CN113578382A - 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法 - Google Patents

高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法 Download PDF

Info

Publication number
CN113578382A
CN113578382A CN202110861415.8A CN202110861415A CN113578382A CN 113578382 A CN113578382 A CN 113578382A CN 202110861415 A CN202110861415 A CN 202110861415A CN 113578382 A CN113578382 A CN 113578382A
Authority
CN
China
Prior art keywords
thiophene
hydrogen production
formula
polymer
polymer photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110861415.8A
Other languages
English (en)
Other versions
CN113578382B (zh
Inventor
蒋加兴
韩昌志
张崇
向思慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202110861415.8A priority Critical patent/CN113578382B/zh
Publication of CN113578382A publication Critical patent/CN113578382A/zh
Application granted granted Critical
Publication of CN113578382B publication Critical patent/CN113578382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一类高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法,该光催化剂采用简单的三元共聚合的Suzuki偶联反应进行制备,其构建单元包括:芘、噻吩或噻吩衍生物和二苯并噻吩砜。用于聚合的芘基单体和二苯并噻吩砜基单体带有相同的可聚合官能团,可同时与噻吩或噻吩衍生物单体发生Suzuki偶联反应,以保证聚合物结构中芘单元与二苯并噻吩砜单元之间通过噻吩或噻吩衍生物单元相连接。本发明聚合物光催化剂具有光催化产氢活性高、表观量子效率高、光学带隙窄、结构和组成连续可调的特点,且其制备过程简单、产率高、性能稳定,在太阳光下就可以释放氢气,可用于光催化产氢领域。

Description

高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制 备方法
技术领域
本发明属于光催化分解水制氢材料技术领域,具体涉及一类具有高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法。
背景技术
利用太阳能分解水产氢是一种将太阳能转化为化学能的简单经济且高效的技术手段,一直备受全球科学家的高度关注。近几十年以来,国内***绕提高半导体光催化剂的光催化效率开展了大量的科学研究,已经开发了上千种半导体光催化剂用于光催化分解水产氢/产氧。
半导体光催化剂是利用太阳能光催化分解水产氢的关键材料,而提高半导体光催化剂的光催化活性主要是通过调控半导体的结构、组成来实现。其中,有机聚合物光催化剂由于合成方法多样、结构易设计及理化性质易调控等优势,在光催化分解水制氢领域具有巨大的发展潜力,近年来受到了广泛的研究关注。其中,D-A型聚合物光催化剂由于受体单元的强拉电子效应,可以有效地促进光生电荷的分离效率,进而提高聚合物光催化剂的光催化活性。例如,1,4-苯二硼酸和4,7-二溴-2,1,3-苯并噻二唑通过Suzuki偶联反应可制备一种具有D-A结构的有机聚合物光催化剂B-BT-1,4,以三乙醇胺(TEOA)为牺牲剂,并在使用Pt助催化剂以及可见光照射的条件下获得了2.32mmol h-1g-1的光催化产氢速率(Angew.Chem.Int.Ed.,2016,55,9202-9206)。当以芘单元作为电子供体,苯并噻二唑为电子受体,通过Suzuki偶联反应得到的D-A型聚合物L-PyBT,以TEOA为牺牲剂,以Pt作为助催化剂,在可见光下获得了1.67mmol h-1g-1的光催化产氢速率(Polym.Chem.,2018,9,4468-4475)。当以二苯并噻吩砜作为电子受体,芘基作为电子供体时,通过改变二苯并噻吩砜与芘单元的连接位点所得的聚合物PySO(Small,2018,14,1801839),P16PySO(Appl.Surf.Sci.,2019,495,143537)和PyDOBT-1(Macromolecules,2018,51,9502-9508),以TEOA为牺牲剂未负载Pt时,在可见光下分别获得了4.74mmol h-1g-1、6.38mmol h-1g-1和5.70mmol h-1g-1的光催化产氢活性。氟取代的二苯并噻吩砜与芘基通过Suzuki偶联反应所得的聚合物PyDF,以TEOA为牺牲剂未负载Pt时,在可见光下获得了4.09mmol h-1g-1的光催化产氢速率(J.Mater.Chem.A,2020,8,2404-2411)。当以噻蒽-5,5,10,10-四氧化物作为电子受体与电子给体芘基通过Suzuki偶联反应时,所得聚合物PySEO-1在以TEOA为牺牲剂未负载Pt时,在可见光下获得了4.51mmol h-1g-1的光催化产氢活性(ChemSusChem,2020,13,369-375)。当以9,9-螺二芴作为电子给体时,其与二苯并噻吩砜通过Suzuki偶联反应所得聚合物S-CMP3在以三乙胺(TEA)为牺牲剂未负载Pt时获得了3.11mmol h-1g-1的可见光催化产氢活性(Chem.Mater.,2019,31,305-313)。苯基与二苯并噻吩砜通过Suzuki偶联反应所得聚合物P7(Angew.Chem.Int.Ed.,2016,55,1792-1796)和DBTD-CMP1(ACS Catal.,2018,8,8590-8596),在可见光下,分别以TEA和TEOA为牺牲剂,未负载Pt时,分别获得了3.68mmolh-1g-1和2.46mmol h-1g-1的光催化产氢速率。当以苯并三噻吩作为电子给体时,其与二苯并噻吩砜通过Suzuki偶联反应所得聚合物BTT-CPP,在以抗坏血酸(AA)作为牺牲剂未负载Pt时,在可见光下获得了12.63mmol h-1g-1的光催化产氢速率(Macromolecules,2021,54,2661-2666)。当以苯基作为电子给体,噻吩基和吡嗪基作为电子受体时,通过Suzuki偶联反应所得的聚合物P13(J.Mater.Chem.A,2018,6,11994-12003)和P28(Chem.Mater.,2018,30,5733-5742)在以TEA为牺牲剂未负载Pt时,分别获得了0.25mmol h-1g-1和0.96mmol h- 1g-1的可见光催化产氢速率。
以上所列举的有机聚合物带隙都较宽,对可见光部分吸收较弱,很难充分利用太阳光中的可见光,因此可见光下光催化分解水制氢性能较低。当作为电子供体的1,4-二乙炔基苯和作为电子受体的氟和甲氧基取代的苯并噻二唑通过Sonogashira偶联得到的B-FOBT-1,4-E,在可见光下以TEOA为牺牲剂,未负载Pt助催化剂的条件下,获得了13.3mmolh-1g-1的光催化产氢速率(ACS Energy Lett.,2018,3,2544-2549)。1,3,6,8-四溴芘与2,5-二溴二噻吩并[3,2-b:2',3'-d]噻吩砜通过直接C-H芳基化偶联反应所得聚合物PyDTDO-3,在可见光下、未负载Pt和以AA作为牺牲剂时,获得了16.32mmol h-1g-1的光催化产氢活性(Chem.Sci.,2021,12,1796-1802)。1,3,6,8-四溴芘与2,2-二并噻吩通过直接C-H芳基化偶联反应所得聚合物CP1(J.Mater.Chem.A,2019,7,24222-24230),在可见光条件下,以AA作为牺牲剂时,光催化产氢速率为15.97mmol h-1g-1。当以1,3,6,8-四溴芘分别与2,5-双(三甲基甲锡基)噻吩、2,5-二(三甲基甲锡烷基)噻吩并[3,2-b]噻吩和2,5-二(三甲基甲锡烷基)二噻吩并[3,2-b:2',3'-d]噻吩通过Stille偶联反应聚合时,得到了聚合物Py-T、Py-Tt、Py-Ttt(J.Mater.Chem.A,2021,9,5787-5795),在以AA作为牺牲剂未负载Pt的条件下分别获得了38.1mmol h-1g-1、45.8mmol h-1g-1和38.9mmol h-1g-1的可见光催化产氢速率。相比于CP1,Py-Tt性能提升的主要原因可能是因为Py-Tt具有更好的共平面性,有利于光生电子的传输。以上几种聚合物催化剂的光催化性能得到提升,主要是因为他们具有较窄的带隙,提高了对可见光的吸收。虽然Py-T、Py-Tt、Py-Ttt具有较低的带隙,但是它们不具有强吸电子单元,导致光生电子和空穴无法有效分离,这也限制了其光催化性能的进一步提高。
以上列举的有机聚合物光催化剂都是由两种功能化的单体通过偶联反应聚合得到。研究表明,通过三元或者多元共聚的方式可以调控聚合物的光学性质、电学性质和调控有机聚合物的光催化活性。例如,Cooper等人采用三元共聚的方式得到了一系列有机聚合物光催化剂CP-CMP1-15,通过调节三种单元的投料比实现了对有机聚合物光学带隙、比表面积和光催化性能的调控(J.Am.Chem.Soc.2015,137,3265-3270)。通过调节四苯乙烯基、苯基和9-芴酮的投料比,所得三元共聚物F0.5CMP在以Na2S/Na2SO4为牺牲剂未负载Pt时获得了0.66mmol h-1g-1的可见光产氢活性(Chem.Eur.J.,2019,25,3867-3874)。当在聚合物骨架中引入苯单元作为桥键连接芘单元和二苯并噻吩砜单元时,通过调节供体单元和受体单元的投料比,所得D-π-A聚合物PyBS-3(Adv.Mater.,2021,2008498)在以TEOA为牺牲剂未负载Pt时,获得了14mmol h-1g-1的可见光分解水产氢活性。当以AA作为牺牲剂时,获得了36mmol h-1g-1的可见光分解水产氢活性,相比于PyDOBT-1、PyBS-3性能得到了大幅度提升,这主要是由于苯桥键的引入降低了分子之间的扭曲程度,有利于电子的传输,但是其能带结构依旧较宽,因此,在可见光照射下则表现出较低的催化产氢活性。
发明内容
本发明的目的是提供一类在可见光照射下具有高光催化分解水制氢活性的含噻吩基聚合物光催化剂,并为该类聚合物光催化剂提供一种工艺步骤简单、收率高的制备方法。
针对上述目的,本发明所采用的含噻吩基聚合物光催化剂的结构如式A或式B所示:
Figure BDA0003185809320000041
式A中n:m的摩尔比=1:3~10,式B中x:y的摩尔比=1:2~10。
本发明含噻吩基聚合物光催化剂的制备方法为:在氮气保护下,将碳酸钾水溶液、1,3,6,8-四溴芘、噻吩-2,5-二硼酸二频哪醇酯或2,5-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)噻吩并[3,2-b]噻吩、3,7-二溴二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中,加热至回流反应24~72小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水洗涤,真空干燥,得到式A所示的含噻吩基聚合物光催化剂(记为Py-TP-BTDO)或式B所示的含噻吩基聚合物光催化剂(记为Py-TTP-BTDO),反应方程式如下:
Figure BDA0003185809320000042
上述制备方法中,优选1,3,6,8-四溴芘与3,7-二溴二苯并噻吩砜的摩尔比为1:3~10,1,3,6,8-四溴芘与3,7-二溴二苯并噻吩砜的摩尔比为1:2~10,而噻吩-2,5-二硼酸二频哪醇酯或2,5-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)噻吩并[3,2-b]噻吩的用量为1,3,6,8-四溴芘摩尔量的两倍与3,7-二溴二苯并噻吩砜摩尔量之和。
上述制备方法中,优选四(三苯基膦)钯的加入量为1,3,6,8-四溴芘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为1,3,6,8-四溴芘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的2~5倍。
上述制备方法中,进一步优选加热至回流反应36~48小时。
上述制备方法中,所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃中任意一种。
本发明的有益效果如下:
1、本发明在芘单元和二苯并噻吩砜单元之间引入具有窄带隙结构的噻吩或噻吩并[3,2-b]噻吩,可以有效降低聚合物的带隙,也可以提高聚合物分子链的共平面性,同时也保证了强拉电子单元二苯并噻吩砜的存在,获得了具有高可见光催化分解水制氢活性的窄带隙聚合物光催化剂。
2、本发明聚合物光催化剂采用三元共聚法制备,所得光催化剂重复性好、比表面积大、带隙窄、可见光活性高、光催化产氢稳定性高,在可见光照射下仍具有高的光催化产氢活性,光生电子和空穴分离效果好,制备过程简单,成本较低,毒害小,有利于环境保护和大规模应用。与大多数报道的有机聚合物光催化剂相比,本发明所制备的光催化剂用于催化分解水产氢表现出更加优异的光催化性能,处于国内外领先水平。
附图说明
图1是实施例1和2制备的聚合物光催化剂的红外光谱图。
图2是实施例1和2制备的聚合物光催化剂固体核磁共振碳谱图。
图3是实施例1和2制备的聚合物光催化剂的扫描电子显微镜照片。
图4是实施例1和2制备的聚合物光催化剂的XRD图谱。
图5是实施例1和2制备的聚合物光催化剂的紫外可见吸收光谱图。
图6是实施例1和2制备的聚合物光催化剂在波长大于300nm的光照下光催化产氢速率与光照时间的关系图。
图7是实施例1和2制备的聚合物光催化剂在波长大于420nm的光照下光催化产氢速率与光照时间的关系图。
图8是实施例1制备的聚合物光催化剂在模拟太阳光下(λ>300nm)的光催化产氢测试照片。
图9是实施例2制备的聚合物光催化剂在模拟太阳光下(λ>300nm)的光催化产氢测试照片。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
在氮气保护下,将20mL N,N-二甲基甲酰胺、2mL 2mol/L碳酸钾水溶液加入到装有68.9m(0.13mmol)1,3,6,8-四溴芘、262.1mg(0.78mmol)噻吩-2,5-二硼酸二频哪醇酯、194.5mg(0.52mmol)3,7-二溴二苯并噻吩砜和25.0mg(21.6μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到橙黄色固体粉末Py-TP-BTDO,其中n:m的摩尔比为1:4。
实施例2
在氮气保护下,将20mL N,N-二甲基甲酰胺、2mL碳酸钾溶液(2mol L-1)加入到装有68.9m(0.13mmol)1,3,6,8-四溴芘、305.8mg(0.78mmol)2,5-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)噻吩并[3,2-b]噻吩、194.5mg(0.52mmol)3,7-二溴二苯并噻吩砜和25.0mg(21.6μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到红色粉末Py-TTP-BTDO,其中x:y的摩尔比为1:4。
采用红外光谱和固体核磁碳谱对实施例1和实施例2制备产物的化学结构进行表征,结果见图1~2。图1中,1596cm-1和1591cm-1处的峰归结为芳香骨架的振动,1306cm-1和1154cm-1处的峰为砜基的振动峰。图2中,110~150ppm为芳香环上碳原子的出峰信号区域,其中,138ppm为与砜基上的硫原子相连接的碳原子的信号峰。由图3可知,实施例1制备产物呈现纳米片堆积形貌,实施例2制备产物呈纳米颗粒形态。图4的XRD结果表明实施例1和实施例2产物均为无定型结构。
为了证明本发明的有益效果,发明人采用实施例1~2制备的聚合物光催化剂分别进行了光催化分解水产氢测试,具体方法如下:
将10mg聚合物光催化剂超声分散在100mL含1mol/L AA的水和DMF体积比为9:1的混合液中,AA作为牺牲剂,DMF作为分散剂,待聚合物催化剂分散后倒入反应器,接入光催化***,光源为300W氙灯,420nm滤光片用来模拟可见光,分别在可见光和紫外-可见光下对实施例1~2制备的聚合物光催化剂进行光催化分解水产氢测试,采用气相色谱进行光催化分解水产氢在线分析,结果见表1。
表1光学带隙、所用牺牲剂和产氢速率(λ>420nm)
Figure BDA0003185809320000071
由表1可见,本发明聚合物光催化剂在可见光下具有非常高的光催化活性,可见光下产氢速率最高可达80.65mmol h-1g-1,与文献(Macromolecules 2018,51,9502-9508)中的有机聚合物PyDOBT-1相比,可见光下的光催化产氢速率提高了141~215倍;与文献(Adv.Mater.,2021,2008498)中的有机聚合物PyBS-3相比,可见光下聚合物的光催化产氢速率提高了21~23倍。
为了进一步证明本发明聚合物光催化剂的有益效果,发明人采用实施例1和实施例2制备的聚合物光催化剂分别进行了光催化分解水释放氢气的观察实验,具体方法如下:
将5mg聚合物光催化剂均匀涂敷在粘有双面胶的玻璃板上,双面胶为普通双面胶,仅用于固定聚合物光催化剂,然后将粘有聚合物光催化剂的玻璃板缓慢倾斜放入装有AA的石英容器中,用300W氙灯模拟太阳光垂直照射石英容器。在光催化反应过程中,肉眼可见大量明显的气泡(氢气)产生(见图8和图9)。

Claims (6)

1.一类高光催化分解水制氢活性的含噻吩基聚合物光催化剂,其特征在于所述聚合物光催化剂的结构如式A或式B所示:
Figure FDA0003185809310000011
式A中n:m的摩尔比=1:3~10,式B中x:y的摩尔比=1:2~10。
2.一种权利要求1所述的含噻吩基聚合物光催化剂的制备方法,其特征在于:在氮气保护下,将碳酸钾水溶液、1,3,6,8-四溴芘、噻吩-2,5-二硼酸二频哪醇酯或2,5-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)噻吩并[3,2-b]噻吩、3,7-二溴二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中,加热至回流反应24~72小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水洗涤,真空干燥,得到式A或式B所示的含噻吩基聚合物光催化剂,反应方程式如下:
Figure FDA0003185809310000012
式A中n:m的摩尔比=1:3~10,式B中x:y的摩尔比=1:2~10。
3.根据权利要求2所述的含噻吩基聚合物光催化剂的制备方法,其特征在于:所述1,3,6,8-四溴芘与3,7-二溴二苯并噻吩砜的摩尔比为1:3~10,1,3,6,8-四溴芘与3,7-二溴二苯并噻吩砜的摩尔比为1:2~10,噻吩-2,5-二硼酸二频哪醇酯或2,5-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)噻吩并[3,2-b]噻吩的用量为1,3,6,8-四溴芘摩尔量的两倍与3,7-二溴二苯并噻吩砜摩尔量之和。
4.根据权利要求2所述的含噻吩基聚合物光催化剂的制备方法,其特征在于:所述四(三苯基膦)钯的加入量为1,3,6,8-四溴芘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为1,3,6,8-四溴芘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的2~5倍。
5.根据权利要求2所述的含噻吩基聚合物光催化剂的制备方法,其特征在于:加热至回流反应36~48小时。
6.根据权利要求2所述的含噻吩基聚合物光催化剂的制备方法,其特征在于:所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃中任意一种。
CN202110861415.8A 2021-07-29 2021-07-29 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法 Active CN113578382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110861415.8A CN113578382B (zh) 2021-07-29 2021-07-29 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110861415.8A CN113578382B (zh) 2021-07-29 2021-07-29 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113578382A true CN113578382A (zh) 2021-11-02
CN113578382B CN113578382B (zh) 2023-07-25

Family

ID=78251493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110861415.8A Active CN113578382B (zh) 2021-07-29 2021-07-29 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113578382B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405544A (zh) * 2021-12-29 2022-04-29 盐城工学院 一种共轭聚合物负载金属铂纳米颗粒及其制备方法与在光催化析氢上的应用
CN114573796A (zh) * 2022-03-11 2022-06-03 郑州轻工业大学 三(4-乙炔苯基)胺类共轭微孔聚合物、制备方法及应用
CN114591477A (zh) * 2022-04-15 2022-06-07 福州大学 亚胺连接的二苯并噻吩砜基共价有机框架材料的制备和应用
CN114602425A (zh) * 2022-02-18 2022-06-10 上海鎏明科技有限公司 一种以过氧化氢为二次激发对象的等离子体活性炭再生方法
CN114713284A (zh) * 2022-02-24 2022-07-08 兰州大学 一种含b←n配位键的有机共轭聚合物光催化剂及制备方法、应用
CN114736356A (zh) * 2022-05-09 2022-07-12 陕西师范大学 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法
CN115838471A (zh) * 2023-01-05 2023-03-24 福州大学 ***氮基聚合物的制备及其在光催化反应中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103319695A (zh) * 2013-06-03 2013-09-25 华南理工大学 含4,9-二氮杂芘的共轭聚合物及其制备方法与应用
CN108840965A (zh) * 2018-06-05 2018-11-20 北京化工大学 荧光聚合物的制备方法及用途
CN112898542A (zh) * 2021-02-03 2021-06-04 广东工业大学 一种d-a型共轭聚合物及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103319695A (zh) * 2013-06-03 2013-09-25 华南理工大学 含4,9-二氮杂芘的共轭聚合物及其制备方法与应用
CN108840965A (zh) * 2018-06-05 2018-11-20 北京化工大学 荧光聚合物的制备方法及用途
CN112898542A (zh) * 2021-02-03 2021-06-04 广东工业大学 一种d-a型共轭聚合物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG SHU ET AL: "Boosting the Photocatalytic Hydrogen Evolution Activity for D–π–A Conjugated Microporous Polymers by Statistical Copolymerization" *
CHANGZHI HAN ET AL: "Realizing high hydrogen evolution activity under visible light using narrow band gap organic photocatalysts" *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405544B (zh) * 2021-12-29 2023-11-21 盐城工学院 一种共轭聚合物负载金属铂纳米颗粒及其制备方法与在光催化析氢上的应用
CN114405544A (zh) * 2021-12-29 2022-04-29 盐城工学院 一种共轭聚合物负载金属铂纳米颗粒及其制备方法与在光催化析氢上的应用
CN114602425B (zh) * 2022-02-18 2023-05-12 上海鎏明科技有限公司 一种以过氧化氢为二次激发对象的等离子体活性炭再生方法
CN114602425A (zh) * 2022-02-18 2022-06-10 上海鎏明科技有限公司 一种以过氧化氢为二次激发对象的等离子体活性炭再生方法
CN114713284B (zh) * 2022-02-24 2023-09-01 兰州大学 一种含b←n配位键的有机共轭聚合物光催化剂及制备方法、应用
CN114713284A (zh) * 2022-02-24 2022-07-08 兰州大学 一种含b←n配位键的有机共轭聚合物光催化剂及制备方法、应用
CN114573796B (zh) * 2022-03-11 2023-08-04 郑州轻工业大学 三(4-乙炔苯基)胺类共轭微孔聚合物、制备方法及应用
CN114573796A (zh) * 2022-03-11 2022-06-03 郑州轻工业大学 三(4-乙炔苯基)胺类共轭微孔聚合物、制备方法及应用
CN114591477A (zh) * 2022-04-15 2022-06-07 福州大学 亚胺连接的二苯并噻吩砜基共价有机框架材料的制备和应用
CN114591477B (zh) * 2022-04-15 2023-10-24 福州大学 亚胺连接的二苯并噻吩砜基共价有机框架材料的制备和应用
CN114736356A (zh) * 2022-05-09 2022-07-12 陕西师范大学 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法
CN114736356B (zh) * 2022-05-09 2024-01-30 陕西师范大学 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法
CN115838471A (zh) * 2023-01-05 2023-03-24 福州大学 ***氮基聚合物的制备及其在光催化反应中的应用

Also Published As

Publication number Publication date
CN113578382B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN113578382B (zh) 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法
Zhao et al. Recent advances in conjugated polymers for visible‐light‐driven water splitting
Pachfule et al. Donor–acceptor covalent organic frameworks for visible light induced free radical polymerization
Xu et al. Designing fluorene-based conjugated microporous polymers for blue light-driven photocatalytic selective oxidation of amines with oxygen
Lin et al. Effect of energy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution
CN102093425A (zh) 含有tert-butyl的α-二亚胺镍(Ⅱ)配合物及其制备
CN108864137A (zh) 一种受体化合物、制备方法、用途以及含有其的光伏电池
CN111804338B (zh) 三嗪基d-a型含氮有机共轭多孔聚合物光催化材料及其制备与应用
Xie et al. Toward high-performance dibenzo [g, p] chrysene-based conjugated polymer photocatalysts for photocatalytic hydrogen production through donor-acceptor-acceptor structure design
Diao et al. Significant improvement of photocatalytic hydrogen evolution of diketopyrrolopyrrole-based donor–acceptor conjugated polymers through side-chain engineering
CN105753851A (zh) 四氟化苯并喹喔啉化合物与四氟化苯并喹喔啉基聚合物及其制备方法和应用
CN108148184B (zh) 一种含苊并[1,2-b]喹喔啉二酰亚胺的共轭聚合物及其制备方法和应用
Pan et al. Regiospecific, functionalized poly (phenylenevinylene) using the Heck coupling reaction
Godman et al. First preparation of low band gap fulvene-modified polynorbornene via ring-opening metathesis polymerization
CN114736356B (zh) 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法
CN111217994A (zh) 一种侧链含有d-a结构的聚芳醚类聚合物、制备方法及其应用
CN102936332B (zh) 侧链带有树枝状咔唑基团的窄带隙共轭聚合物材料、制备方法和应用
CN113831511B (zh) 一种含有二噻吩[3,2-f:2’,3’-h]喹喔啉的聚合物及其制备方法与应用
CN113416299B (zh) 侧链悬挂生物碱基的有机共轭聚合物光催化剂
Jin et al. Furan-based conjugated polymer photocatalysts for highly active photocatalytic hydrogen evolution under visible light
CN110922418B (zh) 吡咯并吡咯二酮类共轭寡聚物及基于其的纳米粒子以及它们的制备方法
Chang et al. Green and sustainable synthesis of TPD-based donor–acceptor-type conjugated polymer photocatalysts for hydrogen production under visible light
Celiker et al. Photoinduced step-growth polymerizations of thiophene-carbazole based covalent organic polymer
CN110734392A (zh) 基于改性顺式-5-降冰片烯-2,3-二羧酸酐的偶氮苯侧链可聚合单体及其应用
CN111187396B (zh) 通过Heck偶联反应合成不同侧基取代线性聚乙炔的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant