CN113564178B - 一种暗脉obv基因及其应用 - Google Patents

一种暗脉obv基因及其应用 Download PDF

Info

Publication number
CN113564178B
CN113564178B CN202110829136.3A CN202110829136A CN113564178B CN 113564178 B CN113564178 B CN 113564178B CN 202110829136 A CN202110829136 A CN 202110829136A CN 113564178 B CN113564178 B CN 113564178B
Authority
CN
China
Prior art keywords
gene
obv
vein
tomato
dark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110829136.3A
Other languages
English (en)
Other versions
CN113564178A (zh
Inventor
刘磊
鹿京华
李君明
李鑫
杜永臣
国艳梅
黄泽军
王孝宣
舒金帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences filed Critical Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences
Priority to CN202110829136.3A priority Critical patent/CN113564178B/zh
Publication of CN113564178A publication Critical patent/CN113564178A/zh
Application granted granted Critical
Publication of CN113564178B publication Critical patent/CN113564178B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8269Photosynthesis

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Physiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了一种新的暗脉基因obv,该暗脉基因为编码C2H2L结构域的锌指类转录因子,该基因主要在叶脉中的维管束和周围的栅栏组织里表达,并定位于细胞核。本发明的暗脉基因obv能够提高叶脉叶绿素含量、光合速率、气孔导度和增加叶绿体数量。本发明的obv基因参与调节番茄叶片的叶绿体发育和光合作用的调控,可为高光效番茄遗传改良提供了理论依据和技术支撑。本发明的obv基因可提高番茄的产量和可溶性固形物含量,对番茄的优质高产具有重要意义,可应用于番茄杂种优势新品种的培育,具有巨大的开发利用价值,市场应用前景广阔。

Description

一种暗脉obv基因及其应用
技术领域
本发明涉及一种暗脉obv基因及其应用。本发明采用正向遗传学方法,克隆到控制番茄暗脉基因obv,通过CRISPR/Cas9敲除技术敲除obv基因,使明脉番茄叶片出现暗脉;及通过超表达obv基因,使暗脉番茄叶片出现明脉,证实了该基因的功能。还涉及含有该基因和其它物种的同源基因的载体,以及涉及利用该基因或其功能类似物调控植物叶脉变化和叶绿素含量。
背景技术
叶片是植物进行光合作用和呼吸作用的主要器官,光合作用是植物生长发育的基础,也是产量和品质的主要决定因素,叶片相关性状是作物遗传改良的关键性状之一。
番茄原产于南美洲的安第斯山脉、厄瓜多尔海岸以及秘鲁,经过几百年的驯化和改良,番茄成为世界上最重要的蔬菜之一,在全球范围内广泛种植。番茄叶片为复叶,在进化过程中形成了很多变异,但叶脉的变异却十分有限。生产中发现一个自然突变的暗脉obv(Obscuravenosa)基因,在干旱、高光强环境条件下,如美国加州和我国新疆等地区,可有效提高叶片的光合效率和气孔导度,增加果实产量,并对高光照表现出更强的可塑性,因此,在育种过程中被很好地固定在加工用的番茄品种中。
野生种番茄叶脉均表现为透明叶脉,即明脉,暗脉obv基因突变可能来源于十九世纪二十年代一个品种Earliana,该性状为单隐性基因控制,是由于叶脉叶绿素含量增加而引起,对于叶片气体交换相关性状具有明显增益,可明显提高水分利用率和产量。番茄叶脉明暗是由于叶脉中叶绿素含量高低引起的,番茄下表皮细胞和叶肉细胞周围通常没有叶绿体,暗脉番茄材料却相反。其次,番茄暗脉表型是由于叶片中缺乏维管束鞘延伸(BundleSheath Extensions,BSEs)引起的,暗脉叶片栅栏组织在上表皮具有连续性,而明脉的栅栏组织是不连续的。
番茄是重要的世界性蔬菜作物,我国是世界第一大生产国,栽培面积约1600多万亩,年产值1800亿。番茄暗脉基因obv的应用,对番茄高光合效率品种的遗传改良,提高番茄的产量和品质具有重要意义。但该基因目前尚未克隆,其功能尚未清楚,限制了该基因的进一步应用。该基因的研究对高光效番茄的遗传改良具有重要意义,还对揭示番茄维管束鞘的分化、形成和发育以及C3作物番茄的光合调控机制与光合***的进化研究将有极大的推动作用。
发明内容
本发明的目的在于提供一种暗脉基因obv及其应用。
根据本申请的一个方面,本发明提供了一种暗脉基因obv,所述暗脉基因obv的核苷酸序列如SEQ ID No:1所示。
作为本申请的一个具体实施方式,所述暗脉基因obv的编码序列如SEQ ID No:2所示。
作为本申请的一个具体实施方式,所述暗脉基因obv的氨基酸序列如SEQ ID No:3所示。
根据本申请的另一个方面,本发明还提供了所述的暗脉基因obv在调控植物叶脉明暗中的应用。
根据本申请的另一个方面,本发明还提供了所述的暗脉基因obv在调控植物光合速率中的应用。
根据本申请的另一个方面,本发明还提供了所述的暗脉基因obv在植物遗传育种中的应用。
作为本申请的一个优选实施方式,所述植物选自番茄、辣椒、茄子和黄瓜中的至少一种。
作为本申请的一个具体实施方式,所述植物为番茄。通过控制obv基因或其同源基因在番茄中的表达量来控制番茄叶片、叶脉与维管束鞘中叶绿色含量,从而增强光合效率,达到增产优质的目的。
实现本发明的技术具体如下:
1.明确番茄叶脉为暗脉的鉴定
番茄叶脉明脉和暗脉的表型鉴定(图1),番茄叶片叶脉的石蜡切片鉴定(图2)。
2.番茄自然群体的全基因组关联分析(GWAS)
利用广泛收集的299份加工番茄种质材料为自然群体,通过对其进行表型观察记录,结合全基因组重测序数据,完成全基因组关联分析。明确了obv基因位于5号染色体长臂的末端,并于SP5G连锁(图3)。
3.番茄明暗脉基因obv的遗传定位
利用番茄明脉材料和暗脉材料构建F2分离群体,通过构建连锁图谱,完成obv基因的精细定位。根据重组单株的基因分型和表型鉴定结果,最终将obv基因定位到第5号染色体分子标记SNP20和SNP24之间,区间大小约为24.141kb(图4)。分子标记SNP20和SNP24的引物核苷酸序列分别如SEQ ID NO:3和SEQ ID NO:4所示。
4.确定突变位点,获得候选基因
利用SGN网站(https://solgenomics.net),在定位的24.141kb区间内进行基因预测,结合序列变异分析,发现Solyc05g054030的第三个外显子上存在1个碱基G替换为A的突变,位于CDS区第404个碱基,最终将Solyc05g054030确定为候选基因,该基因属于C2H2类型的锌指结构转录因子,包含4个外显子,CDS区长1,149bp,翻译381个氨基酸,CDS区第404个碱基处存在碱基G突变成A,导致精氨酸(R)变为组氨酸(H)。
5.obv基因的功能验证
Crispr/Cas9敲除实验验证obv基因功能。以pMGET(pKSE401-S)载体为骨架载体,采用T4连接法构建CRISPR/Cas9载体,以明脉番茄Micro-Tom为材料,获得转基因植株。与野生型Micro-Tom的叶脉为明脉相比,转基因株系的叶脉都是暗脉(图6)。同时,转基因植株叶片叶脉的叶绿素含量明显升高,叶脉维管束中叶绿体数量明显增加(图7)。
超量表达obv基因验证其功能。将obv的全长编码序列(CDS)克隆到pBI121双元载体中,采用农杆菌GV3101介导的遗传转化方法,将超表达载体转化到暗脉番茄M82中,获得转基因植株。与野生型M82相比,转基因植株叶片的主脉和侧脉都呈现明脉表型(图8)。说明obv具有具有调控叶脉明暗的功能。
6.obv基因的应用
通过Crispr/Cas9基因编辑或超表达等结合农杆菌介导的遗传转化方法,可以改变叶脉的明暗,进而可以改变番茄叶片和维管束鞘叶绿素含量。可以根据不同番茄品种的要求,改变叶脉的明暗,形成高合效率,达到增产优质的目的。控制番茄暗脉基因obv可以在转基因番茄中应用,也可以在转基因番茄种子中应用,进行品种的遗传改良。
本发明的有益效果为:
(1)本发明提供了一种新的暗脉基因obv,该暗脉基因为编码C2H2L结构域的锌指类转录因子,该基因主要在叶脉中的维管束和周围的栅栏组织里表达,并定位于细胞核。
(2)本发明的暗脉基因obv能够提高叶脉叶绿素含量、光合速率、气孔导度和叶绿体数量。本发明的obv基因参与调节番茄叶片的叶绿体发育和光合作用的调控,可为高光效番茄遗传改良提供了理论依据和技术支撑,可应用于番茄杂种优势新品种的培育,具有巨大的开发利用价值,市场应用前景广阔。
附图说明
图1番茄叶片叶脉表型观察;
图2番茄叶片叶脉石蜡切片;
图3番茄叶脉obv性状的全基因组关联分析;
图4番茄叶脉obv性状的精细定位
图5番茄明脉与暗脉叶片光合指标;
图6番茄Micro-tom及obv基因编辑植株叶片叶脉表型与石蜡切片;
图7番茄Micro-tom及obv基因编辑植株、叶脉叶绿素含量与维管束中叶绿体数量;
图8番茄M82与obv超表达植株叶脉。
具体实施方式
下面通过具体的实施例对本发明做进一步的详细描述。
1、番茄叶片明脉与暗脉的鉴定。
两种基因型番茄材料的子叶在出芽时已经表现出不同的叶脉,随着真叶的发育,使得区分明暗脉表型更加容易。两者的叶片大小、厚度和形状差异不大,但是叶脉明暗表型差异显著,在阳光直射下,用肉眼可观察到明显的区别,如图1所示。
为进一步观察明暗脉材料的差异,采用石蜡切片观察材料明脉和暗脉叶片叶脉的横截面,可以明显看出,在明脉材料叶脉中维管束鞘延伸缺失,栅栏组织变得不连续;而在暗脉材料叶脉中维管束鞘延伸的存在,栅栏组织与叶脉保持连续状态,如图2所示。
测定明脉与暗脉番茄的光合指标,如图5所示,图5的结果表明,暗脉番茄叶片的光合速率、气孔导度和蒸腾速率分别是明脉番茄叶片的1.98倍、2.64倍和2.94倍,说明暗脉基因能够提高番茄叶片的光合效率。
1、番茄自然群体的全基因组关联分析(GWAS)
利用广泛收集的299份加工番茄种质材料为自然群体,其中包括明脉材料129份,暗脉材料163份,数据缺失7份,具体表型调查结果见附录1。通过对其进行表型观察记录,结合全基因组重测序数据,完成全基因组关联分析,如图3所示。明确了obv基因位于5号染色体长臂的末端,置信区间为SL2.50chr05:63,049,462bp-64,012,700bp,区间大小为963,238bp,并于SP5G连锁。
2、番茄明暗脉基因obv的遗传定位
利用番茄明脉材料05-62和暗脉材料05-49构建了1500株系的F2分离群体,表型鉴定符合3:1分离规律,说明暗脉性状由隐性单基因控制。根据GWAS结果,选取SNPs位点开发成KASP标记,结合表型鉴定结果,通过构建连锁图谱,完成obv基因的精细定位。根据重组单株的基因分型和表型鉴定结果,最终将obv基因定位到第5号染色体分子标记SNP20和SNP24之间,区间大小约为24.141kb,如图4所示。分子标记SNP20和SNP24的引物核苷酸序列分别表1所示。
表1
3、确定突变位点,获得候选基因
利用SGN网站(https://solgenomics.net),在定位的24.141kb区间内进行基因预测,发现在此区域内总共3个开放阅读框。我们利用EnsemblPlants网站(https://plants.ensembl.org/Solanum_lycopersicum/Info/Index)查看上述三个基因的表达情况,发现Solyc05g054030和Solyc05g054040在叶片中表达,对上述2个基因的全长逐个测序分析表明:Solyc05g054030的第三个外显子上存在1个碱基G替换为A的突变,位于CDS区第404个碱基处,编码第135个氨基酸;;Solyc05g054040编码区序列无差异;最终将Solyc05g054030确定为候选基因,该基因属于C2H2类型的锌指结构转录因子。该基因的核苷酸序列如下所示。
SEQ ID No:1
Solyc05g054030基因序列
>SL4.0ch05 SL4.0ch05:63395462..63398588(+strand)length=3127
ATGCTAACTAGCAACTCTTTCTTGTTTGGTGCTCCTTCTAATTATTCTGATCCATTTTCTTCCCCAGAAAATGGTTTTATTATCAAAAGAAAAAGAAGACCTGCTGGTACTCCAGGTATATATATATATTTTTAATTAATTAATTAGTATATTTTTAAAAAAAAATTAATTTACATAAATATATGAAGAAAATGGTACTTTTTTTGATAATTATGTGAAAAAACACTTGAGTTTTAGCTCTTGTGTGTCTATTATATTTCTAAATTGATCAACATGTTCAGTCAGTGACGAAAACAGAATTTTCATCAGAGGATTCATGAGGATGTAACGAAAAGAATTCAGATGAACCTCCTTTTGGCTTTTTCTATCTCCGACCTTGTGTTTTTGAATTCAGAATTTAAACGTTATAGATGAGAAAGTTGAATTATGATTTAACCTTATCTTTATAGTCAAGGGCGGAGCTATAGGTAACAAAGATTGTTTGGTTGATACAACCCCTTTCGTCAGAAAATTATATTTTTATATATTTATTTTTTAAAAAAAATTCTTAACCTAATAGATTTAATTTTTTAAAATTTTCTTAACCTAATAAATTTAGATGTGAAAATTATATTTGAATTACTGGCTCCGCTACTATTGCTAACACACATATGTTTAGGGTTATTCGACTGGTAAGAATGCTATTGAATTCTGTTGAACTCGTAATAATTAAATTTACGAATTTGCACAGATCCCGATGCACAAGTTGTATATCTTACAGCTGAGATGTTAATGGAATCTGATCGTTACGTTTGTGAAATCTGCAACCTTAGCTTTCAAAGAGAGCAAAATCTACAAATGCATCGTCGTCGCCATAAGGTTCCATGGAAGTTGAAGAAGAAGGTAGTTTAATTTATGTATAATTACGTCATCAATATATCGTCTCATCTAAAATCTTAAACTGTTCGATAGAACACAAGTTCTTCATTCGTTCAATAGGGAGTGAGTCTTCCCCTTTTTGAAAAATGAGTTAATATCATGTGTAGACGGAGAATTCATATATCTGATAAGAACAGATGTTACACTTGATCTTAGCCACAAGACCGAGAAAGATATTGATGAGAACTATACAATTTTTATTTACTAAATTATACTTTATATTTCAACACATCTCCTCACGTGCAAGTCATGAAGTTCTTCTTCTTCTTTTTTATTACGAGAACGATACATTTTAATATTTAGAATTTCTCTGTTTATTCTTACTGAAATGATTTATAATAATCACACAAATTGCTAAGGCTTAGTTTTCGACAATAATTTTCAAAAGTCTTTCAATTCTAGACGTCACTCCCCAGTTAAATATAGTCACATAAATTGTAACTGACATATTAGATTATATGATTAGATATGTTAATTTTTTTAATTAAATATAAATATAATTTCATTTACTTGATTATATTTTCAACGTGATCATCAGGAAGAAGAGAAAAATGAGATGGATCAAGTTATTAAGAAGAGAGTATATGTGTGTCCAGAGCCAAGTTGTGTGCACCATGATCCATGTCATGCATTAGGTGATCTTGTTGGAATCAAAAAACATTTTAGAAGAAAACGTAGCAATTACAAACAATGGATTTGTCAAAAATGCAACAAAGGTTATGCTGTTCAATCAGATTATAAAGCTCACATCAAAACTTGTGGTACTAGAGGCCATTCTTGTGATTGTGGAAGAGTTTTCTCTAGGTAAATTCATCTTCTTAATTATATATCTGTGTTCTGTTTTACTTGAGTCGAGAATCTATAAGAAAAAATAGAATCTATTTATCCTCATAGGAGTAAGGTTACAACGTCCTATTCAGATTCCACTAAATATGTTATTGTTATAGTAATTTTTATCATCAGCGTATCTTTATTATCTAGGTTATATTAAATATACTACTAAAAAACGTTAAAGAATTAGCTATGAAATTCGTAGCTGGTTAATTTATAACTAAATAGTCTATATCTACTAAGATTGTCTCATTATAAAATGTCATTTCTATGTAGTCAAATAGAATTAGGTTTAATTCATTGTTTAGTGATATAAATTAAATTTATAAAAATCTTTTAAGTGACTTAATAGCGTAAAAAGTAAATTTACACTATCTTATATATAAAAATTATACACATATATCAAGATGAGATTACCACATGTTACTTGAATTGGTAACATCCTTTAGGTCTAAAACCTAATGTATATATATGTCTTGTAAATGTACAAACATATTTTGTGTGCTCACATTTGAAAATTTCTTCCTTATCTATATGATTATAAAAATCACTATCTTTTTAGTTAAAAACATGAATATTATTATCAGAAAATCACTAATTTTCGACGATATTATATGAGTCAAATTCTGATAGATTTGTTGGAAATATTTTTAATTAAAAATTAGCGATTTTCTGATAGTAAATTTGAGTTATATATAGTATGTTTCTTCTAATTAATCTACTTTTTTTTTCCTCCCATTTTTATTGTGTTTTTTTTTTCAGAGTTGAAACATTTATTGAGCATCAAGATTCATGCAAACCACAAAGTACAACTACTAAAGAATGTCATGATATGCAAATACCAAAACCAATTTTCTTGCCTACTACTACAACTCATATCCCACCACATGATCAATATTCAAAAATATTGCCTAATCTTGATCTTGAGCTTTTCACTTCTCCAAATTATTTCAACCAAAACACACACAATTTTTCATCATTTGTTGATCAAAGTGATCATCATCATCATAATAATAATTACATAGTCCAAAACAATGATATTGAAGTCAAAGAAATTATTGAAGAGGCAACAACACAAGTAACAAGATTGAAAAGTGAAGCAAATGAAATACTCAAAATAGCAATGGAAGAAAAGGCAATGGCTATAGAGAAGAGACAAGAAGCAAAGTGTTTGATTGAATTAGCCAACCTTGAAATGGCAAAAGCAATGGAAATTAGACAAAGTGTTTGTGCTTCATCATCATCATCATCACATGTCATGAAGATAATAAAATGTAGTTCTTGTAATAATAAACAATTTCAAAGTGTGTCATCATCAAAAGATGCTACTTTGACTAATAATTATTATTTGTCATCTTCTATTTATAGAAGATGATGA
SEQ ID No:2
编码序列(CDS)
ATGCTAACTAGCAACTCTTTCTTGTTTGGTGCTCCTTCTAATTATTCTGATCCATTTTCTTCCCCAGAAAATGGTTTTATTATCAAAAGAAAAAGAAGACCTGCTGGTACTCCAGATCCCGATGCACAAGTTGTATATCTTACAGCTGAGATGTTAATGGAATCTGATCGTTACGTTTGTGAAATCTGCAACCTTAGCTTTCAAAGAGAGCAAAATCTACAAATGCATCGTCGTCGCCATAAGGTTCCATGGAAGTTGAAGAAGAAGGAAGAAGAGAAAAATGAGATGGATCAAGTTATTAAGAAGAGAGTATATGTGTGTCCAGAGCCAAGTTGTGTGCACCATGATCCATGTCATGCATTAGGTGATCTTGTTGGAATCAAAAAACATTTTAGAAGAAAACGTAGCAATTACAAACAATGGATTTGTCAAAAATGCAACAAAGGTTATGCTGTTCAATCAGATTATAAAGCTCACATCAAAACTTGTGGTACTAGAGGCCATTCTTGTGATTGTGGAAGAGTTTTCTCTAGAGTTGAAACATTTATTGAGCATCAAGATTCATGCAAACCACAAAGTACAACTACTAAAGAATGTCATGATATGCAAATACCAAAACCAATTTTCTTGCCTACTACTACAACTCATATCCCACCACATGATCAATATTCAAAAATATTGCCTAATCTTGATCTTGAGCTTTTCACTTCTCCAAATTATTTCAACCAAAACACACACAATTTTTCATCATTTGTTGATCAAAGTGATCATCATCATCATAATAATAATTACATAGTCCAAAACAATGATATTGAAGTCAAAGAAATTATTGAAGAGGCAACAACACAAGTAACAAGATTGAAAAGTGAAGCAAATGAAATACTCAAAATAGCAATGGAAGAAAAGGCAATGGCTATAGAGAAGAGACAAGAAGCAAAGTGTTTGATTGAATTAGCCAACCTTGAAATGGCAAAAGCAATGGAAATTAGACAAAGTGTTTGTGCTTCATCATCATCATCATCACATGTCATGAAGATAATAAAATGTAGTTCTTGTAATAATAAACAATTTCAAAGTGTGTCATCATCAAAAGATGCTACTTTGACTAATAATTATTATTTGTCATCTTCTATTTATAGAAGATGA
SEQ ID No:3
氨基酸序列
MLTSNSFLFGAPSNYSDPFSSPENGFIIKRKRRPAGTPDPDAQVVYLTAEMLMESDRYVCEICNLSFQREQNLQMHRRRHKVPWKLKKKEEEKNEMDQVIKKRVYVCPEPSCVHHDPCHALGDLVGIKKHFRRKRSNYKQWICQKCNKGYAVQSDYKAHIKTCGTRGHSCDCGRVFSRVETFIEHQDSCKPQSTTTKECHDMQIPKPIFLPTTTTHIPPHDQYSKILPNLDLELFTSPNYFNQNTHNFSSFVDQSDHHHHNNNYIVQNNDIEVKEIIEEATTQVTRLKSEANEILKIAMEEKAMAIEKRQEAKCLIELANLEMAKAMEIRQSVCASSSSSSHVMKIIKCSSCNNKQFQSVSSSKDATLTNNYYLSSSIYRR*
4、obv基因的基因敲除试验
为进一步确定番茄叶脉为暗脉的表型是由于基因Solyc05g054030的变化造成的,在野生型Micro-Tom的背景下,通过Crispr/Cas9敲除实验验证obv基因功能。以pMGET(pKSE401-S)载体为骨架载体,采用T4连接法构建CRISPR/Cas9载体,以明脉番茄Micro-Tom为材料,获得转基因植株。最终共获得12棵转基因阳性株系,最终选择其中三棵阳性植株(Cris-1、Cris-3和Cris-24)开展进一步的实验,与野生型Micro-Tom的叶脉为明脉相比,三个转基因株系的叶脉都是暗脉,如图6所示。
石蜡切片实验观察敲除突变体与野生型叶脉横截面的结果显示,转基因植株Cris-24叶脉中的栅栏组织在上表皮是连续排列的,而野生型Micro-Tom叶脉中的栅栏组织则呈现不连续的排列,如图6所示,这与之前的石蜡切片结果完全一致。
同时,对上述材料叶脉中的叶绿素含量进行检测,结果如图7所示,由图7可知,Cris-obv叶脉中Chl a和Chl b的含量都是WT的1.4倍左右,明显比野生型中的叶绿素含量高;叶脉维管束中叶绿体数量明显增加。
5、obv基因的超表达试验
为进一步验证obv基因功能,我们进行了超量表达obv基因。将obv的全长编码序列(CDS)克隆到pBI121双元载体中,采用农杆菌GV3101介导的遗传转化方法,将超表达载体转化到暗脉番茄M82中,获得转基因植株。与野生型M82相比,转基因植株叶片的主脉和侧脉都呈现明脉表型,见图8。综合敲除和过表达实验的结果,我们可以确定Solyc05g054030就是调控番茄叶片暗脉形成的目标基因,该基因具有具有调控叶脉明暗的功能。
以上对本发明所提供的一种暗脉基因obv及其应用进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
<110> 中国农业科学院 蔬菜花卉研究所
<120> 一种暗脉obv基因及其应用
<130> CNP210010
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 6254
<212> DNA
<213> Artificial Sequence
<400> 1
atgctaacta gcaactcttt cttgtttggt gctccttcta attattctga tccattttct 60
tccccagaaa atggttttat tatcaaaaga aaaagaagac ctgctggtac tccaggtata 120
tatatatatt tttaattaat taattagtat atttttaaaa aaaaattaat ttacataaat 180
atatgaagaa aatggtactt tttttgataa ttatgtgaaa aaacacttga gttttagctc 240
ttgtgtgtct attatatttc taaattgatc aacatgttca gtcagtgacg aaaacagaat 300
tttcatcaga ggattcatga ggatgtaacg aaaagaattc agatgaacct ccttttggct 360
ttttctatct ccgaccttgt gtttttgaat tcagaattta aacgttatag atgagaaagt 420
tgaattatga tttaacctta tctttatagt caagggcgga gctataggta acaaagattg 480
tttggttgat acaacccctt tcgtcagaaa attatatttt tatatattta ttttttaaaa 540
aaaattctta acctaataga tttaattttt taaaattttc ttaacctaat aaatttagat 600
gtgaaaatta tatttgaatt actggctccg ctactattgc taacacacat atgtttaggg 660
ttattcgact ggtaagaatg ctattgaatt ctgttgaact cgtaataatt aaatttacga 720
atttgcacag atcccgatgc acaagttgta tatcttacag ctgagatgtt aatggaatct 780
gatcgttacg tttgtgaaat ctgcaacctt agctttcaaa gagagcaaaa tctacaaatg 840
catcgtcgtc gccataaggt tccatggaag ttgaagaaga aggtagttta atttatgtat 900
aattacgtca tcaatatatc gtctcatcta aaatcttaaa ctgttcgata gaacacaagt 960
tcttcattcg ttcaataggg agtgagtctt cccctttttg aaaaatgagt taatatcatg 1020
tgtagacgga gaattcatat atctgataag aacagatgtt acacttgatc ttagccacaa 1080
gaccgagaaa gatattgatg agaactatac aatttttatt tactaaatta tactttatat 1140
ttcaacacat ctcctcacgt gcaagtcatg aagttcttct tcttcttttt tattacgaga 1200
acgatacatt ttaatattta gaatttctct gtttattctt actgaaatga tttataataa 1260
tcacacaaat tgctaaggct tagttttcga caataatttt caaaagtctt tcaattctag 1320
acgtcactcc ccagttaaat atagtcacat aaattgtaac tgacatatta gattatatga 1380
ttagatatgt taattttttt aattaaatat aaatataatt tcatttactt gattatattt 1440
tcaacgtgat catcaggaag aagagaaaaa tgagatggat caagttatta agaagagagt 1500
atatgtgtgt ccagagccaa gttgtgtgca ccatgatcca tgtcatgcat taggtgatct 1560
tgttggaatc aaaaaacatt ttagaagaaa acgtagcaat tacaaacaat ggatttgtca 1620
aaaatgcaac aaaggttatg ctgttcaatc agattataaa gctcacatca aaacttgtgg 1680
tactagaggc cattcttgtg attgtggaag agttttctct aggtaaattc atcttcttaa 1740
ttatatatct gtgttctgtt ttacttgagt cgagaatcta taagaaaaaa tagaatctat 1800
ttatcctcat aggagtaagg ttacaacgtc ctattcagat tccactaaat atgttattgt 1860
tatagtaatt tttatcatca gcgtatcttt attatctagg ttatattaaa tatactacta 1920
aaaaacgtta aagaattagc tatgaaattc gtagctggtt aatttataac taaatagtct 1980
atatctacta agattgtctc attataaaat gtcatttcta tgtagtcaaa tagaattagg 2040
tttaattcat tgtttagtga tataaattaa atttataaaa atcttttaag tgacttaata 2100
gcgtaaaaag taaatttaca ctatcttata tataaaaatt atacacatat atcaagatga 2160
gattaccaca tgttacttga attggtaaca tcctttaggt ctaaaaccta atgtatatat 2220
atgtcttgta aatgtacaaa catattttgt gtgctcacat ttgaaaattt cttccttatc 2280
tatatgatta taaaaatcac tatcttttta gttaaaaaca tgaatattat tatcagaaaa 2340
tcactaattt tcgacgatat tatatgagtc aaattctgat agatttgttg gaaatatttt 2400
taattaaaaa ttagcgattt tctgatagta aatttgagtt atatatagta tgtttcttct 2460
aattaatcta cttttttttt cctcccattt ttattgtgtt ttttttttca gagttgaaac 2520
atttattgag catcaagatt catgcaaacc acaaagtaca actactaaag aatgtcatga 2580
tatgcaaata ccaaaaccaa ttttcttgcc tactactaca actcatatcc caccacatga 2640
tcaatattca aaaatattgc ctaatcttga tcttgagctt ttcacttctc caaattattt 2700
caaccaaaac acacacaatt tttcatcatt tgttgatcaa agtgatcatc atcatcataa 2760
taataattac atagtccaaa acaatgatat tgaagtcaaa gaaattattg aagaggcaac 2820
aacacaagta acaagattga aaagtgaagc aaatgaaata ctcaaaatag caatggaaga 2880
aaaggcaatg gctatagaga agagacaaga agcaaagtgt ttgattgaat tagccaacct 2940
tgaaatggca aaagcaatgg aaattagaca aagtgtttgt gcttcatcat catcatcatc 3000
acatgtcatg aagataataa aatgtagttc ttgtaataat aaacaatttc aaagtgtgtc 3060
atcatcaaaa gatgctactt tgactaataa ttattatttg tcatcttatg ctaactagca 3120
actctttctt gtttggtgct ccttctaatt attctgatcc attttcttcc ccagaaaatg 3180
gttttattat caaaagaaaa agaagacctg ctggtactcc aggtatatat atatattttt 3240
aattaattaa ttagtatatt tttaaaaaaa aattaattta cataaatata tgaagaaaat 3300
ggtacttttt ttgataatta tgtgaaaaaa cacttgagtt ttagctcttg tgtgtctatt 3360
atatttctaa attgatcaac atgttcagtc agtgacgaaa acagaatttt catcagagga 3420
ttcatgagga tgtaacgaaa agaattcaga tgaacctcct tttggctttt tctatctccg 3480
accttgtgtt tttgaattca gaatttaaac gttatagatg agaaagttga attatgattt 3540
aaccttatct ttatagtcaa gggcggagct ataggtaaca aagattgttt ggttgataca 3600
acccctttcg tcagaaaatt atatttttat atatttattt tttaaaaaaa attcttaacc 3660
taatagattt aattttttaa aattttctta acctaataaa tttagatgtg aaaattatat 3720
ttgaattact ggctccgcta ctattgctaa cacacatatg tttagggtta ttcgactggt 3780
aagaatgcta ttgaattctg ttgaactcgt aataattaaa tttacgaatt tgcacagatc 3840
ccgatgcaca agttgtatat cttacagctg agatgttaat ggaatctgat cgttacgttt 3900
gtgaaatctg caaccttagc tttcaaagag agcaaaatct acaaatgcat cgtcgtcgcc 3960
ataaggttcc atggaagttg aagaagaagg tagtttaatt tatgtataat tacgtcatca 4020
atatatcgtc tcatctaaaa tcttaaactg ttcgatagaa cacaagttct tcattcgttc 4080
aatagggagt gagtcttccc ctttttgaaa aatgagttaa tatcatgtgt agacggagaa 4140
ttcatatatc tgataagaac agatgttaca cttgatctta gccacaagac cgagaaagat 4200
attgatgaga actatacaat ttttatttac taaattatac tttatatttc aacacatctc 4260
ctcacgtgca agtcatgaag ttcttcttct tcttttttat tacgagaacg atacatttta 4320
atatttagaa tttctctgtt tattcttact gaaatgattt ataataatca cacaaattgc 4380
taaggcttag ttttcgacaa taattttcaa aagtctttca attctagacg tcactcccca 4440
gttaaatata gtcacataaa ttgtaactga catattagat tatatgatta gatatgttaa 4500
tttttttaat taaatataaa tataatttca tttacttgat tatattttca acgtgatcat 4560
caggaagaag agaaaaatga gatggatcaa gttattaaga agagagtata tgtgtgtcca 4620
gagccaagtt gtgtgcacca tgatccatgt catgcattag gtgatcttgt tggaatcaaa 4680
aaacatttta gaagaaaacg tagcaattac aaacaatgga tttgtcaaaa atgcaacaaa 4740
ggttatgctg ttcaatcaga ttataaagct cacatcaaaa cttgtggtac tagaggccat 4800
tcttgtgatt gtggaagagt tttctctagg taaattcatc ttcttaatta tatatctgtg 4860
ttctgtttta cttgagtcga gaatctataa gaaaaaatag aatctattta tcctcatagg 4920
agtaaggtta caacgtccta ttcagattcc actaaatatg ttattgttat agtaattttt 4980
atcatcagcg tatctttatt atctaggtta tattaaatat actactaaaa aacgttaaag 5040
aattagctat gaaattcgta gctggttaat ttataactaa atagtctata tctactaaga 5100
ttgtctcatt ataaaatgtc atttctatgt agtcaaatag aattaggttt aattcattgt 5160
ttagtgatat aaattaaatt tataaaaatc ttttaagtga cttaatagcg taaaaagtaa 5220
atttacacta tcttatatat aaaaattata cacatatatc aagatgagat taccacatgt 5280
tacttgaatt ggtaacatcc tttaggtcta aaacctaatg tatatatatg tcttgtaaat 5340
gtacaaacat attttgtgtg ctcacatttg aaaatttctt ccttatctat atgattataa 5400
aaatcactat ctttttagtt aaaaacatga atattattat cagaaaatca ctaattttcg 5460
acgatattat atgagtcaaa ttctgataga tttgttggaa atatttttaa ttaaaaatta 5520
gcgattttct gatagtaaat ttgagttata tatagtatgt ttcttctaat taatctactt 5580
tttttttcct cccattttta ttgtgttttt tttttcagag ttgaaacatt tattgagcat 5640
caagattcat gcaaaccaca aagtacaact actaaagaat gtcatgatat gcaaatacca 5700
aaaccaattt tcttgcctac tactacaact catatcccac cacatgatca atattcaaaa 5760
atattgccta atcttgatct tgagcttttc acttctccaa attatttcaa ccaaaacaca 5820
cacaattttt catcatttgt tgatcaaagt gatcatcatc atcataataa taattacata 5880
gtccaaaaca atgatattga agtcaaagaa attattgaag aggcaacaac acaagtaaca 5940
agattgaaaa gtgaagcaaa tgaaatactc aaaatagcaa tggaagaaaa ggcaatggct 6000
atagagaaga gacaagaagc aaagtgtttg attgaattag ccaaccttga aatggcaaaa 6060
gcaatggaaa ttagacaaag tgtttgtgct tcatcatcat catcatcaca tgtcatgaag 6120
ataataaaat gtagttcttg taataataaa caatttcaaa gtgtgtcatc atcaaaagat 6180
gctactttga ctaataatta ttatttgtca tcttctattt atagaagatg atgactattt 6240
atagaagatg atga 6254
<210> 2
<211> 1146
<212> DNA
<213> Artificial Sequence
<400> 2
atgctaacta gcaactcttt cttgtttggt gctccttcta attattctga tccattttct 60
tccccagaaa atggttttat tatcaaaaga aaaagaagac ctgctggtac tccagatccc 120
gatgcacaag ttgtatatct tacagctgag atgttaatgg aatctgatcg ttacgtttgt 180
gaaatctgca accttagctt tcaaagagag caaaatctac aaatgcatcg tcgtcgccat 240
aaggttccat ggaagttgaa gaagaaggaa gaagagaaaa atgagatgga tcaagttatt 300
aagaagagag tatatgtgtg tccagagcca agttgtgtgc accatgatcc atgtcatgca 360
ttaggtgatc ttgttggaat caaaaaacat tttagaagaa aacgtagcaa ttacaaacaa 420
tggatttgtc aaaaatgcaa caaaggttat gctgttcaat cagattataa agctcacatc 480
aaaacttgtg gtactagagg ccattcttgt gattgtggaa gagttttctc tagagttgaa 540
acatttattg agcatcaaga ttcatgcaaa ccacaaagta caactactaa agaatgtcat 600
gatatgcaaa taccaaaacc aattttcttg cctactacta caactcatat cccaccacat 660
gatcaatatt caaaaatatt gcctaatctt gatcttgagc ttttcacttc tccaaattat 720
ttcaaccaaa acacacacaa tttttcatca tttgttgatc aaagtgatca tcatcatcat 780
aataataatt acatagtcca aaacaatgat attgaagtca aagaaattat tgaagaggca 840
acaacacaag taacaagatt gaaaagtgaa gcaaatgaaa tactcaaaat agcaatggaa 900
gaaaaggcaa tggctataga gaagagacaa gaagcaaagt gtttgattga attagccaac 960
cttgaaatgg caaaagcaat ggaaattaga caaagtgttt gtgcttcatc atcatcatca 1020
tcacatgtca tgaagataat aaaatgtagt tcttgtaata ataaacaatt tcaaagtgtg 1080
tcatcatcaa aagatgctac tttgactaat aattattatt tgtcatcttc tatttataga 1140
agatga 1146
<210> 3
<211> 381
<212> PRT
<213> Artificial Sequence
<400> 3
Met Leu Thr Ser Asn Ser Phe Leu Phe Gly Ala Pro Ser Asn Tyr Ser
1 5 10 15
Asp Pro Phe Ser Ser Pro Glu Asn Gly Phe Ile Ile Lys Arg Lys Arg
20 25 30
Arg Pro Ala Gly Thr Pro Asp Pro Asp Ala Gln Val Val Tyr Leu Thr
35 40 45
Ala Glu Met Leu Met Glu Ser Asp Arg Tyr Val Cys Glu Ile Cys Asn
50 55 60
Leu Ser Phe Gln Arg Glu Gln Asn Leu Gln Met His Arg Arg Arg His
65 70 75 80
Lys Val Pro Trp Lys Leu Lys Lys Lys Glu Glu Glu Lys Asn Glu Met
85 90 95
Asp Gln Val Ile Lys Lys Arg Val Tyr Val Cys Pro Glu Pro Ser Cys
100 105 110
Val His His Asp Pro Cys His Ala Leu Gly Asp Leu Val Gly Ile Lys
115 120 125
Lys His Phe Arg Arg Lys Arg Ser Asn Tyr Lys Gln Trp Ile Cys Gln
130 135 140
Lys Cys Asn Lys Gly Tyr Ala Val Gln Ser Asp Tyr Lys Ala His Ile
145 150 155 160
Lys Thr Cys Gly Thr Arg Gly His Ser Cys Asp Cys Gly Arg Val Phe
165 170 175
Ser Arg Val Glu Thr Phe Ile Glu His Gln Asp Ser Cys Lys Pro Gln
180 185 190
Ser Thr Thr Thr Lys Glu Cys His Asp Met Gln Ile Pro Lys Pro Ile
195 200 205
Phe Leu Pro Thr Thr Thr Thr His Ile Pro Pro His Asp Gln Tyr Ser
210 215 220
Lys Ile Leu Pro Asn Leu Asp Leu Glu Leu Phe Thr Ser Pro Asn Tyr
225 230 235 240
Phe Asn Gln Asn Thr His Asn Phe Ser Ser Phe Val Asp Gln Ser Asp
245 250 255
His His His His Asn Asn Asn Tyr Ile Val Gln Asn Asn Asp Ile Glu
260 265 270
Val Lys Glu Ile Ile Glu Glu Ala Thr Thr Gln Val Thr Arg Leu Lys
275 280 285
Ser Glu Ala Asn Glu Ile Leu Lys Ile Ala Met Glu Glu Lys Ala Met
290 295 300
Ala Ile Glu Lys Arg Gln Glu Ala Lys Cys Leu Ile Glu Leu Ala Asn
305 310 315 320
Leu Glu Met Ala Lys Ala Met Glu Ile Arg Gln Ser Val Cys Ala Ser
325 330 335
Ser Ser Ser Ser Ser His Val Met Lys Ile Ile Lys Cys Ser Ser Cys
340 345 350
Asn Asn Lys Gln Phe Gln Ser Val Ser Ser Ser Lys Asp Ala Thr Leu
355 360 365
Thr Asn Asn Tyr Tyr Leu Ser Ser Ser Ile Tyr Arg Arg
370 375 380
<210> 4
<211> 48
<212> DNA
<213> Artificial Sequence
<400> 4
gaaggtgacc aagttcatgc tctacgtaca atcagagaaa ttacttcc 48
<210> 5
<211> 49
<212> DNA
<213> Artificial Sequence
<400> 5
gaaggtcgga gtcaacggat tcctacgtac aatcagagaa attacttct 49
<210> 6
<211> 35
<212> DNA
<213> Artificial Sequence
<400> 6
agcacggtat aaaaactgtt ataattaata tagaa 35
<210> 7
<211> 44
<212> DNA
<213> Artificial Sequence
<400> 7
gaaggtgacc aagttcatgc tcctgcgagt caagagaata tcag 44
<210> 8
<211> 46
<212> DNA
<213> Artificial Sequence
<400> 8
gaaggtcgga gtcaacggat taacctgcga gtcaagagaa tatcat 46
<210> 9
<211> 39
<212> DNA
<213> Artificial Sequence
<400> 9
cataatatga aaatatatta tcatcaaatt tgtcagtac 39

Claims (4)

1.暗脉基因obv在调控番茄叶脉明暗中的应用,其特征在于,所述暗脉基因obv的核苷酸序列如SEQ ID No:1所示;
其中,敲除所述暗脉基因obv,所述番茄叶脉为暗脉;过表达所述暗脉基因obv,所述番茄叶脉为明脉。
2.暗脉基因obv在调控番茄光合速率中的应用,其特征在于,所述暗脉基因obv的核苷酸序列如SEQ ID No:1所示;
其中,敲除所述暗脉基因obv,增加番茄的光合速率。
3.根据权利要求1-2任一项所述的应用,其特征在于,所述暗脉基因obv的编码序列如SEQ ID No:2所示。
4.根据权利要求1-2任一项所述的应用,其特征在于,所述暗脉基因obv的氨基酸序列如SEQ ID No:3所示。
CN202110829136.3A 2021-07-22 2021-07-22 一种暗脉obv基因及其应用 Active CN113564178B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110829136.3A CN113564178B (zh) 2021-07-22 2021-07-22 一种暗脉obv基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110829136.3A CN113564178B (zh) 2021-07-22 2021-07-22 一种暗脉obv基因及其应用

Publications (2)

Publication Number Publication Date
CN113564178A CN113564178A (zh) 2021-10-29
CN113564178B true CN113564178B (zh) 2023-08-04

Family

ID=78166244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110829136.3A Active CN113564178B (zh) 2021-07-22 2021-07-22 一种暗脉obv基因及其应用

Country Status (1)

Country Link
CN (1) CN113564178B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609527A (zh) * 2019-01-28 2019-04-12 浙江大学 Cdpk18l基因作为负调控因子在提高番茄细菌性叶斑病抗性和高温抗性中的应用
CN109628439A (zh) * 2018-12-11 2019-04-16 沈阳农业大学 一种促进番茄叶绿素合成及光合效率的基因及应用
CN110468150A (zh) * 2019-08-21 2019-11-19 浙江大学 Rgs1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628439A (zh) * 2018-12-11 2019-04-16 沈阳农业大学 一种促进番茄叶绿素合成及光合效率的基因及应用
CN109609527A (zh) * 2019-01-28 2019-04-12 浙江大学 Cdpk18l基因作为负调控因子在提高番茄细菌性叶斑病抗性和高温抗性中的应用
CN110468150A (zh) * 2019-08-21 2019-11-19 浙江大学 Rgs1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI Reference Sequence: XM_004240155.2;无;《genbank》;20180808;全文 *

Also Published As

Publication number Publication date
CN113564178A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN111763682A (zh) ZmSBP12基因在调控玉米抗旱性、株高及穗位高中的用途
CN109022450B (zh) 一种调控玉米叶夹角的ZmCLA2-1基因及其应用
US11591610B2 (en) Tobacco plant and production method thereof
CN111153974A (zh) 玉米抗病基因和分子标记及其应用
CN113430221B (zh) 番茄wrky37蛋白在调控番茄抗叶片衰老能力、提高番茄产量中的应用
CN112876551B (zh) 一种调控番茄耐旱性的转录因子SpbHLH89及其应用
CN111499706A (zh) 棉花锌指蛋白GhZFPH4及其编码基因和应用
WO2023065966A1 (zh) Bfne基因在番茄株型改良和生物产量提高中的应用
CN110777153B (zh) 一种美洲黑杨促雄基因MmS及其应用
CN112063631A (zh) 毛果杨PtrLBD4-3基因及其编码蛋白和应用
CN113337636B (zh) 一种鉴别番茄叶脉性状的snp位点、kasp分子标记及应用
CN112521471B (zh) 一个控制玉米籽粒含水量的基因和分子标记及其应用
CN110698550B (zh) 一种快速鉴定真梅/杏梅品系的分子检测方法
CN117417957A (zh) 一种增加水稻香味的方法
US11591606B2 (en) Tobacco plant and production method thereof
CN112028979B (zh) 一种提高黄瓜植株抗低温能力的方法
CN113564178B (zh) 一种暗脉obv基因及其应用
CN108823220B (zh) 一种苹果中蜡质合成相关基因MdCER1的克隆及其应用
CN115074370B (zh) 一种调控植物器官形态的功能基因AcPI及其应用
CN114214333A (zh) 一种调控植物叶表皮毛发育和次生壁厚度的基因及其应用
CN109112124B (zh) 一种调控番茄腺毛形成的基因及克隆方法
CN102675437B (zh) 调节植物器官大小和花器官内部非对称性的方法
US20190194684A1 (en) Parthenocarpy regulation gene and use thereof
CN111944772B (zh) 茄子隐花色素蓝光抑制因子SmBIC1蛋白及编码基因
CN109553670B (zh) 百子莲赤霉素负调控因子ApGAI蛋白及编码基因

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant