CN113767109A - 三氯蔗糖的制备方法 - Google Patents

三氯蔗糖的制备方法 Download PDF

Info

Publication number
CN113767109A
CN113767109A CN202180002113.3A CN202180002113A CN113767109A CN 113767109 A CN113767109 A CN 113767109A CN 202180002113 A CN202180002113 A CN 202180002113A CN 113767109 A CN113767109 A CN 113767109A
Authority
CN
China
Prior art keywords
tower
sucralose
neutralization
liquid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180002113.3A
Other languages
English (en)
Inventor
张正颂
陈永乐
陈宇涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jinhe Industrial Co Ltd
Original Assignee
Anhui Jinhe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jinhe Industrial Co Ltd filed Critical Anhui Jinhe Industrial Co Ltd
Publication of CN113767109A publication Critical patent/CN113767109A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/02Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请提供了一种三氯蔗糖的制备方法,包括:使制备三氯蔗糖‑6酯的氯化反应液、第一液碱和第一回用水分段进入中和反应精馏塔,在蒸发条件下进行中和反应后,从中和反应精馏的塔顶采出溶剂混合物;从中和反应精馏的塔底采出氯化反应中和液;使氯化反应中和液、第二液碱和第二回用水分段进入水解反应精馏塔,在蒸发条件下进行碱性水解反应,从水解反应精馏塔的塔顶采出废弃水溶液,从水解反应精馏塔的塔底采出三氯蔗糖水溶液;将三氯蔗糖水溶液调节至中性后,依次进行萃取、氧化和反萃取以进行提纯;和结晶步骤。本申请一种高效、绿色、连续的三氯蔗糖制备工艺,具有极高的应用价值和实用性。

Description

三氯蔗糖的制备方法
技术领域
本发明属于精细化工技术领域,具体涉及一种三氯蔗糖的制备方法。
背景技术
三氯蔗糖,俗称蔗糖素,外观为白色结晶粉末或颗粒,甜度约为蔗糖的600倍,作为新一代的甜味剂,三氯蔗糖是唯一一种以蔗糖为原料,口感纯正,无热量,不参与人体新陈代谢,可供糖尿病人,心脑血管疾病患者及老年人使用的“零卡”糖。产品具有稳定性高、耐酸碱、耐高温、货架期长、安全性高等特点,广泛应用于食品、饮料、日化、医药等多个领域。
三氯蔗糖-6-酯是制备三氯蔗糖的重要中间体之一,其由蔗糖-6-酯与氯化试剂在高温下氯化得来,由于氯化过程中会产生大量副产物及杂质,这些副产物和杂质影响终产品三氯蔗糖的纯度,在现有技术中,想要获得纯净的三氯蔗糖,通常需要经过中和、浓干、萃取结晶、酯结、水结、醇解、提纯、浓缩、结晶等操作对生产三氯蔗糖-6-酯氯代中和液进行处提纯,该过程连续性差,人工操作繁琐,氨水使用量大,后期生化处理困难。
目前也有关于连续式或一锅法由含三氯蔗糖-6-乙酸酯的氯化液制备三氯蔗糖的方法的报道,如中国专利CN103113426报道了一种以蔗糖,硼酐为原料一锅法制备三氯蔗糖的工艺,工艺中制备成硼酸六氯二蔗糖酯,经饱和无机盐水溶液水解硼酸六氯二蔗糖酯得到三氯蔗糖,再经乙酸乙酯萃取,无水硫酸钠干燥,过滤后得到含三氯蔗糖的乙酸乙酯溶液,再经95wt%的乙醇,活性炭脱色,过滤。最后滤液结晶得到三氯蔗糖纯品。该法虽然连续性强,收率高,但使用硼酐作为原料,成本高,回收困难,后续废水处理难度大,工业化前景渺茫。综上所述,亟需一种三氯蔗糖的制备方法以解决上述问题。需要说明的是,这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
发明内容
鉴于现有技术,提供了一种三氯蔗糖的制备方法,该方法摒弃了传统的间歇中和、脱溶、水解,以及冗长的三氯蔗糖-6-乙酸酯提纯工艺,实现了三氯蔗糖的连续制备,以克服现有技术中的不足。
根据本申请的第一方面,提供了一种三氯蔗糖的制备方法,包括:
中和步骤:使制备三氯蔗糖-6-酯的氯化反应液,第一液碱和第一回用水分段进入中和反应精馏塔,在蒸发条件下进行中和反应后,从中和反应精馏的塔顶采出溶剂混合物;从中和反应精馏的塔底采出氯化反应中和液;
水解步骤:使氯化反应中和液、第二液碱和第二回用水分段进入水解反应精馏塔,在蒸发条件下进行碱性水解反应,从水解反应精馏塔的塔顶采出废弃水溶液,从水解反应精馏塔的塔底采出三氯蔗糖水溶液;
萃取提纯步骤:将三氯蔗糖水溶液调节至中性后,依次进行萃取、氧化和反萃取以进行提纯;和
结晶步骤:将提纯后的三氯蔗糖水溶液经浓缩、结晶、过滤,得到三氯蔗糖粗产品和结晶母液。
可选的,上述方法还包括:
母液循环回收步骤:将结晶母液回收至要进入结晶步骤的三氯蔗糖水溶液中,回收次数为1~5次。
可选的,在上述方法中,中和反应精馏塔的塔高为10~30m;
氯化反应液进料位置处于距离塔顶为塔高的3/10~2/5的位置,第一液碱的进料位置处于距离塔顶为塔高的1/2~3/5的位置,第一回用水的进料位置处于距离塔顶为塔高的7/10~4/5的位置。
可选的,在上述方法中,在中和步骤中,在进行中和反应时,将中和反应精馏塔的塔顶温度设为30~40℃,塔底温度设为50~60℃。
可选的,在上述方法中,在水解步骤中,水解反应精馏塔的塔高为10~30m;
氯化液中和液进料位置处于距离塔顶为塔高的2/5~3/7的位置,第二液碱的进料位置处于距离塔顶为塔高的1/2~3/5的位置,第二回用水的进料位置处于距离塔顶为塔高的4/5~9/10的位置。
可选的,在上述方法中,在水解步骤中,在进行水解反应时,将中和反应精馏塔的塔顶温度设为30~40℃,塔底温度设为50~60℃。
可选的,在上述方法中,中和反应精馏塔和水解反应精馏塔均为填料塔或板式塔,优选为填料塔,其中,填料塔中的填料为聚四氟波纹板或θ环,填料高度为填料塔塔高的1/3~2/3。
可选的,在上述方法中,在中和步骤中,氯化反应液、第一液碱和第一回用水的体积比为10~15:1:1;
在水解步骤中,氯化反应中和液、第二液碱和第二回用水的体积比为40~60:1:10~20。
可选的,在上述方法中,第一液碱和第二液碱均为氢氧化钠或氢氧化钾的水溶液,优选为氢氧化钠的水溶液。
可选的,在上述方法中,在萃取提纯步骤中,将三氯蔗糖水溶液调节至中性包括:
采用无机酸将三氯蔗糖水溶液的pH值调节至6~8,其中无机酸为盐酸、硫酸或磷酸中的一种。
可选的,在上述方法中,在萃取提纯步骤中,进行萃取所用的萃取剂为乙酸乙酯和/或乙酸丁酯;
萃取剂的体积用量与氯化反应中和液的比为1~5:1。
可选的,在上述方法中,在萃取提纯步骤中,氧化所用的氧化剂为次氯酸钠或臭氧;其中,次氯酸钠的质量用量为萃取得到的有机相的体积的0.01~0.1%;臭氧的体积用量为萃取得到的有机相的体积的0.01~0.1%;
氧化的氧化时间为3~12h。
可选的,在上述方法中,在萃取提纯步骤中,反萃取的反萃取剂为水,反萃取剂的体积用量与萃取得到的有机相的体积的比为1~5:1。
可选的,在上述方法中,在结晶步骤中,浓缩的浓缩温度为40~60℃,浓缩真空度为-0.1~-0.5Mpa,浓缩至三氯蔗糖水溶液中三氯蔗糖浓度为80~140g/L。
本申请的有益效果在于,本申请采用制备三氯蔗糖-6-酯时得到的未处理氯化反应液为原料,采用中和反应精馏塔实现氯化液中和、脱溶,然后使用水解精馏塔实现脱溶、以及三氯蔗糖-6-酯的水解制备三氯蔗糖的目的,最后经萃取-氧化-反萃取,实现了三氯蔗糖的连续制备,本申请摒弃了传统的间歇中和、脱溶、水解、以及冗长的三氯蔗糖-6-乙酸酯提纯工艺,显著提高了三氯蔗糖的制备和提纯的效率;且相对于现有技术,该申请采用液碱对氯化反应液进行中和,舍弃了氨水、以及甲醇钠的使用,一方面降低了后期生化处理中,氨氮含量带来的压力;另一方面避免了甲醇的使用和产生,对环境友好性高,是一种高效、绿色、连续的三氯蔗糖制备工艺,具有极高的应用价值和实用性。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的一个实施例的制备三氯蔗糖的设备的结构示意图;
图2示出了根据本申请的一个实施例的三氯蔗糖-6-酯的制备方法的流程示意图。
具体实施方式
下面将更详细地描述本申请的示例性实施例。虽然显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
申请人通过对传统方法由氯化反应液制备三氯蔗糖的生产工艺的研究发现:氯化反应液中的三氯蔗糖-6-酯必须在经过碱中和后方能释放出来,未经中和的氯化反应液是无法获得三氯蔗糖-6-酯,并以此制备三氯蔗糖的;在中和完毕后必须将DMF和三氯乙烷等溶剂蒸发出来,防止在后期碱性水解制备三氯蔗糖的过程中导致DMF的分解;在三氯蔗糖-6-酯制备三氯蔗糖的工艺流程中必须存在提纯操作,否则三氯蔗糖纯品无法顺利通过结晶获得,母液无法回收利用。
因而,采用传统工艺制备三氯蔗糖的过程中,中和过程当中使用的氨水会导致后期生化处理氨氮压力大,甲醇钠及甲醇的使用会影响后期产品结晶品质;提纯过程需要经过大量复杂的提纯工艺,存在操作复杂、连续化程度低、经济和时间成本高、三氯蔗糖收率低的缺陷。
针对上述问题,本申请提出了一种三氯蔗糖的连续制备方法,其技术构思是:通过两级反应精馏塔,将中和及脱溶有效结合,将脱溶及水解有效结合,提高工艺的连续性,降低操作难度及生产成本;采用液碱作中和及水解剂,降低后期生化处理氨氮的难度,及甲醇/甲醇钠对后期产品结晶品质的影响;采用萃取-氧化-反萃取的提纯工艺,确保三氯蔗糖的结晶效率,经以上步骤处理含有三氯蔗糖-6-乙酸酯的氯化液之后,即可获得较为纯净的三氯蔗糖产品。
本申请对于用于实现本申请提供的方法的设备不作限制,本领域技术人员可根据工艺流程选择,图1示出了根据本申请的一个实施例的制备三氯蔗糖的设备的结构示意图,图1给出的设备仅作为示例性说明,不对本申请构成限制。如1所示,图1所示的三氯蔗糖的设备100包括:依次连接的中和反应精馏塔R-1、水解反应精馏塔R-2、pH调节釜V-1、转盘萃取塔R-3、氧化釜V-2、转盘萃取塔R-4、浓缩釜V-3、结晶釜V-4和板框压滤机E-1。
图2示出了根据本申请的一个实施例的三氯蔗糖的制备方法的流程示意图,从图2可以看出,该方法至少包括步骤S210~步骤S240:
中和步骤S210:使制备三氯蔗糖-6酯的氯化反应液、第一液碱和第一回用水分段进入中和反应精馏塔,在蒸发条件下进行中和反应后,从中和反应精馏的塔顶采出溶剂混合物;从中和反应精馏的塔底采出氯化反应中和液。
从图1可以看出,中和反应精馏塔R-1包括三个进料段,上段为氯化反应液进料段、中间段为第一液碱进料段、下段为第一回用水进料段。
本申请中的氯代反应液为蔗糖-6-羧酸酯与氯化试剂进行氯代反应,得到的反应物混合溶液,称为氯代反应液。本申请适用于用现有技术中各种方法制备三氯蔗糖中氯代反应阶段产生的反应液,如单基团保护法、多基团保护法等,对于蔗糖-6-羧酸酯氯代反应液的来源本申请不做限制,可为实验室或工业生产中的制备三氯蔗糖中氯代反应阶段产生的反应液。
由于在氯代反应过程中,使用了强的氯代试剂,如氯化亚砜和光气等,在氯代保温阶段温度高,会产生一系列的副产物,如一氯代蔗糖-6-羧酸酯、二氯代蔗糖-6-羧酸酯、四氯代蔗糖-6-羧酸酯、三氯蔗糖双酯等,还含有一些有机杂质如N,N-二甲基甲酰胺(DMF)和三氯乙烷,以及大量的水。
目前,现有技术中,对蔗糖-6-羧酸酯氯代反应液的中和通常采用氨水或直接采用氨气,氨水或氨气的使用,使得体系中增加了大量的氮元素,不利于后续废液的分离和回收。
区别于现有技术,在本申请中,采用液碱代替氨水或氨气,在本申请的一些实施例中,液碱可通过将氢氧化钠和氢氧化钾溶解于水获得,也可以直接采用市售产品,如32wt%的氢氧化钠溶液。
在本申请中,出于经济考虑,采用回用水作为水源,从中和反应精馏塔的下段进入。之所以加入第一回用水,是由于水与DMF能够混溶,在将第一回用水从液态水蒸发成气态的过程中,第一回用水能够快速将DMF带出。
在中和反应过程中,氯化反应液选择中和反应精馏塔上段进料的目的是为了物料进入中和反应精馏塔后,率先蒸发去除三氯乙烷溶剂(三氯乙烷沸点低,75℃,不溶于水),第一液碱从中段进料是为确保氯化反应液能够完全被中和,第一回用水从下段进料,是利用其与DMF共沸特性,提高DMF的脱除效率。
氯化反应液是酸性的,氯化反应液、第一液碱和第一回用水在中和反应精馏塔中发生中和反应,三氯蔗糖-6-酯被释放出来,在现有技术中,三氯蔗糖-6-乙酸酯的应用最广,以下以三氯蔗糖-6-乙酸酯为例。
在中和反应的同时,可采用蒸发等手段除去溶剂,溶剂主要为DMF、三氯乙烷,以及大量的水形成的混合溶剂,在本申请的一些实施例中,可采用真空泵降低中和反应精馏塔的压力,以促进混合溶剂的蒸发。
氯化反应液与第一液碱反应后,绝大部分混合溶剂被除去,得到的剩余溶液称为氯化反应中和液。
水解步骤S220:使氯化反应中和液、第二液碱和第二回用水分段进入水解反应精馏塔,在蒸发条件下进行碱性水解反应,从水解反应精馏塔的塔顶采出废弃水溶液,从水解反应精馏塔的塔底采出三氯蔗糖水溶液。
然后使氯化反应中和液、第二液碱和第二回用水分段进入水解反应精馏塔R-2,从图1中可以看出,水解反应精馏塔R-2包括三个进料段,上段为氯化反应中和液进料段、中间段为第二液碱进料段、下段为第二回用水进料段。
在水解反应过程中,氯化反应中和液选择从水解反应精馏塔上段进料的目的是为了物料进入中和反应精馏塔后,率先蒸发去除残存的三氯乙烷溶剂,第二液碱从中段进料是为确保氯化反应中和液能够完全被水解,第二回用水从下段进料,是利用其与DMF共沸特性,提高DMF的脱除效率。
氯化反应中和液在第二液碱存在的条件下进行碱性水解反应,且在碱性水解的过程中,同时采用蒸发手段使得混合溶剂进一步蒸发,水解反应后,三氯蔗糖-6-酯完成水解生成三氯蔗糖。
第二回用水与第一回用水的作用一致,第二回用水与混合溶剂生成废弃水溶液,可从水解反应精馏塔的塔顶采出。
通过中和步骤和水解步骤相结合,将三氯蔗糖-6-酯中从氯代反应液中释放出来,并除去其中的DMF和三氯乙烷等溶剂,从而将三氯蔗糖-6-乙酸酯水解成三氯蔗糖,实现了中和、脱溶、水解的连续性操作。
萃取提纯步骤S230:将三氯蔗糖水溶液调节至中性后,依次进行萃取、氧化和反萃取以进行提纯。
得到的三氯蔗糖水溶液包括但不限于目标产物三氯蔗糖、有机酯杂质、未完全蒸发的有机溶剂,以及碱离子。由于液碱的存在,三氯蔗糖水溶液是碱性的,可采用酸性物质调节至中性。需要说明的是,在本申请中,“中性”并不是指严格意义上的pH=7,pH值在7附近,如pH=6~8均可以认为是中性。在本申请的一些实施例中,采用无机酸将三氯蔗糖水溶液的pH值调节至6~8,其中无机酸为盐酸、硫酸或磷酸中的一种。
然后依次采用萃取、氧化和反萃取的流程,对三氯蔗糖水溶液进行处理。萃取,又称溶剂萃取或液液萃取,亦称抽提,是利用***中组分在溶剂中有不同的溶解度来分离混合物的单元操作;即,是利用物质在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使溶质物质从一种溶剂内转移到另外一种溶剂中的方法。在本申请中,萃取所用的萃取剂为有机酯,如乙酸乙酯和/或乙酸丁酯,三氯蔗糖水溶液中的,溶解于萃取剂的目标产物三氯蔗糖和与三氯蔗糖结构类似的有机酯被萃取到萃取剂中,将萃取得到的水相去废水处理,得到的有机相进行后续步骤。
然后在得到的有机相中加入氧化剂,氧化剂的目的是为了将有机酯杂质如四氯代蔗糖等氧化为目标产物三氯蔗糖,从而达到极大提高三氯蔗糖的收率的目的。
在氧化反应完成后,进行反萃取,所谓反萃取是用反萃取剂使被萃取物从负载有机相返回水相的过程,为萃取的逆过程,通过反萃取,使得三氯蔗糖从萃取过程得到的有机相中转移至反萃取剂中,在本申请的一些实施例中,可采用水或去离子水作为反萃取剂,尤其采用去离子水更加有利于后续结晶效果。通过萃取提纯步骤,确保了三氯蔗糖的纯度,赋予了该方法的可行性。
和结晶步骤S240:将提纯后的三氯蔗糖水溶液经浓缩、结晶、过滤,得到三氯蔗糖粗产品和结晶母液。
最后,将纯后的三氯蔗糖水溶液经过结晶步骤,即可得到三氯蔗糖粗产品和剩余的一次结晶母液。对于结晶方法和条件,可参考现有技术,包括但不限于采用浓缩、结晶、过滤等手段以实现结晶的目的。
且由于反萃取剂通常采用水,在结晶步骤中,实际为一个水结晶过程,结晶过程更加容易控制,结晶效果好。
采用图1所示的三氯蔗糖的制备设备执行本申请提供的方法可简述如下,首先分别向中和反应精馏塔R-1上、中、下段输入氯化反应液、第一液碱及第一回用水,进行中和、脱溶操作。塔顶采出DMF,三氯乙烷及水形成的混合溶剂去溶剂分离,塔底采出氯化反应中和液输入下级水解反应精馏塔R-2;分别向R-2水解反应精馏塔上、中、下段输入氯化反应中和液、第二液碱及第二回用水,进行水解、脱溶操作。塔顶采出微量DMF和水的形成的混合物去污水处理,塔底采出三氯蔗糖水溶液输入下级中和反应釜V-1;在中和反应釜V-1中加入无机酸调节pH至中性,然后输入下级转盘萃取塔R-3;在转盘萃取塔R-3上下段分别输入三氯蔗糖水溶液及有机酯物料作为萃取剂,从转盘萃取塔R-3的塔顶采出含有三氯蔗糖萃取液的有机相,从转盘萃取塔R-3的塔底采出高盐水;含有三氯蔗糖的有机相萃取液与氧化剂一并输入氧化釜V-2,在一定条件下反应一段时间后,输入转盘萃取塔R-4下段;向输入转盘萃取塔R-4上段输入纯水,与有机相逆流萃取,从转盘萃取塔R-4的塔顶采出有机相去溶剂回收,从转盘萃取塔R-4的塔底采出三氯蔗糖溶液去浓缩釜V-3;三氯蔗糖水溶液在浓缩釜V-3中,在一定条件下将三氯蔗糖浓缩至一定浓度后输入下级结晶釜V-4;结晶完成后,将物料输入板框压滤机E-1压滤分离,得到的固体为三氯蔗糖晶体,一次结晶母液和多次结晶母液返回浓缩釜V-3继续浓缩,反复多次后,最终的母液作为废糖水去污水处理。从图2所示的方法可以看出,本申请采用制备三氯蔗糖-6-酯时得到的未处理氯化反应液为原料,采用中和反应精馏塔实现氯化液中和、脱溶,然后使用水解精馏塔实现脱溶、以及三氯蔗糖-6-酯的水解制备三氯蔗糖的目的,最后经萃取-氧化-反萃取,实现了三氯蔗糖的连续制备,本申请摒弃了传统的间歇中和、脱溶、水解、以及冗长的三氯蔗糖-6-乙酸酯提纯工艺,显著提高了三氯蔗糖的制备和提纯的效率;且相对于现有技术,该申请采用液碱对氯化反应液进行中和,舍弃了氨水,以及甲醇钠的使用,一方面降低了后期生化处理中,氨氮含量带来的压力;另一方面避免了甲醇的使用和产生,对环境友好性高,是一种高效、绿色、连续的三氯蔗糖制备工艺,具有极高的应用价值和实用性。
在本申请的一些实施例中,上述方法还包括:母液循环回收步骤:将结晶母液回收至要进入结晶步骤的三氯蔗糖水溶液中,回收次数为1-5次。
首次结晶后留存的母液称为一次结晶母液,一次结晶母液经去除杂质后再次结晶,二次结晶后留存的母液称为二次结晶母液,二次结晶母液再次进行除杂质后可以得到少量结晶,二次结晶母液与二次结晶母液再结晶后留存的母液都称为多次结晶母液。
在本申请的一些实施例中,为了进一步提高三氯蔗糖的收率,可将结晶母液多次回收,以便更加彻底的将母液中的目标产物结晶得出。
中和反应精馏塔
在本申请中,对中和反应精馏塔的类型不作限制,凡是能够同时实现中和、蒸馏的精馏塔即可,在一些实施例中,中和反应精馏塔可以为填料塔或板式塔。
填料塔以填料作为气、液接触和传质的基本构件,液体在填料表面呈膜状自上而下流动,气体呈连续相自下而上与液体作递向流动,并进行气、液两相间的传质和传热。两相的组分浓度和温度沿塔高连续变化。填料塔属于微分接触型的气、液传质设备。在本申请的一些实施例中,填料塔中的填料为聚四氟波纹板或θ环,填料高度为填料塔塔高的1/3~2/3。
板式塔是一类用于气液或液液***的分级接触传质设备,由圆筒形塔体和按一定间距水平装置在塔内的若干塔板组成。广泛应用于精馏和吸收,有些类型(如筛板塔)也用于萃取,还可作为反应器用于气液相反应过程。操作时(以气液***为例),液体在重力作用下,自上而下依次流过各层塔板,至塔底排出;气体在压力差推动下,自下而上依次穿过各层塔板,至塔顶排出。每块塔板上保持着一定深度的液层,气体通过塔板分散到液层中去,进行相际接触传质。
在本申请中,对中和反应精馏塔的规格不作限制,在一些实施例中,考虑到中和反应的效果,中和反应精馏塔的塔高为10~30m;其中,氯化反应液进料位置处于距离塔顶为塔高的3/10~2/5的位置,第一液碱的进料位置处于距离塔顶为塔高的1/2~3/5的位置,第一回用水的进料位置处于距离塔顶为塔高的7/10~4/5的位置。
中和反应条件
在本申请中,对中和反应的反应条件不作限制,凡是能够使中和反应彻底进行即可,在本申请的一些实施例中,考虑到中和反应的反应效果,将中和反应精馏塔的塔顶温度设为30~40℃,塔底温度设为50~60℃。
水解反应精馏塔
在本申请中,对水解反应精馏塔的类型不作限制,凡是能够同时实现水解、蒸馏的精馏塔即可,在一些实施例中,水解反应精馏塔可以为填料塔或板式塔。
在本申请中,对水解反应精馏塔的规格不作限制,在一些实施例中,考虑到水解反应的效果,水解反应精馏塔的塔高为10~30m;其中,氯化液中和液进料位置处于距离塔顶为塔高的2/5~3/7的位置,第二液碱的进料位置处于距离塔顶为塔高的1/2~3/5的位置,第二回用水的进料位置处于距离塔顶为塔高的4/5~9/10的位置。
水解反应条件
在本申请中,对水解反应条件不作限制,但是使水解彻底进行即可,在一些实施例中,考虑到水解效果,在进行水解反应时,将中和反应精馏塔的塔顶温度设为30~40℃,塔底温度设为50~60℃。
氯化反应液、第一液碱和第一回用水的用料比
在本申请中,对中和步骤中,对氯化反应液、第一液碱和第一回用水的用料比不作限制,在一些实施例中,氯化反应液、第一液碱和第一回用水的体积比为10~15:1:1,在上述用料比中,中和能够达到彻底进行,大部分溶剂能够被第一回用水带出,且不会造成原料的浪费。
氯化反应中和液、第二液碱和第二回用水的用料比
在本申请中,对水解步骤中,对氯化反应中和液、第二液碱和第二回用水的用料比不作限制,在一些实施例中,氯化反应中和液、第二液碱和第二回用水的体积比为40~60:1:10~20,在上述用料比中,水解能够达到彻底进行,绝大部分溶剂能够被第二回用水带出,且不会造成原料的浪费。
萃取剂的种类和用量
在本申请中,在萃取提纯步骤中,在萃取时,为了萃取三氯蔗糖,可选用萃取剂为有机酯,如可以选用乙酸乙酯和/或乙酸丁酯。
在本申请的一些实施例中,对萃取剂的用量不作限制,可根据氯化反应中和液的用量确定,如萃取剂的体积用量与氯化反应中和液的比为1~5:1,在上述用量比的范围内,萃取能够达到较好的技术效果,且不会造成萃取剂的浪费。
氧化剂的种类和用量
在本申请的一些实施例中,对氧化剂进行了筛选,在筛选氧化剂的时候发现,选用次氯酸钠或臭氧,选择氧化性是比较好的,即能够将四氯代蔗糖氧化为三氯蔗糖,同时也不会将三氯蔗糖进一步氧化。
在本申请的一些实施例中,对氧化剂的质量分数和用量不作限制,在另一些实施例中,当氧化剂为次氯酸钠时,次氯酸钠的质量用量为萃取得到的有机相的体积的0.01~0.1%;当氧化剂为臭氧时,臭氧的体积用量为萃取得到的有机相的体积的0.01~0.1%。若氧化剂的用量小于上述范围的下限值,则用量过少,氧化反应进行的不彻底,影响三氯蔗糖的收率;若氧化剂的用量大于上述范围的上限值,则用量过多,可能造成过度氧化。
氧化反应条件
在本申请的一些实施例中,对氧化反应的氧化温度和氧化时间不作限制,在另一些实施例中,氧化的氧化时间为3~12h;氧化温度在室温条件即可。
反萃取剂的用量
在本申请的一些实施例中,对反萃取剂的用量不作限制,可根据氯化反应中和液的用量确定,如反萃取剂的体积用量与萃取得到的有机相的体积的比为1~5:1。在上述用量比的范围内,反萃取能够达到较好的技术效果,且不会造成反萃取剂的浪费。
结晶的条件
在本申请的一些实施例中,对结晶条件不作限制,可参考现有技术中的一种或几种的结合,在另一些实施例中,在结晶步骤中,浓缩的浓缩温度为40~60℃,浓缩真空度为-0.1~-0.5Mpa,浓缩至三氯蔗糖水溶液中三氯蔗糖浓度为80~140g/L。
本申请中涉及的测试方法
本申请中各实施例和对比例中各物质含量均采用高效液相色谱(HighPerformance Liquid Chromatography,HPLC)方法在下述条件下采用外标法测得,在各个实施例中不再赘述。
高效液相色谱的分析测定条件:日本岛津高效液相色谱仪,配RID-10A示差折光检测,LC-10ADVP高压泵,CTO-10ASVP恒温箱;色谱柱:Agilent XDB C18柱(250mm×4.6mm,5μm);流动相:甲醇-0.125%磷酸氢二钾水溶液(4:6);柱温:40℃;流量:1.0mL/min。其中,需要甲醇(色谱纯)、磷酸氢二钾(分析纯)、超纯水等等,各标准物质,外标法测量含量。
实施例1
中和步骤:中和反应精馏塔R-1为填料塔,塔高10m,填料为聚四氟波纹板,填料高度为塔高的1/3。将氯化反应液、第一液碱、第一回用水分别以距离塔顶3m、5m、7m的位置输入中和反应精馏塔。中和反应精馏塔R-1塔顶温度为30℃,塔底温度为50℃。物料进料比(体积比)为氯化反应液:第一液碱:第一回用水=10:1:1,第一液碱为32%(质量百分数,市售)的NaOH水溶液。从中和反应精馏塔R-1的塔顶采出混合溶剂去分离,从中和反应精馏塔R-1的塔底采出的氯化反应中和液输入水解反应精馏塔R-2。
水解步骤:水解反应精馏塔R-2为板式塔,塔高10m,填料为不锈钢θ环,填料高度为塔高的1/3;将氯化反应中和液、第二液碱、第二回用水分别以距塔顶4m、5m、8m的位置输入水解反应精馏塔R-2。水解反应精馏塔塔顶温度为30℃,塔底温度为50℃。物料进料比(体积比)为氯化反应中和液:第二液碱:第二回用水=40:1:10,第二液碱为32%(质量百分数,市售)的NaOH。塔顶采出废水去污水处理,塔底采出三氯蔗糖水溶液输入pH调节釜V-1。
萃取步骤:向pH调节釜V-1中加入盐酸调节pH至6,然后将物料输入至转盘萃取塔R-3上段,将乙酸乙酯萃取剂从转盘萃取塔R-3输入,萃取比例为(体积比)乙酸乙酯:氯化反应中和液=5:1。萃取完成后,从转盘萃取塔R-3下段输出水相做高盐废水处理,上段输出乙酸乙酯相进入氧化釜V-2氧化处理。向氧化釜V-2中加入为乙酸乙酯相体积0.01%的臭氧,氧化10h,然后将氧化得到的反应液输入至转盘萃取塔R-4下段。将纯水从转盘萃取塔R-4上段输入,反萃取比例为(体积比)水:乙酸乙酯相=1:1。反萃取完成后,转盘萃取塔R-4的塔顶采出乙酸乙酯去溶剂回收,下段采出的三氯蔗糖水溶液输入浓缩釜V-3。
结晶步骤:三氯蔗糖水溶液输入浓缩釜V-3进行浓缩,浓缩温度为40℃,真空度为-0.1Mpa,浓缩后三氯蔗糖浓度为80g/L,然后将浓缩液输入结晶釜V-4室温结晶,三氯蔗糖母液回用次数为4次,三氯蔗糖经烘干后纯度见表1。
表1三氯蔗糖产品纯度
母液回用次数 产品纯度/% 水含量/wt%
0 99.87 0.13
1 99.75 0.25
2 99.89 0.11
3 99.90 0.10
4 99.82 0.18
实施例2
中和步骤:中和反应精馏塔R-1为填料塔,塔高15m,填料为聚四氟θ环,填料高度为塔高的1/2。将氯化反应液、第一液碱、第一回用水分别以距离塔顶6m、9m、12m的位置输入中和反应精馏塔R-1。中和反应精馏塔R-1的塔顶温度为35℃,塔底温度为55℃。物料进料比(体积比)为氯化反应液:第一液碱:第一回用水=11:1:1,第一液碱为32%(质量百分数,市售)的KOH。中和反应精馏塔R-1塔顶采出混合溶剂去分离,塔底氯化反应中和液输入水解反应精馏塔R-2。
水解步骤:水解反应精馏塔R-2为板式塔,塔高15m,填料为不锈钢波纹板,填料高度为塔高的1/3;将氯化液反应中和液、第二液碱、第二回用水分别以距塔顶6.5m、9m、13.5m的位置输入水解反应精馏塔R-2。水解反应精馏塔R-2的塔顶温度为35℃,塔底温度为55℃。物料进料比(体积比)为氯化反应中和液:第二液碱:第二回用水=50:1:15,第二液碱为32%(质量百分数,市售)的KOH。水解反应精馏塔R-2的塔顶采出废水去污水处理,塔底采出三氯蔗糖水溶液输入pH调节釜V-1。
萃取步骤:向pH调节釜V-1中加入硫酸调节pH至7,然后将物料输入至转盘萃取塔R-3上段,将乙酸乙酯萃取剂从转盘萃取塔R-3输入,萃取比例为(体积比)乙酸乙酯:氯化反应中和液=4:1。萃取完成后,从转盘萃取塔R-3下段输出水相做高盐废水处理,上段输出乙酸乙酯相进入氧化釜V-2氧化处理。向氧化釜V-2中加入乙酸乙酯相体积0.1%的臭氧,氧化3h,然后将氧化得到的反应液输入至转盘萃取塔R-4下段。将纯水从转盘萃取塔R-4上段输入,反萃取比例为(体积比)水:乙酸乙酯相=5:1。反萃取完成后,转盘萃取塔R-4的塔顶采出乙酸乙酯去溶剂回收,下段采出三氯蔗糖水溶液输入浓缩釜V-3。
结晶步骤:三氯蔗糖水溶液输入浓缩釜V-3进行浓缩,浓缩温度为60℃,真空度为-0.05Mpa,浓缩后三氯蔗糖浓度为100g/L,然后将浓缩液输入结晶釜V-4室温结晶,三氯蔗糖母液回用次数为4次,三氯蔗糖经烘干后纯度见表2。
表2三氯蔗糖产品纯度
母液回用次数 产品纯度/% 水含量/wt%
0 99.91 0.09
1 99.93 0.07
2 99.90 0.10
3 99.80 0.20
4 99.84 0.16
实施例3
中和步骤:中和反应精馏塔R-1为填料塔,塔高20m,填料为聚四氟波纹板,填料高度为塔高的2/3。将氯化反应液、第一液碱、第一回用水分别以距离塔顶7m、11m、15m的位置输入中和反应精馏塔R-1。中和反应精馏塔R-1的塔顶温度为40℃,塔底温度为55℃。物料进料比(体积比)为氯化反应液:第一液碱:第一回用水=15:1:1,第一液碱为32%(质量百分数,市售)的NaOH。中和反应精馏塔R-1的塔顶采出混合溶剂去分离,塔底采出氯化反应中和液输入水解反应精馏塔R-2。
水解步骤:水解反应精馏塔R-2为板式塔,塔高20m,填料为不锈钢波纹板,填料高度为塔高的2/3;将氯化液反应中和液、第二液碱、第二回用水分别以距塔顶8.2m、11m、17m的位置输入水解反应精馏塔R-2。水解反应精馏塔R-2的塔顶温度为35℃,塔底温度为60℃。物料进料比(体积比)为氯化反应中和液:第二液碱:第二回用水=60:1:20,第二液碱为32%(质量百分数,市售)的KOH。水解反应精馏塔R-2的塔顶采出废水去污水处理,塔底采出三氯蔗糖水溶液输入pH调节釜V-1。
萃取步骤:向pH调节釜V-1中加入磷酸调节pH至6.5,然后将物料输入至转盘萃取塔R-3上段,将乙酸乙酯萃取剂从转盘萃取塔R-3输入,萃取比例为(体积比)乙酸乙酯:氯化反应中和液=1:1。萃取完成后,从转盘萃取塔R-3下段输出水相做高盐废水处理,上段输出乙酸乙酯相进入氧化釜V-2氧化处理。向氧化釜V-2中加入乙酸乙酯相体积0.01%的次氯酸钠,氧化12h,然后将氧化得到的反应液输入至转盘萃取塔R-4下段。将纯水从转盘萃取塔R-4上段输入,反萃取比例为(体积比)水:乙酸乙酯相=3:1。反萃取完成后,转盘萃取塔R-4的塔顶采出乙酸乙酯去溶剂回收,下段采出三氯蔗糖水溶液输入浓缩釜V-3。
结晶步骤:三氯蔗糖水溶液输入浓缩釜V-3进行浓缩,浓缩温度为50℃,真空度为-0.07Mpa,浓缩后三氯蔗糖浓度为120g/L,然后将浓缩液输入结晶釜V-4室温结晶,三氯蔗糖母液回用次数为5次,三氯蔗糖经烘干后纯度见表3。
表3三氯蔗糖产品纯度
母液回用次数 产品纯度/% 水含量/wt%
0 99.82 0.18
1 99.85 0.15
2 99.85 0.15
3 99.80 0.20
4 99.78 0.22
5 99.77 0.23
实施例4
中和步骤:中和反应精馏塔R-1为填料塔,塔高25m,填料为聚四氟θ环,填料高度为塔高的3/5。将氯化反应液、第一液碱、第一回用水分别以距离塔顶8m、13m、18m的位置输入中和反应精馏塔R-1。中和反应精馏塔R-1的塔顶温度为33℃,塔底温度为58℃。物料进料比(体积比)为氯化反应液:第一液碱:第一回用水=13:1:1,第一液碱为32%(质量百分数,市售)的KOH。中和反应精馏塔R-1的塔顶采出混合溶剂去分离,塔底采出氯化反应中和液输入水解反应精馏塔R-2。
水解步骤:水解反应精馏塔R-2为板式塔,塔高25m,填料为不锈钢θ环,填料高度为塔高的1/3;将氯化液反应中和液、第二液碱、第二回用水分别以距塔顶10.5m、13m、20.5m的位置输入水解反应精馏塔R-2。水解反应精馏塔R-2的塔顶温度为32℃,塔底温度为56℃。物料进料比(体积比)为氯化反应中和液:第二液碱:第二回用水=45:1:10,第二液碱为32%(质量百分数,市售)的NaOH。水解反应精馏塔R-2的塔顶采出废水去污水处理,塔底采出三氯蔗糖水溶液输入pH调节釜V-1。
萃取步骤:向pH调节釜V-1中加入盐酸调节pH至8,然后将物料输入至转盘萃取塔R-3上段,将乙酸乙酯萃取剂从转盘萃取塔R-3输入,萃取比例为(体积比)乙酸乙酯:氯化反应中和液=2:1。萃取完成后,从转盘萃取塔R-3下段输出水相做高盐废水处理,上段输出乙酸乙酯相进入氧化釜V-2氧化处理。向氧化釜V-2中加入乙酸乙酯相体积0.1%的臭氧,氧化4h,然后将氧化得到的反应液输入至转盘萃取塔R-4下段。将纯水从转盘萃取塔R-4上段输入,反萃取比例为(体积比)水:乙酸乙酯相=5:1。反萃取完成后,转盘萃取塔R-4的塔顶采出乙酸乙酯去溶剂回收,下段采出三氯蔗糖水溶液输入浓缩釜V-3。
结晶步骤:三氯蔗糖水溶液输入浓缩釜V-3进行浓缩,浓缩温度为45℃,真空度为-0.09Mpa,浓缩后三氯蔗糖浓度为110g/L,然后将浓缩液输入结晶釜V-4室温结晶,三氯蔗糖母液回用次数为5次,三氯蔗糖经烘干后纯度见表4。
表4三氯蔗糖产品纯度
Figure BDA0003202532740000171
Figure BDA0003202532740000181
实施例5
中和步骤:中和反应精馏塔R-1为填料塔,塔高30m,填料为聚四氟θ环,填料高度为塔高的1/3。将氯化反应液、第一液碱、第一回用水分别以距离塔顶10.2m、16.2m、22.2m的位置输入中和反应精馏塔R-1。中和反应精馏塔R-1的塔顶温度为40℃,塔底温度为60℃。物料进料比(体积比)为氯化反应液:第一液碱:第一回用水=13:1:1,第一液碱为32%(质量百分数,市售)的NaOH。中和反应精馏塔R-1的塔顶采出混合溶剂去分离,塔底采出氯化反应中和液输入水解反应精馏塔R-2。
水解步骤:水解反应精馏塔R-2为板式塔,塔高30m,填料为不锈钢波纹板,填料高度为塔高的3/5;将氯化反应中和液、第二液碱、第二回用水分别以距塔顶12.3m、16.2m、25.2m的位置输入水解反应精馏塔R-2。水解反应精馏塔R-2的塔顶温度为40℃,塔底温度为60℃。物料进料比(体积比)为氯化反应中和液:第二液碱:第二回用水=55:1:12,第二液碱为32%(质量百分数,市售)的NaOH。水解反应精馏塔R-2的塔顶采出废水去污水处理,塔底采出三氯蔗糖水溶液输入pH调节釜V-1。
萃取步骤:向pH调节釜V-1中加入硫酸调节pH至7.5,然后将物料输入至转盘萃取塔R-3上段,将乙酸乙酯萃取剂从转盘萃取塔R-3输入,萃取比例为(体积比)乙酸乙酯:氯化反应中和液=4:1。萃取完成后,从转盘萃取塔R-3下段输出水相做高盐废水处理,上段输出乙酸乙酯相进入氧化釜V-2氧化处理。向氧化釜V-2中加入乙酸乙酯相体积0.05%的臭氧,氧化6h,然后将氧化得到的反应液输入至转盘萃取塔R-4下段。将纯水从转盘萃取塔R-4上段输入,反萃取比例为(体积比)水:乙酸乙酯相=3:1。反萃取完成后,转盘萃取塔R-4的塔顶采出乙酸乙酯去溶剂回收,下段采出三氯蔗糖水溶液输入浓缩釜V-3。
结晶步骤:三氯蔗糖水溶液输入浓缩釜V-3进行浓缩,浓缩温度为55℃,真空度为-0.06Mpa,浓缩后三氯蔗糖浓度为140g/L,然后将浓缩液输入结晶釜V-4室温结晶,三氯蔗糖母液回用次数为4次,三氯蔗糖经烘干后纯度见表5。
表5三氯蔗糖产品纯度
母液回用次数 产品纯度/% 水含量/wt%
0 99.95 0.05
1 99.89 0.11
2 99.79 0.21
3 99.86 0.14
4 99.85 0.15
实施例6
中和步骤:中和反应精馏塔R-1为填料塔,塔高16m,填料为聚四氟波纹板,填料高度为塔高的2/3。将氯化反应液、第一液碱、第一回用水分别以距离塔顶6.2m、9.5m、12.9m的位置输入中和反应精馏塔R-1。中和反应精馏塔R-1的塔顶温度为38℃,塔底温度为52℃。物料进料比(体积比)为氯化反应液:第一液碱:第一回用水=14:1:1,第一液碱为32%(质量百分数,市售)的KOH。中和反应精馏塔R-1的塔顶采出混合溶剂去分离,塔底采出氯化反应中和液输入水解反应精馏塔R-2。
水解步骤:水解反应精馏塔R-2为板式塔,塔高16m,填料为不锈钢θ环,填料高度为塔高的3/5;将氯化反应中和液、第二液碱、第二回用水分别以距塔顶7.8m、9.5m、14.6m的位置输入水解反应精馏塔R-2。水解反应精馏塔R-2的塔顶温度为34℃,塔底温度为57℃。物料进料比(体积比)为氯化反应中和液:第二液碱:第二回用水=41:1:19,第二液碱为32%(质量百分数,市售)的NaOH。水解反应精馏塔R-2的塔顶采出废水去污水处理,塔底采出三氯蔗糖水溶液输入pH调节釜V-1。
萃取步骤:向pH调节釜V-1中加入硫酸调节pH至7,然后将物料输入至转盘萃取塔R-3上段,将乙酸乙酯萃取剂从转盘萃取塔R-3输入,萃取比例为(体积比)乙酸乙酯:氯化反应中和液=1:1。萃取完成后,从转盘萃取塔R-3下段输出水相做高盐废水处理,上段输出乙酸乙酯相进入氧化釜V-2氧化处理。向氧化釜V-2中加入乙酸乙酯相体积0.03%的次氯酸钠,氧化8h,然后将氧化得到的反应液输入至转盘萃取塔R-4下段。将纯水从转盘萃取塔R-4上段输入,反萃取比例为(体积比)水:乙酸乙酯相=5:1。反萃取完成后,转盘萃取塔R-4的塔顶采出乙酸乙酯去溶剂回收,下段采出三氯蔗糖水溶液输入浓缩釜V-3。
结晶步骤:三氯蔗糖水溶液输入浓缩釜V-3进行浓缩,浓缩温度为60℃,真空度为-0.05Mpa,浓缩后三氯蔗糖浓度为140g/L,然后将浓缩液输入结晶釜V-4室温结晶,三氯蔗糖母液回用次数为5次,三氯蔗糖经烘干后纯度见表6。
表6三氯蔗糖产品纯度
母液回用次数 产品纯度/% 水含量/%
0 99.82 0.18
1 99.88 0.12
2 99.81 0.19
3 99.89 0.11
4 99.92 0.08
5 99.93 0.07
实施例7
中和步骤:中和反应精馏塔R-1为填料塔,塔高28m,填料为聚四氟θ环,填料高度为塔高的1/3。将氯化反应液、第一液碱、第一回用水分别以距离塔顶8.4m、15.4m、20.2m的位置输入中和反应精馏塔R-1。中和反应精馏塔R-1的塔顶温度为39℃,塔底温度为56℃。物料进料比(体积比)为氯化反应液:第一液碱:第一回用水=11:1:1,第一液碱为32%(质量百分数,市售)的NaOH。中和反应精馏塔R-1的塔顶采出混合溶剂去分离,塔底采出氯化反应中和液输入水解反应精馏塔R-2。
水解步骤:水解反应精馏塔R-2为板式塔,塔高28m,填料为不锈钢θ环,填料高度为塔高的2/5;将氯化反应中和液、第二液碱、第二回用水分别以距塔顶11.2m、16m、23.8m的位置输入水解反应精馏塔R-2。水解反应精馏塔R-2的塔顶温度为30℃,塔底温度为51℃。物料进料比(体积比)为氯化反应中和液:第二液碱:第二回用水=58:1:11,第二液碱为32%(质量百分数,市售)的NaOH。水解反应精馏塔R-2的塔顶采出废水去污水处理,塔底采出三氯蔗糖水溶液输入pH调节釜V-1。
萃取步骤:向pH调节釜V-1中加入盐酸调节pH至8,然后将物料输入至转盘萃取塔R-3上段,将乙酸乙酯萃取剂从转盘萃取塔R-3输入,萃取比例为(体积比)乙酸乙酯:氯化反应中和液=2:1。萃取完成后,从转盘萃取塔R-3下段输出水相做高盐废水处理,上段输出乙酸乙酯相进入氧化釜V-2氧化处理。向氧化釜V-2中加入乙酸乙酯相体积0.07%的臭氧,氧化5h,然后将氧化得到的反应液输入至转盘萃取塔R-4下段。将纯水从转盘萃取塔R-4上段输入,反萃取比例为(体积比)水:乙酸乙酯相=3:1。反萃取完成后,转盘萃取塔R-4的塔顶采出乙酸乙酯去溶剂回收,下段采出三氯蔗糖水溶液输入浓缩釜V-3。
结晶步骤:三氯蔗糖水溶液输入浓缩釜V-3进行浓缩,浓缩温度为50℃,真空度为-0.08Mpa,浓缩后三氯蔗糖浓度为130g/L,然后将浓缩液输入结晶釜V-4室温结晶,三氯蔗糖母液回用次数为4次,三氯蔗糖经烘干后纯度见表7。
表7三氯蔗糖产品纯度
母液回用次数 产品纯度/% 水含量/wt%
0 99.77 0.23
1 99.79 0.21
2 99.88 0.12
3 99.83 0.17
4 99.89 0.11
实施例8
中和步骤:中和反应精馏塔R-1为填料塔,塔高22m,填料为聚四氟波纹板,填料高度为塔高的2/5。将氯化反应液、第一液碱、第一回用水分别以距离塔顶8.8m、11m、17m的位置输入中和反应精馏塔R-1。中和反应精馏塔R-1的塔顶温度为36℃,塔底温度为59℃。物料进料比(体积比)为氯化反应液:第一液碱:第一回用水=15:1:1,第一液碱为32%(质量百分数,市售)的KOH。中和反应精馏塔R-1的塔顶采出混合溶剂去分离,塔底采出氯化反应中和液输入水解反应精馏塔R-2。
水解步骤:水解反应精馏塔R-2为板式塔,塔高22m,填料为不锈钢波纹板,填料高度为塔高的2/3;将氯化反应中和液、第二液碱、第二回用水分别以距塔顶9m、12m、19m的位置输入水解反应精馏塔R-2。水解反应精馏塔R-2的塔顶温度为33℃,塔底温度为58℃。物料进料比(体积比)为氯化反应中和液:第二液碱:第二回用水=45:1:18,第二液碱为32%(质量百分数,市售)的KOH。水解反应精馏塔R-2的塔顶采出废水去污水处理,塔底采出三氯蔗糖水溶液输入pH调节釜V-1。
萃取步骤:向pH调节釜V-1中加入磷酸调节pH至6.5,然后将物料输入至转盘萃取塔R-3上段,将乙酸乙酯萃取剂从转盘萃取塔R-3输入,萃取比例为(体积比)乙酸乙酯:氯化反应中和液=1:1。萃取完成后,从转盘萃取塔R-3下段输出水相做高盐废水处理,上段输出乙酸乙酯相进入氧化釜V-2氧化处理。向氧化釜V-2中加入乙酸乙酯相体积0.06%的次氯酸钠,氧化7h,然后将氧化得到的反应液输入至转盘萃取塔R-4下段。将纯水从转盘萃取塔R-4上段输入,反萃取比例为(体积比)水:乙酸乙酯相=4:1。反萃取完成后,转盘萃取塔R-4的塔顶采出乙酸乙酯去溶剂回收,下段采出三氯蔗糖水溶液输入浓缩釜V-3。
结晶步骤:三氯蔗糖水溶液输入浓缩釜V-3进行浓缩,浓缩温度为55℃,真空度为-0.1Mpa,浓缩后三氯蔗糖浓度为125g/L,然后将浓缩液输入结晶釜V-4室温结晶,三氯蔗糖母液回用次数为4次,三氯蔗糖经烘干后纯度见表8。
表8三氯蔗糖产品纯度
Figure BDA0003202532740000221
Figure BDA0003202532740000231
对比例1
目前现有三氯蔗糖-6-乙酸酯制备三氯蔗糖工艺为间歇工艺,主要是将氯化液中和,然后提纯获得三氯蔗糖-6-乙酸酯,再用三氯蔗糖-6-乙酸酯纯品做原料在甲醇钠/甲醇体系中水解成三氯蔗糖,最后经提纯获得三氯蔗糖精品。
将3t氯化液冷却至0℃,然后向其加入氨水,温度不超过30℃,调节pH值至10.5,保温1h,然后向其加入稀盐酸调节pH至中性。将中和好的氯化中和液,减压加热浓干去除有机溶剂,然后加入纯水溶解配置成浓干水溶液。向浓干水溶液中加入乙酸乙酯萃取,萃取后水相做废水处理,酯相浓缩至三氯蔗糖-6-乙酸酯含量大于20wt%,降温结晶,获得三氯蔗糖-6-乙酸酯粗品,然后分别用乙酸乙酯,水继续结晶,获得三氯蔗糖-6-乙酸酯精品,含量约90%,水含量约10%。
以三氯蔗糖-6-乙酸酯精品为原料,向其加入甲醇钠/甲醇进行水解,水解完成后采用乙酸丁酯萃取,然后将酯相浓干,浓干后加水溶解、浓缩,至三氯蔗糖浓度达到20wt%时室温结晶,反复两次,母液套用4次,三氯蔗糖经烘干后纯度见表9。
表9三氯蔗糖产品纯度
母液回用次数 产品纯度/% 水含量/wt%
0 99.60 0.40
1 99.57 0.43
2 99.55 0.45
3 99.50 0.50
4 99.51 0.49
从实施例1~实施例8可以看出,采用本申请的方法生产三氯蔗糖,连续化程度高,稳定性好,三氯蔗糖的纯度均达到99%以上,水含量非常少。
综上所述,本申请采用制备三氯蔗糖-6-酯时得到的未处理氯化反应液为原料,采用中和反应精馏塔实现氯化液中和、脱溶,然后使用水解精馏塔实现脱溶、以及三氯蔗糖-6-酯的水解制备三氯蔗糖的目的,最后经萃取-氧化-反萃取,实现了三氯蔗糖的连续制备,本申请摒弃了传统的间歇中和、脱溶、水解、以及冗长的三氯蔗糖-6-乙酸酯提纯工艺,显著提高了三氯蔗糖的制备和提纯的效率;且相对于现有技术,该申请采用液碱对氯化反应液进行中和,舍弃了氨水、以及甲醇钠的使用,一方面降低了后期生化处理中,氨氮含量带来的压力;另一方面避免了甲醇的使用和产生,对环境友好性高,是一种高效、绿色、连续的三氯蔗糖制备工艺,具有极高的应用价值和实用性。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
综上所述,仅为本申请的具体实施方式,在本申请的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好地解释本申请的目的,本申请的保护范围应以权利要求的保护范围为准。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。

Claims (14)

1.一种三氯蔗糖的制备方法,其特征在于,包括:
中和步骤:使制备三氯蔗糖-6-酯的氯化反应液、第一液碱和第一回用水分段进入中和反应精馏塔,在蒸发条件下进行中和反应后,从所述中和反应精馏的塔顶采出溶剂混合物;从所述中和反应精馏的塔底采出氯化反应中和液;
水解步骤:使所述氯化反应中和液、第二液碱和第二回用水分段进入水解反应精馏塔,在蒸发条件下进行碱性水解反应,从所述水解反应精馏塔的塔顶采出废弃水溶液,从所述水解反应精馏塔的塔底采出三氯蔗糖水溶液;
萃取提纯步骤:将三氯蔗糖水溶液调节至中性后,依次进行萃取、氧化和反萃取以进行提纯;和
结晶步骤:将提纯后的三氯蔗糖水溶液经浓缩、结晶、过滤,得到三氯蔗糖粗产品和结晶母液。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:
母液循环回收步骤:将所述结晶母液回收至要进入所述结晶步骤的三氯蔗糖水溶液中,回收次数为1~5次。
3.根据权利要求1所述的方法,其特征在于,所述中和反应精馏塔的塔高为10~30m;
所述氯化反应液进料位置处于距离塔顶为塔高的3/10~2/5的位置,所述第一液碱的进料位置处于距离塔顶为塔高的1/2~3/5的位置,所述第一回用水的进料位置处于距离塔顶为塔高的7/10~4/5的位置。
4.根据权利要求1所述的方法,其特征在于,在所述中和步骤中,在进行中和反应时,将所述中和反应精馏塔的塔顶温度设为30~40℃,塔底温度设为50~60℃。
5.根据权利要求1所述的方法,其特征在于,在所述水解步骤中,所述水解反应精馏塔的塔高为10~30m;
所述氯化液中和液进料位置处于距离塔顶为塔高的2/5~3/7的位置,所述第二液碱的进料位置处于距离塔顶为塔高的1/2~3/5的位置,所述第二回用水的进料位置处于距离塔顶为塔高的4/5~9/10的位置。
6.根据权利要求1所述的方法,其特征在于,在所述水解步骤中,在进行水解反应时,将所述中和反应精馏塔的塔顶温度设为30~40℃,塔底温度设为50~60℃。
7.根据权利要求1所述的方法,其特征在于,所述中和反应精馏塔和所述水解反应精馏塔均为填料塔或板式塔,优选为填料塔,其中,所述填料塔中的填料为聚四氟波纹板或θ环,填料高度为所述填料塔塔高的1/3~2/3。
8.根据权利要求1所述的方法,其特征在于,在所述中和步骤中,所述氯化反应液、所述第一液碱和第一回用水的体积比为10~15:1:1;
在所述水解步骤中,所述氯化反应中和液、所述第二液碱和第二回用水的体积比为40~60:1:10~20。
9.根据权利要求1所述的方法,其特征在于,所述第一液碱和所述第二液碱均为氢氧化钠或氢氧化钾的水溶液,优选为氢氧化钠的水溶液。
10.根据权利要求1所述的方法,其特征在于,在所述萃取提纯步骤中,所述将三氯蔗糖水溶液调节至中性包括:
采用无机酸将所述三氯蔗糖水溶液的pH值调节至6~8,其中所述无机酸为盐酸、硫酸或磷酸中的一种。
11.根据权利要求1所述的方法,其特征在于,在所述萃取提纯步骤中,进行萃取所用的萃取剂为乙酸乙酯和/或乙酸丁酯;
所述萃取剂的体积用量与所述氯化反应中和液的比为1~5:1。
12.根据权利要求1所述的方法,其特征在于,在所述萃取提纯步骤中,所述氧化所用的氧化剂为次氯酸钠或臭氧;其中,所述次氯酸钠的质量用量为所述萃取得到的有机相的体积的0.01~0.1%;所述臭氧的体积用量为所述萃取得到的有机相的体积的0.01~0.1%;
所述氧化的氧化时间为3~12h。
13.根据权利要求1所述的方法,其特征在于,在所述萃取提纯步骤中,所述反萃取的反萃取剂为水,所述反萃取剂的体积用量与所述萃取得到的有机相的体积的比为1~5:1。
14.根据权利要求1所述的方法,其特征在于,在所述结晶步骤中,所述浓缩的浓缩温度为40~60℃,浓缩真空度为-0.1~-0.5Mpa,浓缩至所述三氯蔗糖水溶液中三氯蔗糖浓度为80~140g/L。
CN202180002113.3A 2021-08-04 2021-08-04 三氯蔗糖的制备方法 Pending CN113767109A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110492 WO2023010323A1 (zh) 2021-08-04 2021-08-04 三氯蔗糖的制备方法

Publications (1)

Publication Number Publication Date
CN113767109A true CN113767109A (zh) 2021-12-07

Family

ID=78784875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180002113.3A Pending CN113767109A (zh) 2021-08-04 2021-08-04 三氯蔗糖的制备方法

Country Status (2)

Country Link
CN (1) CN113767109A (zh)
WO (1) WO2023010323A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114146673A (zh) * 2021-12-20 2022-03-08 安徽金禾实业股份有限公司 一种三氯蔗糖生产中连续中和的装置及方法
WO2024082154A1 (zh) * 2022-10-19 2024-04-25 安徽金禾实业股份有限公司 一种利用改进的水解体系制备三氯蔗糖粗品的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321122A (zh) * 2011-10-21 2012-01-18 湖北益泰药业有限公司 一种从三氯蔗糖-6-酯制备三氯蔗糖的方法
CN104004032A (zh) * 2014-06-14 2014-08-27 福州大学 一种三氯蔗糖-6-乙酸酯连续脱乙酰基制三氯蔗糖的方法
CN109467578A (zh) * 2018-03-14 2019-03-15 刘静 一种从多重母液里提取三氯蔗糖的方法
CN109956983A (zh) * 2017-12-25 2019-07-02 盐城捷康三氯蔗糖制造有限公司 三氯蔗糖-6-乙酯的提取方法
CN109956982A (zh) * 2019-03-29 2019-07-02 翁源广业清怡食品科技有限公司 一种三氯蔗糖的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498709A (en) * 1994-10-17 1996-03-12 Mcneil-Ppc, Inc. Production of sucralose without intermediate isolation of crystalline sucralose-6-ester
US8436157B2 (en) * 2008-03-26 2013-05-07 Tate & Lyle Technology Limited Method for the production of sucralose
CN104387427A (zh) * 2014-10-30 2015-03-04 安徽金禾实业股份有限公司 一种三氯蔗糖的生产方法
CN108047283B (zh) * 2018-01-10 2020-02-28 福建科宏生物工程股份有限公司 一种三氯蔗糖生产中氯代反应的后续处理方法
CN112771059A (zh) * 2020-12-30 2021-05-07 安徽金禾实业股份有限公司 三氯蔗糖的制备方法、粗产品溶液及三氯蔗糖

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321122A (zh) * 2011-10-21 2012-01-18 湖北益泰药业有限公司 一种从三氯蔗糖-6-酯制备三氯蔗糖的方法
CN104004032A (zh) * 2014-06-14 2014-08-27 福州大学 一种三氯蔗糖-6-乙酸酯连续脱乙酰基制三氯蔗糖的方法
CN109956983A (zh) * 2017-12-25 2019-07-02 盐城捷康三氯蔗糖制造有限公司 三氯蔗糖-6-乙酯的提取方法
CN109467578A (zh) * 2018-03-14 2019-03-15 刘静 一种从多重母液里提取三氯蔗糖的方法
CN109956982A (zh) * 2019-03-29 2019-07-02 翁源广业清怡食品科技有限公司 一种三氯蔗糖的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘涛刚: "精馏塔控制和节能优化研究综述", 《石化技术》 *
吴俊生 邵惠鹤: "《精馏设计、操作和控制》", 31 December 1997, 北京:中国石化出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114146673A (zh) * 2021-12-20 2022-03-08 安徽金禾实业股份有限公司 一种三氯蔗糖生产中连续中和的装置及方法
WO2024082154A1 (zh) * 2022-10-19 2024-04-25 安徽金禾实业股份有限公司 一种利用改进的水解体系制备三氯蔗糖粗品的方法

Also Published As

Publication number Publication date
WO2023010323A1 (zh) 2023-02-09

Similar Documents

Publication Publication Date Title
CN113767109A (zh) 三氯蔗糖的制备方法
WO2023279278A1 (zh) 三氯蔗糖-6-酯的提纯方法
CN103724261B (zh) 一种硫酸羟基氯喹啉的工业化制备方法
CN113939524B (zh) 三氯蔗糖-6-酯的提纯方法
CN109180748A (zh) 一种三氯蔗糖氯化中和反应后溶剂的分离方法
CN112513007B (zh) 一种dmf回收方法
CN109956982A (zh) 一种三氯蔗糖的制备方法
CN112624477A (zh) 一种酚钠盐分解废水处理装置及处理方法
CN112457266A (zh) 一种缬沙坦母液回收方法
CN103395925A (zh) 一种对羟基苯甲酸废水的资源化处理方法
CN113120925A (zh) 一种从异佛尔酮裂解料中回收碘化物的方法
WO2024082157A1 (zh) 一种利用改进的醇水碱解体系制备三氯蔗糖粗品的方法
CN115956082A (zh) 一种利用水解体系制备三氯蔗糖粗品的方法
CN109053479B (zh) 一种季胺内盐的合成方法
CN108191927B (zh) 一种三氯蔗糖氯代液中无机盐及有机杂质的脱除方法
CN114230620B (zh) 一种三氯蔗糖结晶母液的处理方法
CN112638924B (zh) 一种三氯蔗糖-6-乙酯的纯化方法
CN105315149B (zh) 一种制备柠檬酸钠的方法
CN103254095A (zh) 碘比醇制备过程中的分离、纯化方法
CN111547741A (zh) 一种醚菌酯生产过程中副产物氯化铵的回收方法
CN116621793B (zh) 一种处理糖精钠结晶母液的方法
CN116075518B (zh) 一种利用醇水碱解体系制备三氯蔗糖粗品的方法
WO2024082175A1 (zh) 一种三氯蔗糖精品的制备方法
WO2024082158A1 (zh) 一种利用三氯蔗糖-6-乙酸酯结晶母液制备三氯蔗糖粗品的方法
CN105481156A (zh) 化学废水处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination