坐标系Cf之间的旋转平移关系,为3×3的旋转矩阵R(Ct-Cf)与3×1的平移矩阵T(Ct-Cf)相加,得出Ct×R(Ct-Cf)+T(Ct-Cf)=Cf;逆运算求得旋转矩阵R(Cf-Ct),得出Cf×R(Cf-Ct)-T(Ct-Cf)=Ct
S3.根据上述坐标系之间的旋转平移计算公式与机器人本身可以得到TCP坐标系所在的位姿数据,从而得出机器人法兰盘坐标系CF与机器人基座坐标系Cb之间的旋转平移关系,为3×3的旋转矩阵R(Cb-CF)与3×1的平移矩阵T(Cb-CF);
S4.将焊接工件装夹在法兰盘夹具上;
S5.通过观察测量或标定方法确定工件坐标系Ct与法兰盘坐标系CF的关系,得出法兰盘坐标系CF与工件坐标系Ct之间的旋转平移关系为3×3的旋转矩阵R(CF-Ct)与3×1的平移矩阵T(CF-Ct);
S6.通过已知的工件参数与焊接工件装夹在法兰盘夹具上的模型,得出焊缝上任意点的坐标
Figure GDA0003772323220000021
所述的任意点坐标
Figure GDA0003772323220000022
的全局坐标系为焊缝坐标系Cf,且需要在每一焊缝点上建立焊缝点坐标系
Figure GDA0003772323220000023
焊缝点坐标系
Figure GDA0003772323220000024
的建立由任意焊缝点的最优焊接姿态与焊缝坐标系Cf决定,得出焊缝坐标系Cf与任意的焊缝点坐标系
Figure GDA0003772323220000025
之间的旋转平移关系为3×3的旋转矩阵
Figure GDA0003772323220000026
和3×1的平移矩阵
Figure GDA0003772323220000027
S7.根据上述步骤中得出的所有旋转平移关系,得出任意的焊缝点坐标系
Figure GDA0003772323220000028
与机器人基座坐标系Cb的旋转平移关系,得出焊缝上的任意焊缝点在机器人基座坐标系Cb下的位姿,任意的焊缝点坐标系
Figure GDA0003772323220000029
与机器人法兰盘坐标系CF的关系;
S8.获取位于机器人基座坐标系Cb下的扫描点P,且根据实际需求建立P点坐标系,所述的P点坐标系的全局坐标系为机器人基座坐标系Cb,得出P点坐标系Cp与机器人基座标系Cb之间的旋转平移关系;
S9.通过上述得出的P点坐标系Cp与机器人基座标系Cb之间的旋转平移关系、任意的焊缝点坐标系
Figure GDA0003772323220000031
与机器人法兰盘坐标系CF之间的旋转平移关系,反向推出在任意的焊缝点坐标系
Figure GDA0003772323220000032
经过P点坐标系Cp时,机器人法兰盘坐标系CF与机器人基座标系Cb之间的旋转平移关系,将前述的旋转平移关系转换为机器人的位姿;
S10.将上述得出的机器人位姿,发送至机器人处,从而驱动机器人通过法兰盘坐标系CF举着工件进行扫描运动,使得所有焊缝点经过扫描点P;
S11.通过上述机器人的扫描运动中,视觉传感器采集到的焊缝图像的坐标数据,机器人同步给出当前机器人基座坐标系Cb下法兰盘位姿,且视觉传感器采集到的焊缝图像的坐标数据通过手眼标定的方式得出的转换关系,算出焊缝在机器人基座坐标系Cb下对应的坐标值,公式如下:
Figure GDA0003772323220000033
处对应的基座坐标(Xbuv,Ybuv,Zbuv);
S12.所述的机器人基座坐标系Cb下对应坐标值为位于扫描点四周的离散无规则点,同时已知前述的离散无规则点对应的法兰盘位姿,经由反向推导得出离散无规则点在法兰盘坐标系CF下的位置,使得离散无规则点形成与焊接工件的焊缝相似点,将焊接工件的焊缝模型与前述的焊缝相似点进行过滤,拟合,插值,根据拟合的数据重新建立焊缝坐标系Cf′和焊缝点坐标系
Figure GDA0003772323220000034
根据上述的旋转平移关系步骤,得出焊缝点坐标系
Figure GDA0003772323220000035
与机器人法兰盘坐标系CF的旋转平移关系;
S13.获取位于机器人基座坐标系Cb下的焊接点P′,重复S8、S9的工作流程,得到机器人的焊接轨迹。
为了进一步达到上述目的,S1中焊缝坐标系Cf的建立由工件坐标系Ct与焊接工件参数决定,同时工件坐标系Ct为焊缝坐标系Cf的全局坐标系;工件坐标系Ct的建立需根据焊接工件特征,遵循易观测原则;所述的易观测原则为当焊接工件装夹在法兰盘夹具上时,能够较为方便的确定工件坐标系Ct与法兰盘坐标系CF的关系;所述的扫描点P为固定设置的虚拟点,扫描点P的位置位于当焊缝处于扫描点P时,传感器中的图像最清晰;同时将焊枪枪尖在机器人基座标系下的位置设置为焊接点P′,当焊缝处于焊接点P′的位置时,机器人远离奇异位置且姿态较为舒适;且所述的步骤S8中建立的P点坐标系Cp是根据实际需求确立的,前述的实际需求具体指代在扫描或焊接的过程中,工件焊缝与视觉传感器或焊枪的关系,由于此方法本质求的是当焊缝点坐标系
Figure GDA0003772323220000041
与Cp重合时,法兰盘坐标系CF与基座坐标系Cb的旋转平移关系,因此Cp的建立会影响焊接或扫描时,工件焊缝上的点经过点P时与视觉传感器或焊枪的关系,因此需根据实际需求确定。且控制机器人行走计算所得出的轨迹,所使用的工具坐标系都是机器人自带的法兰盘坐标系。
这种结构的设置相较于现有的机器人生成焊机轨迹的方法,通过对焊缝坐标系Cf中的各个焊缝点都建立虚拟的TCP坐标系,以及对每个建立在焊缝点上的TCP坐标系都根据视觉传感器采集到的焊缝图像的坐标数据进行调整,使焊缝上的每个TCP坐标系都与设定好的固定坐标系重合,从而提升焊接机器人的焊接精度;同时所有存在模型可使用公式计算焊接轨迹且大小合适的工件,都可以安装在机器人端进行焊接,提升了工件的制造柔性,且机械结构简单。
本发明所设计的工件装在机器人上的轨迹生成实现方法,首先在焊接工件上建立工件坐标系Ct与焊缝坐标系Cf后,通过求取前述的坐标系之间的旋转平移关系,将焊接工件装夹在法兰盘夹具上,求取工件坐标系Ct与机器人法兰盘坐标系CF之间的旋转平移关系,同时根据焊接工件参数与焊缝模型,得出焊缝工件中的任意的焊缝点坐标
Figure GDA0003772323220000042
所述的焊缝点坐标
Figure GDA0003772323220000043
以焊缝坐标系Cf为全局坐标系,将任意的焊缝点建立焊缝点坐标系
Figure GDA0003772323220000044
得出焊缝点坐标系
Figure GDA0003772323220000045
与机器人基座坐标系Cb之间的旋转平移关系,即得出知焊缝上任意的焊缝点在机器人基座坐标系Cb下的位姿,亦可知焊缝上任意的焊缝点坐标系
Figure GDA0003772323220000051
在机器人法兰盘坐标系CF下的旋转平移关系,通过建立P点坐标系Cp,可知Cp与机器人基座坐标系Cb的旋转平移关系,则使焊缝点坐标
Figure GDA0003772323220000052
经过P点,且坐标系重合时,法兰盘坐标系CF与机器人基座坐标系Cb的旋转平移关系,即法兰盘在机器人基座坐标系Cb下的位姿。通过机器人基座坐标系Cb下设置的扫描点P对焊接工件进行扫描后,同时对焊缝图像的坐标数据进行采集,形成一堆位于机器人基座坐标系Cb下的坐标点,且每个坐标点都对应一个法兰盘的位姿,根据程序计算得出焊缝点在法兰盘坐标系CF下形成一个散开的焊接轨迹,进行拟合计算后,得到焊接轨迹的参数,最后将得到的焊接轨迹的参数转换为法兰盘的移动轨迹,驱动法兰盘的移动;从而进行工件的焊接。
附图说明
图1是建立的工件坐标系与焊缝坐标系的视图。
图2是焊接点P'点与焊缝坐标系的视图
图3是在焊缝坐标系上建立任意焊缝点坐标系的视图。
图4是经过视觉传感器纠正后的任意焊缝点经过焊接点P'的视图。
具体实施方式
为更进一步阐述本发明为实现预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如后。
实施例1。
本实施例描述的工件装在机器人上的轨迹生成实现方法,以一个底部为标准圆设置的虾米腰弯头工件为例。根据虾米腰弯头底部直径与弯头的弯曲角度两个参数,以虾米腰弯头底部圆心为坐标原点,弯头转弯方向为X轴,设置工件坐标系Ct,坐标轴为Xt、Yt、Zt,以虾米腰弯头焊缝切面的椭圆圆心为坐标原点,依据工件坐标系Ct,设置焊缝坐标系Cf,坐标轴为Xf、Yf、Zf;得到图1。
第一步确定扫描点P与焊接点P'的位置以及坐标系,实例中焊枪和视觉传感器都垂直地面安装,根据焊接和扫描的实际要求,焊缝平面的法向量要与枪或传感器垂直,因此焊接或扫描时焊缝坐标系Cf的Z轴与地面平行,由于运动过程中焊缝点坐标系
Figure GDA0003772323220000061
与Cp需重合,焊缝点坐标系
Figure GDA0003772323220000062
的坐标已确定,因此Cp由经过P点时的
Figure GDA0003772323220000063
确定。因此扫描点P的坐标系Cp如图2。
第二步根据焊接工件参数,求取工件坐标系Ct与焊缝坐标系Cf之间的旋转平移关系为一个3×3的旋转矩阵R(Ct-Cf)加3×1的平移矩阵T(Ct-Cf),得出R(Ct-Cf)×Ct+T(Ct-Cf)=Cf后;通过逆运算求得旋转矩阵R(Cf-Ct),进而得出R(Cf-Ct)×Cf-T(Ct-Cf)=Ct;由机器人的位姿数据得到机器人法兰盘坐标系CF与机器人基座坐标系Cb之间的旋转平移关系为一个3×3的旋转矩阵R(Cb-CF)加3×1的平移矩阵T(Cb-CF)。
第三步将虾米腰弯头装夹在法兰盘夹具上,法兰盘夹具安装在法兰盘上,同时已知法兰盘夹具的参数,得出法兰盘坐标系CF与工件坐标系Ct之间的旋转平移关系为3×3的旋转矩阵R(CF-Ct)与3×1的平移矩阵T(CF-Ct);根据虾米腰弯头工件参数与虾米腰弯头焊缝模型,也就是椭圆得参数方程,计算出虾米腰弯头上任意的焊缝点坐标
Figure GDA0003772323220000064
焊缝点坐标
Figure GDA0003772323220000065
的全局坐标系为焊缝坐标系Cf,同时在每个焊缝点坐标
Figure GDA0003772323220000066
上都建立焊缝点坐标系
Figure GDA0003772323220000067
得出图3;焊缝坐标系Cf与任意的焊缝点坐标系
Figure GDA0003772323220000068
之间的旋转平移关系为3×3的旋转矩阵
Figure GDA0003772323220000069
和3×1的平移矩阵
Figure GDA00037723232200000610
第四步通过上述的步骤得出任意的焊缝点坐标系
Figure GDA00037723232200000611
与机器人基座坐标系Cb的旋转平移关系,得出虾米腰弯头上任意的焊缝点在机器人基座坐标系Cb下的位姿,同时可知焊缝点坐标系
Figure GDA00037723232200000612
与机器人法兰盘坐标系CF的关系。
第五步已知扫描点P点坐标系Cp,得出建立P点坐标系Cp与机器人基座标系Cb之间的旋转平移关系;通过上述的P点坐标系Cp与机器人基座标系Cb的旋转平移关系和任意的焊缝点坐标系
Figure GDA0003772323220000071
与机器人法兰盘坐标系CF的旋转平移关系,反推出在任意的焊缝点坐标系
Figure GDA0003772323220000072
经过P点坐标系Cp时,机器人法兰盘坐标系CF与机器人基座标系Cb之间的旋转平移关系,即得出法兰盘坐标系CF的行走位姿,通过将上述的机器人位姿,发送给机器人,驱动机器人使用法兰盘坐标系,使得所有焊缝点经过扫描点P。
第六步在机器人举着工件在扫描点P扫描过程中,传感器实时采集到焊缝图像中的坐标数据,视觉传感器采集到的焊缝图像的坐标数据通过手眼标定生成的标定矩阵得出的转换关系,算出焊缝在机器人基座坐标系Cb下对应的坐标值,
Figure GDA0003772323220000073
处对应的基座坐标(Xbuv,Ybuv,Zbuv);由于工件尺寸与安装位置的误差,上述得到的需经过扫描点P的焊缝轨迹大多会有误差,分布在扫描点P四周;每接收一个传感器发送的点,上位机同时记录此时机器人法兰盘坐标系CF在机器人基座坐标系Cb下的位姿。
第七步将上述得到经过标定矩阵转换后图像坐标对应的聚集在扫描P点周围的离散无规则点集,通过对应的法兰盘坐标系CF在机器人基座坐标系Cb下的旋转矩阵,转换成在法兰盘坐标系CF下的位置,此时离散点变成有模型的规律点集,可使用焊缝模型对所得点集进行过滤,拟合,插值处理,利用处理过后的点集和拟合的数据重新建立工件上的焊缝坐标系Cf′和任意焊缝点坐标系
Figure GDA0003772323220000074
得出到任意焊缝点坐标系
Figure GDA0003772323220000075
与法兰盘坐标系CF的旋转平移关系。
第八步已知焊接点P'坐标系Cp,重复第四与第五步即可使经过视觉传感器纠正后的焊缝点准确的经过焊接点P',得到图4。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (4)

1.一种工件装在机器人上轨迹生成实现方法,其特征在于分为以下步骤:
S1.已知机器人固有坐标系为机器人法兰盘坐标系CF,机器人基座坐标系Cb,且根据焊接工件和焊缝形成的截面上分别建立工件坐标系Ct与焊缝坐标系Cf
S2.通过已知的焊接工件参数,求取工件坐标系Ct与焊缝坐标系Cf之间的旋转平移关系,为3×3的旋转矩阵R(Ct-Cf)与3×1的平移矩阵T(Ct-Cf)相加,得出Ct×R(Ct-Cf)+T(Ct-Cf)=Cf;逆运算求得旋转矩阵R(Cf-Ct),得出Cf×R(Cf-Ct)-T(Ct-Cf)=Ct
S3.根据上述坐标系之间的旋转平移计算公式与机器人的位姿数据,得出机器人法兰盘坐标系CF与机器人基座坐标系Cb之间的旋转平移关系,为3×3的旋转矩阵R(Cb-CF)与3×1的平移矩阵T(Cb-CF);
S4.将焊接工件装夹在法兰盘夹具上;
S5.通过观察测量或标定方法确定工件坐标系Ct与法兰盘坐标系CF的关系,得出法兰盘坐标系CF与工件坐标系Ct之间的旋转平移关系为3×3的旋转矩阵R(CF-Ct)与3×1的平移矩阵T(CF-Ct);
S6.通过已知的工件参数与焊接工件装夹在法兰盘夹具上的模型,得出焊缝上任意点的坐标
Figure FDA0003772323210000011
所述的任意点坐标
Figure FDA0003772323210000012
的全局坐标系为焊缝坐标系Cf,且需要在每一焊缝点上建立焊缝点坐标系
Figure FDA0003772323210000013
焊缝点坐标系
Figure FDA0003772323210000014
的建立由任意焊缝点的最优焊接姿态与焊缝坐标系Cf决定,得出焊缝坐标系Cf与任意的焊缝点坐标系
Figure FDA0003772323210000015
之间的旋转平移关系为3×3的旋转矩阵
Figure FDA0003772323210000016
和3×1的平移矩阵
Figure FDA0003772323210000017
S7.根据上述步骤中得出的所有旋转平移关系,得出任意的焊缝点坐标系
Figure FDA0003772323210000018
与机器人基座坐标系Cb的旋转平移关系,得出焊缝上的任意焊缝点在机器人基座坐标系Cb下的位姿,任意的焊缝点坐标系
Figure FDA0003772323210000019
与机器人法兰盘坐标系CF的关系;
S8.获取位于机器人基座坐标系Cb下的扫描点P,且根据实际需求建立P点坐标系,所述的P点坐标系的全局坐标系为机器人基座坐标系Cb,得出P点坐标系Cp与机器人基座标系Cb之间的旋转平移关系;
S9.通过上述得出的P点坐标系Cp与机器人基座标系Cb之间的旋转平移关系、任意的焊缝点坐标系
Figure FDA0003772323210000021
与机器人法兰盘坐标系CF之间的旋转平移关系,反向推出在任意的焊缝点坐标系
Figure FDA0003772323210000022
经过P点坐标系Cp时,机器人法兰盘坐标系CF与机器人基座标系Cb之间的旋转平移关系,将前述的旋转平移关系转换为机器人的位姿;
S10.将上述得出的机器人位姿,发送至机器人处,从而驱动机器人通过法兰盘坐标系CF举着工件进行扫描运动,使得所有焊缝点经过扫描点P;
S11.通过上述机器人的扫描运动中,视觉传感器采集到的焊缝图像的坐标数据,机器人同步给出当前机器人基座坐标系Cb下法兰盘位姿,且视觉传感器采集到的焊缝图像的坐标数据通过手眼标定的方式得出的转换关系,算出焊缝在机器人基座坐标系Cb下对应的坐标值,公式如下:
Figure FDA0003772323210000023
处对应的基座坐标(Xbuv,Ybuv,Zbuv);
S12.所述的机器人基座坐标系Cb下对应坐标值为位于扫描点四周的离散无规则点,同时已知前述的离散无规则点对应的法兰盘位姿,经由反向推导得出离散无规则点在法兰盘坐标系CF下的位置,使得离散无规则点形成与焊接工件的焊缝相似点,将焊接工件的焊缝模型与前述的焊缝相似点进行过滤,拟合,插值,根据拟合的数据重新建立焊缝坐标系Cf 和焊缝点坐标系
Figure FDA0003772323210000024
根据上述的旋转平移关系步骤,得出焊缝点坐标系
Figure FDA0003772323210000025
与机器人法兰盘坐标系CF的旋转平移关系;
S13.获取位于机器人基座坐标系Cb下的焊接点P,重复S8、S9的工作流程,得到机器人的焊接轨迹。
2.根据权利要求1所述的工件装在机器人上轨迹生成实现方法,其特征在于所述的步骤S1中焊缝坐标系Cf的建立由工件坐标系Ct与焊接工件参数决定,同时工件坐标系Ct为焊缝坐标系Cf的全局坐标系;工件坐标系Ct的建立需根据焊接工件特征,遵循易观测原则。
3.根据权利要求1所述的工件装在机器人上轨迹生成实现方法,其特征在于所述的扫描点P为固定设置的虚拟点,扫描点P的位置位于当焊缝处于扫描点P时,传感器中的图像最清晰;同时将焊枪枪尖在机器人基座标系下的位置设置为焊接点P,当焊缝处于焊接点P的位置时,机器人远离奇异位置且姿态较为舒适。
4.根据权利要求1所述的工件装在机器人上轨迹生成实现方法,其特征在于所述的步骤S8中建立的P点坐标系Cp是根据实际需求,此实际需求指的是扫描或焊接时,工件焊缝与视觉传感器或焊枪的关系。
CN202111098985.2A 2021-09-18 2021-09-18 工件装在机器人上的轨迹生成实现方法 Active CN113770577B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111098985.2A CN113770577B (zh) 2021-09-18 2021-09-18 工件装在机器人上的轨迹生成实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111098985.2A CN113770577B (zh) 2021-09-18 2021-09-18 工件装在机器人上的轨迹生成实现方法

Publications (2)

Publication Number Publication Date
CN113770577A CN113770577A (zh) 2021-12-10
CN113770577B true CN113770577B (zh) 2022-09-20

Family

ID=78852475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111098985.2A Active CN113770577B (zh) 2021-09-18 2021-09-18 工件装在机器人上的轨迹生成实现方法

Country Status (1)

Country Link
CN (1) CN113770577B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202928A (ja) * 1998-01-08 1999-07-30 Nippon Telegr & Teleph Corp <Ntt> 作業支援装置
CN102069267A (zh) * 2011-01-25 2011-05-25 杭州凯尔达电焊机有限公司 一种针对圆柱体相贯线焊缝的通用弧焊机器人示教方法
CN104400279A (zh) * 2014-10-11 2015-03-11 南京航空航天大学 基于ccd的管道空间焊缝自动识别与轨迹规划的方法及***
CN105772905A (zh) * 2016-03-16 2016-07-20 南京工业大学 一种基于弧焊机器人***的斜交偏置管轨迹规划方法
CN109514133A (zh) * 2018-11-08 2019-03-26 东南大学 一种基于线结构光感知的焊接机器人3d曲线焊缝自主示教方法
WO2020020113A1 (zh) * 2018-07-25 2020-01-30 同高先进制造科技(太仓)有限公司 一种主动激光视觉焊缝跟踪***及焊缝位置检测方法
CN112847353A (zh) * 2020-12-31 2021-05-28 华南理工大学 一种基于离线编程软件的多段焊缝轨迹修正方法
CN113386136A (zh) * 2021-06-30 2021-09-14 华中科技大学 一种基于标准球阵目标估计的机器人位姿矫正方法及***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202928A (ja) * 1998-01-08 1999-07-30 Nippon Telegr & Teleph Corp <Ntt> 作業支援装置
CN102069267A (zh) * 2011-01-25 2011-05-25 杭州凯尔达电焊机有限公司 一种针对圆柱体相贯线焊缝的通用弧焊机器人示教方法
CN104400279A (zh) * 2014-10-11 2015-03-11 南京航空航天大学 基于ccd的管道空间焊缝自动识别与轨迹规划的方法及***
CN105772905A (zh) * 2016-03-16 2016-07-20 南京工业大学 一种基于弧焊机器人***的斜交偏置管轨迹规划方法
WO2020020113A1 (zh) * 2018-07-25 2020-01-30 同高先进制造科技(太仓)有限公司 一种主动激光视觉焊缝跟踪***及焊缝位置检测方法
CN109514133A (zh) * 2018-11-08 2019-03-26 东南大学 一种基于线结构光感知的焊接机器人3d曲线焊缝自主示教方法
CN112847353A (zh) * 2020-12-31 2021-05-28 华南理工大学 一种基于离线编程软件的多段焊缝轨迹修正方法
CN113386136A (zh) * 2021-06-30 2021-09-14 华中科技大学 一种基于标准球阵目标估计的机器人位姿矫正方法及***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
弧焊机器人工具标定与接触寻找焊缝实现;陈兴云等;《工业控制计算机》;20100225(第02期);第62-64页 *

Also Published As

Publication number Publication date
CN113770577A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
JP6966582B2 (ja) ロボットモーション用のビジョンシステムの自動ハンドアイ校正のためのシステム及び方法
US8706300B2 (en) Method of controlling a robotic tool
JP3946711B2 (ja) ロボットシステム
CN108481323B (zh) 基于增强现实的机器人运动轨迹自动编程***及方法
CN111300481B (zh) 基于视觉及激光传感器的机器人抓取位姿纠正方法
JP7153085B2 (ja) ロボットキャリブレーションシステム及びロボットキャリブレーション方法
JP5815761B2 (ja) 視覚センサのデータ作成システム及び検出シミュレーションシステム
JP5664629B2 (ja) ロボットシステムおよび加工品の製造方法
CN112659123A (zh) 一种基于线结构光视觉的双机器人曲线焊接协同规划方法
CN112958959A (zh) 一种基于三维视觉的自动化焊接和检测方法
CN109664328B (zh) Scara机器人的治具标定方法
TWI699264B (zh) 視覺導引機器手臂校正方法
CN113211431B (zh) 基于二维码修正机器人***的位姿估计方法
JP3191563B2 (ja) オフラインティーチングデータの自動補正方法
CN111409067A (zh) 一种机器人用户坐标自动标定***及其标定方法
CN113246142A (zh) 一种基于激光引导的测量路径规划方法
CN113770577B (zh) 工件装在机器人上的轨迹生成实现方法
CN117047237B (zh) 一种异形件智能柔性焊接***与方法
CN112598752B (zh) 基于视觉识别的标定方法及作业方法
JP6550985B2 (ja) ロボット接合システム
CN114888501A (zh) 一种基于三维重建的无示教编程建筑构件焊接装置及方法
CN110919238A (zh) 一种自动焊接方法及焊接装置
CN114800574A (zh) 一种基于双三维相机的机器人自动化焊接***及方法
CN114571199B (zh) 一种锁螺丝机及螺丝定位方法
CN111590165A (zh) 基于远程校正的船舶组立板焊接机器人及焊接方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant