CN113745361A - 一种多孔GaN窄带紫外光电二极管及其制备方法 - Google Patents

一种多孔GaN窄带紫外光电二极管及其制备方法 Download PDF

Info

Publication number
CN113745361A
CN113745361A CN202110821039.XA CN202110821039A CN113745361A CN 113745361 A CN113745361 A CN 113745361A CN 202110821039 A CN202110821039 A CN 202110821039A CN 113745361 A CN113745361 A CN 113745361A
Authority
CN
China
Prior art keywords
gan
layer
porous
narrow
porous gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110821039.XA
Other languages
English (en)
Inventor
宋伟东
郭越
吴明建
梁众
林显凯
陈钊
高岩
张业龙
何鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN202110821039.XA priority Critical patent/CN113745361A/zh
Publication of CN113745361A publication Critical patent/CN113745361A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Weting (AREA)

Abstract

本发明提供一种多孔GaN窄带紫外光电二极管及其制备方法,包括衬底层;设置于衬底层上的半导体层,设置于半导体层上表面的多孔GaN层和CuZnS层;分别设置于多孔GaN层和CuZnS层上表面的金属触点层。本发明通过在衬底层上沉积GaN薄膜;对GaN薄膜进行清洗,并用离子液刻蚀GaN薄膜一部分,形成多孔GaN层;将GaN薄膜另一部分用水浴法在表面制得CuZnS层。本发明利用多孔GaN材料作为紫外光吸收层,改善光吸收降低材料缺陷;本发明利用的P型透明、高导电薄膜CuZnS具备了ZnS的高透过率和CuS的高导电特性;多孔GaN窄带紫外光电二极管半峰宽仅5nm,紫外响应波段为362~380nm,并具有高探测率,适用于弱光窄带光谱检测。

Description

一种多孔GaN窄带紫外光电二极管及其制备方法
技术领域
本发明涉及光电二极管技术领域,尤其是一种多孔GaN窄带紫外光电二极管及其制备方法。
技术背景
在军事应用领域,利用紫外探测技术可实现短距离的保密通讯、低误警率的导弹预警等;在民事领域,利用紫外探测技术可实现环境监测、火焰探测等。目前,较为成熟的紫外探测器件主要包括硅基紫外探测器和光电倍增管等。光电倍增管灵敏度高,但真空器件体积大,而且需要高压工作;硅基紫外光电探测器则需附带滤光片。因此,它们在工作中都存在一定的局限性。宽禁带半导体紫外探测器体积小、无须滤光片、节能而无需高压工作,成为目前研究热点。其中宽禁带GaN基紫外探测器耐高温、抗辐照,具有显著应用优势。
虽然国内外研究单位已经先后加入GaN基紫外探测器的研发,也取得了一定的研究进展,但是目前器件性能仍不够理想,无法全面取代现有主流的光电倍增管以及Si探测器。受材料自身性质、生长设备、衬底、p型掺杂等问题的影响,材料质量和器件结构都存在较多问题。
制备多孔GaN,形成纳米尺度的多孔结构可以有效的降低缺陷密度,减小由晶格失配所导致的应力。专利CN108520911A公开了一种具有纳米多孔GaN分布布拉格反射镜的InGaN基蓝光发光二极管的制备方法,并具体公开了如下技术内容:该方法首先采用电化学刻蚀法,以生长在c-面蓝宝石衬底层上的GaN/n-GaN周期性结构为阳极,以Pt丝为阴极,在硝酸、草酸或氢氟酸酸性溶液中刻蚀制备纳米多孔GaN分布布拉格反射镜;然后,采用MOCVD方法在纳米多孔GaN分布布拉格反射镜上外延生长InGaN基蓝光LED。所得InGaN基蓝光LED表面光滑平整,发光强度和荧光寿命分别是参比LED的5-8倍和3-5倍。所制备的具有纳米多孔GaN分布布拉格反射镜的InGaN基蓝光LED可用于照明、平面显示、生物医学器件等应用领域。此外,多孔GaN具有比表面积大、能量吸收好、紫外反射率低等特性,这些优良特性使得多孔GaN非常适用于紫外光电探测器。专利CN201710220056.1报道了一种基于多孔DBR的InGaN基谐振腔增强型探测器芯片。包括:一衬底;形成于衬底上的缓冲层;形成于缓冲层上的底部多孔DBR层;形成于底部多孔DBR层上的n型GaN层,n型GaN层的一侧向下形成有台面,另一侧为凸起;形成于n型GaN层上的有源区;形成于有源区上的p型GaN层;一侧壁钝化层,形成于所述p型GaN层部分的上表面及凸起的n型GaN层、有源区和p型GaN层的侧壁,该p型GaN层上表面的侧壁钝化层中间有一窗口;形成于侧壁钝化层及其窗口处p型GaN层上的透明导电层;形成于n型GaN层的台面上的n电极;制作在侧壁钝化层上表面周围的p电极;形成于透明导电层及p电极上的顶部介质DBR层。
以上报道均采用多孔GaN层作为DBR层,采用多孔GaN作为有源层的异质结高性能窄带响应紫外探测器未见报道。
发明内容
针对现有技术的空缺,本发明提供一种多孔GaN窄带紫外光电二极管及其制备方法,该紫外光电二极管具有窄带响应和高探测率的特点。
本发明的技术方案为:一种多孔GaN窄带紫外光电二极管,
包括衬底层;
半导体层,设置于衬底层的上表面,所述半导体层为GaN薄膜层;
多孔GaN层,相对设置于所述半导体层的上表面;
CuZnS层,设置于所述的半导体层的上表面;
金属触点层,分别设置于所述多孔GaN层和CuZnS层的上表面。
作为优选的,所述的衬底层为蓝宝石衬底层。
作为优选的,所述的半导体层的GaN薄膜层在室温下的载流子浓度范围为1×1015至1×1018cm-3,厚度为4-6μm。
作为优选的,所述的CuZnS层的厚度为30-100nm。
作为优选的,所述的金属触点层为欧姆接触层,所述的欧姆接触层的厚度为50-200nm。
本发明还提供一种多孔GaN窄带紫外光电二极管的制备方法,所述的方法包括:
S1)、在衬底层上沉积GaN薄膜;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀GaN薄膜一部分,形成多孔GaN层;
S3)、将GaN薄膜另一部分用水浴法在表面制得CuZnS层。
作为优选的,所述的步骤S2)中在刻蚀多孔GaN层之前,将0.2-0.5cm2的GaN放在王水中除去表面的钝化层;然后依次用丙酮、乙醇和去离子水中对GaN片进行超声清洗;随后在紫外臭氧清洗机中对GaN片进行亲水处理,用来增强GaN片和刻蚀剂的接触,亲水处理时间为10-30min。
作为优选的,步骤S2)中所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐或1-乙基-3-甲基咪唑三氟乙酸盐。
作为优选的,步骤S2)中多孔GaN层的具体制备方法为:
S201)、使用InGa合金作为电极,使电极与GaN片形成欧姆接触;
S202)、GaN片与电源正极相连,同样铂片与负极相连,将两个电极平行放置且固定好在铁架台,放置于氙灯前约10-30cm处,GaN刻蚀面朝向氙灯;
S203)、把GaN片与铂片浸泡在装好离子液的烧杯中,直流电源电压设为10-25V,刻蚀时长为5-20min。
作为优选的,步骤S3)中CuZnS层的具体制备方法为:
S301)、配制三种前驱体溶液,
溶液A:0.03g-0.12g硫酸铜和1-2g醋酸锌在100-200ml去离子水中混合;
溶液B:0.5-1g乙二胺四乙酸二钠与100ml的去离子混合溶解;
溶液C:0.5-1g的C2H5NS与50-200ml的去离子水混合溶解;
S302)、然后将溶液B与溶液A混合并超声20-40min;
S303)、随后将亲水处理的GaN基底垂直浸入混合溶液中,立即将溶液C加入到混合物中;密封好烧杯,对其加热,保持温度为75-90℃,时间50-80min。
本发明的有益效果为:
1、本发明利用多孔GaN材料作为紫外光吸收层,改善光吸收降低材料缺陷;
2、本发明所利用的P型透明、高导电薄膜CuZnS具备了ZnS的高透过率和CuS的高导电特性;
3、本发明的多孔GaN窄带紫外光电二极管响应带宽仅10nm,并具有高探测率,特别适用于弱光窄带光谱检测的应用。
附图说明
图1为本发明多孔GaN窄带响应紫外光电二极管的结构示意图;
图2为本发明窄多孔GaN带响应紫外光电二极管的多孔GaN层的扫描电镜图;
图3为本发明多孔GaN窄带响应紫外光电二极管在暗态和紫外光(370nm)照射下的电流-电压曲线图;
图4为本发明多孔GaN窄带响应紫外光电二极管在-2V偏压下的外量子效率和响应度图;
图5为本发明多孔GaN窄带响应紫外光电二极管的比探测率;
图中,100-衬底层,200-半导体层,300-多孔GaN层,400-CuZnS层,500-金属触点层。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
实施例1
如图1和2所示,本实施例提供一种多孔GaN窄带紫外光电二极管,包括衬底层100、半导体层200、多孔GaN层300、CuZnS层400、金属触点层500,本实施例中,所述的衬底层100为蓝宝石衬底层,且所述的半导体层200设置于衬底层100的上表面,本实施例中所述半导体层200为GaN薄膜层;且所述的GaN薄膜层在室温下的载流子浓度范围为1×1015至1×1018cm-3,厚度为4-6μm。所述的半导体层200设置有多孔GaN层300和CuZnS层400,而所述多孔GaN层300和CuZnS层400的上表面设有金属触点层500。本实施例中所述的CuZnS层400的厚度为30-100nm。所述的金属触点层500为欧姆接触层,所述的欧姆接触层的厚度为50-200nm。
实施例2
本实施例提供一种多孔GaN窄带紫外光电二极管的制备方法,所述的方法包括:
S1)、在衬底层100上沉积GaN薄膜,其中,沉积的GaN薄膜厚度为5000nm;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀GaN薄膜一部分,形成多孔GaN层300;
S3)、将GaN薄膜另一部分用水浴法在表面制得CuZnS层400,其中Cu组分为20%。
作为本实施例优选的,步骤S2)中,在刻蚀多孔GaN层300之前,将1.0cm×0.3cm的GaN放在王水中除去表面的钝化层,五分钟后取出;然后依次用丙酮、乙醇和去离子水中对GaN片进行超声清洗,每次30分钟;随后在紫外臭氧清洗机中对GaN片进行亲水处理,用来增强GaN片和刻蚀剂的接触,亲水处理时间为30min;
作为本实施例优选的,步骤S2)中,所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐。
作为本实施例优选的,步骤S2)中,多孔GaN层300的具体制备方法为:使用InGa合金作为电极,使电极与GaN片形成欧姆接触;GaN片与电源正极相连,同样铂片与负极相连,将两个电极平行放置且固定好在铁架台,放置于300W氙灯前约10cm处,GaN刻蚀面朝向氙灯;把GaN片与铂片浸泡在装好离子液的烧杯中,直流电源电压设为10V,刻蚀时长为5min;
作为本实施例优选的,步骤S3)中,所述的CuZnS层400的具体制备方法为:首先配制三种前驱体溶液:
溶液A:0.06g硫酸铜和1.68g醋酸锌在100ml去离子水中混合;溶液B:0.96g乙二胺四乙酸二钠与100ml的去离子混合溶解;溶液C:0.6g的C2H5NS与100ml的去离子水混合溶解;
然后将溶液B与溶液A混合并超声30min;随后将亲水处理的GaN基底垂直浸入混合溶液中,立即将溶液C加入到混合物中;密封好烧杯,对其加热,保持温度为80℃,时间60min。
实施例3
本实施例提供一种多孔GaN窄带紫外光电二极管的制备方法,所述的方法包括:
S1)、在衬底层100上沉积GaN薄膜,其中,沉积的GaN薄膜厚度为5000nm;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀GaN薄膜一部分,形成多孔GaN层300;
S3)、将GaN薄膜另一部分用水浴法在表面制得CuZnS层400,其中Cu组分为10%。
作为本实施例优选的,步骤S2)中,在刻蚀多孔GaN层300之前,将1.0cm×0.3cm的GaN放在王水中除去表面的钝化层,五分钟后取出;然后依次用丙酮、乙醇和去离子水中对GaN片进行超声清洗,每次30分钟;随后在紫外臭氧清洗机中对GaN片进行亲水处理,用来增强GaN片和刻蚀剂的接触,亲水处理时间为30min;
作为本实施例优选的,步骤S2)中,所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐。
作为本实施例优选的,步骤S2)中,多孔GaN层300的具体制备方法为:使用InGa合金作为电极,使电极与GaN片形成欧姆接触;GaN片与电源正极相连,同样铂片与负极相连,将两个电极平行放置且固定好在铁架台,放置于300W氙灯前约10cm处,GaN刻蚀面朝向氙灯;把GaN片与铂片浸泡在装好离子液的烧杯中,直流电源电压设为10V,刻蚀时长为5min;
作为本实施例优选的,步骤S3)中,CuZnS层400的具体制备方法为:首先配制三种前驱体溶液,
溶液A:0.06g硫酸铜和3.36g醋酸锌在200ml去离子水中混合;溶液B:1.92g乙二胺四乙酸二钠与100ml的去离子混合溶解;溶液C:1.2g的C2H5NS与100ml的去离子水混合溶解;
然后将溶液B与溶液A混合并超声30min;随后将亲水处理的GaN基底垂直浸入混合溶液中,立即将溶液C加入到混合物中;密封好烧杯,对其加热,保持温度为80℃,时间60min。
实施例4
本实施例提供一种多孔GaN窄带紫外光电二极管的制备方法,所述的方法包括:
S1)、在衬底层100上沉积GaN薄膜,其中,沉积的GaN薄膜厚度为5000nm;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀GaN薄膜一部分,形成多孔GaN层300;
S3)、将GaN薄膜另一部分用水浴法在表面制得CuZnS层400,其中Cu组分为20%。
作为本实施例优选的,步骤S2)中,在刻蚀多孔GaN层300之前,将1.0cm×0.3cm的GaN放在王水中除去表面的钝化层,五分钟后取出;然后依次用丙酮、乙醇和去离子水中对GaN片进行超声清洗,每次30分钟;随后在紫外臭氧清洗机中对GaN片进行亲水处理,用来增强GaN片和刻蚀剂的接触,亲水处理时间为30min;
作为本实施例优选的,步骤S2)中,所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐。
作为本实施例优选的,步骤S2)中,多孔GaN层300的具体制备方法为:使用InGa合金作为电极,使电极与GaN片形成欧姆接触;GaN片与电源正极相连,同样铂片与负极相连,将两个电极平行放置且固定好在铁架台,放置于300W氙灯前约10cm处,GaN刻蚀面朝向氙灯;把GaN片与铂片浸泡在装好离子液的烧杯中,直流电源电压设为15V,刻蚀时长为5min;
作为本实施例优选的,步骤S3)中,CuZnS层400的具体制备方法为:首先配制三种前驱体溶液,
溶液A:0.12g硫酸铜和3.36g醋酸锌在200ml去离子水中混合;
溶液B:1.92g乙二胺四乙酸二钠与100ml的去离子混合溶解;
溶液C:1.2g的C2H5NS与100ml的去离子水混合溶解;
然后将溶液B与溶液A混合并超声30min;随后将亲水处理的GaN基底垂直浸入混合溶液中,立即将溶液C加入到混合物中;密封好烧杯,对其加热,保持温度为80℃,时间60min。
实施例5
本实施例对实施例1制得的多孔GaN窄带紫外光电二极管进行性能测试,测试在暗处以及370nm紫外光照射下紫外光电二极管的光暗电流比以及其他参数,由图3-5可知,该紫外光电二极管在370nm紫外光照射下器件光暗电流比达到585;在-2V偏压下,制备的光电探测器峰值响应度为41.7mA/W,峰值外量子效率为13.86%,探测率值超过了3.78×1012Jones。
由图可知,制备的多孔GaN窄带紫外光电二极管外量子效率、响应度和探测率均在紫外区370nm处取得峰值,半峰宽为5nm,且只在362~388nm紫外波段产生响应,表明制得的器件具有窄带响应性能。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (10)

1.一种多孔GaN窄带紫外光电二极管,其特征在于,包括衬底层(100)、半导体层(200)、多孔GaN层(300)、CuZnS层(400)、金属触点层(500),所述的半导体层(200)设置于衬底层(100)的上表面,所述半导体层(200)为GaN薄膜层;
所述的半导体层(200)上设置有多孔GaN层(300)和CuZnS层(400),而所述多孔GaN层(300)和CuZnS层(400)的上表面设有金属触点层(500)。
2.根据权利要求1所述的一种多孔GaN窄带紫外光电二极管,其特征在于:所述的衬底层100为蓝宝石衬底层。
3.根据权利要求1所述的一种多孔GaN窄带紫外光电二极管,其特征在于:所述的GaN薄膜层在室温下的载流子浓度范围为1×1015至1×1018cm-3,厚度为4-6μm。
4.根据权利要求1所述的一种多孔GaN窄带紫外光电二极管,其特征在于:所述的CuZnS层400的厚度为30-100nm。
5.根据权利要求1所述的一种多孔GaN窄带紫外光电二极管,其特征在于:所述的金属触点层500为欧姆接触层,所述的欧姆接触层的厚度为50-200nm。
6.一种用于制备权利要求1-5任一项所述的多孔GaN窄带紫外光电二极管的方法,所述的方法包括:
S1)、在衬底层(100)上沉积GaN薄膜;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀GaN薄膜一部分,形成多孔GaN层(300);
S3)、将GaN薄膜另一部分用水浴法在表面制得CuZnS层(400)。
7.根据权利要求6所示的一种多孔GaN窄带紫外光电二极管的制备方法,其特征在于,所述的步骤S2)中在刻蚀多孔GaN层(300)之前,将0.2-0.5cm2的GaN放在王水中除去表面的钝化层;
然后依次用丙酮、乙醇和去离子水中对GaN片进行超声清洗;
随后在紫外臭氧清洗机中对GaN片进行亲水处理,用来增强GaN片和刻蚀剂的接触,亲水处理时间为10-30min。
8.根据权利要求6所示的一种多孔GaN窄带紫外光电二极管的制备方法,其特征在于,步骤S2)中所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐或1-乙基-3-甲基咪唑三氟乙酸盐。
9.根据权利要求6所示的一种多孔GaN窄带紫外光电二极管的制备方法,其特征在于,步骤S2)中多孔GaN层(300)的具体制备方法为:
S201)、使用InGa合金作为电极,使电极与GaN片形成欧姆接触;
S202)、GaN片与电源正极相连,同样铂片与负极相连,将两个电极平行放置且固定好在铁架台,放置于氙灯前约10-30cm处,GaN刻蚀面朝向氙灯;
S203)、把GaN片与铂片浸泡在装好离子液的烧杯中,直流电源电压设为10-25V,刻蚀时长为5-20min。
10.根据权利要求6所示的一种多孔GaN窄带紫外光电二极管的制备方法,其特征在于,步骤S3)中CuZnS层(400)的具体制备方法为:
S301)、配制三种前驱体溶液
溶液A:0.03g-0.12g硫酸铜和1-2g醋酸锌在100-200ml去离子水中混合;
溶液B:0.5-1g乙二胺四乙酸二钠与100ml的去离子混合溶解;
溶液C:0.5-1g的C2H5NS与50-200ml的去离子水混合溶解;
S302)、然后将溶液B与溶液A混合并超声20-40min;
S303)、随后将亲水处理的GaN基底垂直浸入混合溶液中,立即将溶液C加入到混合物中;密封好烧杯,对其加热,保持温度为75-90℃,时间50-80min。
CN202110821039.XA 2021-07-20 2021-07-20 一种多孔GaN窄带紫外光电二极管及其制备方法 Pending CN113745361A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110821039.XA CN113745361A (zh) 2021-07-20 2021-07-20 一种多孔GaN窄带紫外光电二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110821039.XA CN113745361A (zh) 2021-07-20 2021-07-20 一种多孔GaN窄带紫外光电二极管及其制备方法

Publications (1)

Publication Number Publication Date
CN113745361A true CN113745361A (zh) 2021-12-03

Family

ID=78728755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110821039.XA Pending CN113745361A (zh) 2021-07-20 2021-07-20 一种多孔GaN窄带紫外光电二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN113745361A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084297A (zh) * 2022-06-10 2022-09-20 五邑大学 一种薄膜异质结紫外光探测器及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046292A2 (ko) * 2009-10-16 2011-04-21 서울옵토디바이스주식회사 다공성 질화물 반도체 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
JP2014234330A (ja) * 2013-06-04 2014-12-15 日本碍子株式会社 多孔質酸化亜鉛単結晶及び同単結晶を使用するデバイス
CN106653893A (zh) * 2017-01-22 2017-05-10 中国科学院半导体研究所 基于多孔氮化镓的紫外光电探测器及制备方法
CN110970513A (zh) * 2018-09-29 2020-04-07 中国科学院半导体研究所 Msm型多孔氧化嫁日盲探测器及其制造方法
CN112779013A (zh) * 2020-12-31 2021-05-11 中国科学院苏州纳米技术与纳米仿生研究所 用于光电化学刻蚀氮化镓的刻蚀液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046292A2 (ko) * 2009-10-16 2011-04-21 서울옵토디바이스주식회사 다공성 질화물 반도체 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
JP2014234330A (ja) * 2013-06-04 2014-12-15 日本碍子株式会社 多孔質酸化亜鉛単結晶及び同単結晶を使用するデバイス
CN106653893A (zh) * 2017-01-22 2017-05-10 中国科学院半导体研究所 基于多孔氮化镓的紫外光电探测器及制备方法
CN110970513A (zh) * 2018-09-29 2020-04-07 中国科学院半导体研究所 Msm型多孔氧化嫁日盲探测器及其制造方法
CN112779013A (zh) * 2020-12-31 2021-05-11 中国科学院苏州纳米技术与纳米仿生研究所 用于光电化学刻蚀氮化镓的刻蚀液

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XIAOJIE XU等: "Solution-Processed Transparent Self-Powered p-CuS-ZnS/n-ZnO UV Photodiode", PHYSICA RAPID RESEARCH LETTERS, vol. 12, no. 2, 12 December 2017 (2017-12-12) *
YAN XIAO等: "High switch ratio, self-powered ultraviolet photodetector based on a ZnOEP/GaN p-n heterojunction with porous structure on GaN", CHEMICAL PHYSICS LETTERS, vol. 739, pages 1 - 4 *
YAN XIAO等: "High-Performance Self-Powered Ultraviolet Photodetector Based on Nano-Porous GaN and CoPc p–n Vertical Heterojunction", NANOMATERIALS, vol. 9, no. 9, pages 1 - 7 *
YONG ZHANG等: "High performance self-powered CuZnS/GaN UV photodetectors with ultrahigh on/off ratio (3 × 108)", JOURNAL OF MATERIALS CHEMISTRY C, vol. 9, no. 14, pages 1 - 7 *
郭越 等: "多孔GaN/MoO3异质结窄带响应紫外光电探测器", 材料科学, vol. 11, no. 6, pages 796 - 798 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084297A (zh) * 2022-06-10 2022-09-20 五邑大学 一种薄膜异质结紫外光探测器及其制备方法和应用

Similar Documents

Publication Publication Date Title
KR101730929B1 (ko) 선택적 금속오믹층을 포함하는 초소형 led 전극어셈블리 제조방법
US8525198B2 (en) Ultraviolet light emitting diode devices and methods for fabricating the same
KR101025980B1 (ko) 질화물계 반도체 발광소자의 제조방법
KR101517551B1 (ko) 발광소자의 제조방법 및 그에 의해 제조된 발광소자
CN112713227B (zh) 一种提高紫外AlInGaN发光二极管TM模出光效率的方法
CN115799417B (zh) 一种紫外发光二极管及其制备方法
CN113257965A (zh) 一种AlInGaN半导体发光器件
CN113745361A (zh) 一种多孔GaN窄带紫外光电二极管及其制备方法
US20150171276A1 (en) Contacts for an n-type gallium and nitrogen substrate for optical devices
CN104659174B (zh) 一种采用激光辐照氮化镓外延片改善以其为基底的led发光性能的方法
JP5774900B2 (ja) 発光ダイオード素子及びその製造方法
JP5330880B2 (ja) 発光ダイオード素子及びその製造方法
Das et al. Porous silicon pn junction light emitting diodes
Su et al. Performance improvement of ultraviolet-A multiple quantum wells using a vertical oriented nanoporous GaN underlayer
CN110808319B (zh) 反极性垂直发光二极管及其制备方法
JP2009111019A (ja) 結晶軸配向性とファセット(結晶面)を制御した微結晶構造窒化物半導体光・電子素子
CN113471340A (zh) 一种基于局域表面等离激元耦合增强的MIS结构的超快micro-LED及其制备方法
KR20090115314A (ko) 그룹 3족 질화물계 반도체 소자
CN104638079B (zh) 基于一维微纳结构/氮化镓薄膜肖特基结的紫外led
JP5240881B2 (ja) 結晶軸配向性とファセット(結晶面)を制御した微結晶構造窒化物半導体光・電子素子
KR101246735B1 (ko) 모스-아이 구조를 이용한 고효율 반도체소자 및 그 제조방법
Zhang et al. III-Nitride Ultraviolet LEDs and Lasers for Applications in Biology and Medicine
JP5537326B2 (ja) 発光ダイオード素子及びその製造方法並びに単結晶SiC材料及びその製造方法
Zhang et al. Cathodoluminescence study for ultraviolet GaN-based MQW LEDs
Tsuo et al. Device applications of porous and nanostructured silicon

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination