CN113471327B - 基于双栅压调控的高增益石墨烯光电探测器及其制备方法 - Google Patents

基于双栅压调控的高增益石墨烯光电探测器及其制备方法 Download PDF

Info

Publication number
CN113471327B
CN113471327B CN202110692010.6A CN202110692010A CN113471327B CN 113471327 B CN113471327 B CN 113471327B CN 202110692010 A CN202110692010 A CN 202110692010A CN 113471327 B CN113471327 B CN 113471327B
Authority
CN
China
Prior art keywords
graphene
semiconductor
gain
electrode
gate voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110692010.6A
Other languages
English (en)
Other versions
CN113471327A (zh
Inventor
伍俊
魏兴战
蒋昊
史浩飞
韩钦
申钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing University
Priority to CN202110692010.6A priority Critical patent/CN113471327B/zh
Publication of CN113471327A publication Critical patent/CN113471327A/zh
Application granted granted Critical
Publication of CN113471327B publication Critical patent/CN113471327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于双栅压调控的高增益石墨烯光电探测器及其制备方法。其中,该探测器包括从上至下地结构为顶层半导体、中间层绝缘介质、底层半导体的衬底;还包括漏极电极、源极电极、顶栅电极和底栅电极,漏极电极与源极电极分别设置在所述顶层半导体上方两端处;还包括在漏极电极与源级电极之间的器件沟道,覆盖在器件沟道上方的离子绝缘层;顶栅电极、底栅电极分别与漏极电极、源极电极连接,还分别与离子绝缘层、底层半导体连接。该探测器利用底栅极调控半导体薄膜内载流子的浓度和分布,同时顶栅通过离子凝胶调控石墨烯内载流子的浓度和类型,将响应波段从可见光拓展至近红外波段,在响应度增大的同时响应时间也得到加快。

Description

基于双栅压调控的高增益石墨烯光电探测器及其制备方法
技术领域
本发明涉及光电探测技术领域,具体为一种基于双栅压调控的高增益石墨烯光电探测器及其制备方法。
背景技术
随着光电子器件小型化,集成化,高性能的发展需求增加,石墨烯由于其优异的光电性能被认为是极具潜力的材料。
低的石墨烯光吸收率(2.3%)和短的载流子寿命(1ps)导致了石墨烯极低的量子效率,对于其应用在光电子器件一直是一项挑战。利用石墨烯本身作为吸光材料的光电探测器量子效率很低。
基于光栅压机理的石墨烯复合结构光电探测器为器件提供了增益,使其得到高的光响应度。然而增益的提升是基于陷阱效应,即以牺牲器件响应时间为代价。
由于石墨烯掺杂的不可控和界面接触的不稳定性,复合结构光电探测器性能通常难以达到可控,其界面耦合效果也难以达到最佳。
本发明的特点在于其结构和双栅调控机制,在保持其结构的条件下衬底材料可依据响应波段进行改变,且在任意的石墨烯掺杂情况下都可以达到很好的调控效果。
总的来说,响应度与响应时间的矛盾问题一直制约着石墨烯复合结构光电探测器的进一步发展,本发明提出的基于双栅压调控的高增益石墨烯光电探测器为问题的解决提供了参考方法。
发明内容
针对上述问题,本发明提出了一种基于双栅压调控的高增益石墨烯光电探测器及其制备方法,为基于光栅压模式下的石墨烯复合结构光电探测器性能的优化提供了有效的方法。
本发明的技术方案为:
一种基于双栅压调控的高增益石墨烯光电探测器,包括衬底、金属电极、离子绝缘层、器件沟道。
其中,衬底从上至下地包括顶层半导体、中间层绝缘介质、底层半导体。金属电极包括漏极电极、源极电极、顶栅电极和底栅电极,漏极电极与源极电极设置在顶层半导体上方两端处。器件沟道在漏极电极与源级电极之间,且漏极电极与源极电极通过器件沟道相连接。离子绝缘层覆盖在器件沟道上方,顶栅电极、底栅电极分别与漏极电极、源极电极连接,还分别与离子绝缘层、底层半导体连接。
进一步的,顶层半导体厚度为220nm,中间层绝缘介质厚度为2μm,底层半导体厚度为450μm。
进一步的,顶层半导体和底层半导体材质为硅,或锗,或锗硅,或氮化镓,或铟镓砷,可根据探测波段进行选择。
进一步的,源极电极与漏极电极由3nm的铬和50nm的金组成,且二者之间间距为30μm。
进一步的,离子绝缘层为离子凝胶,厚度为50nm。离子凝胶为顶栅电极的绝缘介质,对离子聚合物施加偏压作为顶栅电压时,在与石墨烯的界面处形成了稳定的双电层,而没有发生化学反应,这养就能够通过电荷载流子密度来操纵石墨烯的性质。
进一步的,器件沟道为石墨烯条带,所述石墨烯条带为单晶石墨烯,经霍尔测试仪表征测得迁移率为11218cm2V-1s-1、载流子浓度为7×1011/cm2,掺杂类型为P型。
该基于双栅压调控的高增益石墨烯光电探测器可通过顶栅电压对石墨烯掺杂进行有效调控,使石墨烯与顶层半导体的界面耦合得到适配;同时底栅电压调控顶层半导体的载流子分布,形成浓度梯度促进光生载流子扩散作用,使器件响应度提高的同时响应速度也得到加快。
上述基于双栅压调控的高增益石墨烯光电探测器的制备方法,包括步骤:
(1)制备衬底,包括顶层半导体、中间层绝缘介质、底层半导体;
(2)在所述衬底上的顶层半导体的两端上方分别制备漏极电极和源极电极;
(3)制备石墨烯并转移到顶层半导体上,连接所述漏极电极与源极电极;
(4)采用光刻和刻蚀的方法将石墨烯条带化;
(5)制备底栅电极;
(6)旋涂离子绝缘层并烘干;
(7)制备顶栅电极。
进一步的,步骤(1)中优选的制备结构由上到下依次为220nm厚的轻掺杂顶硅、2μm厚的氧化硅和450μm厚的轻掺杂底硅的衬底。衬底在使用前,依次利用丙酮和乙醇超声30min来清洗。
进一步的,步骤(2)中采用光刻+镀膜+剥离的方式制备漏极电极与源极电极,其中镀膜方式为磁控溅射或电子束蒸镀。优选的采用磁控溅射3nm Cr+50nm Au进行漏极电极与源极电极的制备。另外底栅电极也采用类似的方式直接镀膜,无需进行光刻。
进一步的,步骤(3)中使用化学气相沉积仪生长石墨烯薄膜,基底采用表面较为平整的铜箔,原料为分析纯乙醇。在高温作用下,乙醇中的碳原子通过在铜衬底上吸附、迁移等过程后沉积在衬底表面形成石墨烯薄膜。最终获得的石墨烯薄膜层数控制在1~2层。在石墨烯制备完成后,湿法转移至衬底上方。
在石墨烯转移时,利用PMMA胶有机光刻胶作为支撑体,将石墨烯从铜箔上转移到衬底表面。将石墨烯铜箔切割成大约所需尺寸,用高温胶带粘贴四周边缘固定到硬质衬底上,然后将PMMA溶液旋涂至石墨烯表面,转速为500转3秒接4000转25秒,随后取下石墨烯铜箔在加热台100度烘烤10分钟。然后用湿法腐蚀去除铜箔,以水+浓盐酸+过氧化氢溶液(120:10:5)为浓刻蚀溶液,拖拽背面铜箔半小时后转移到水+浓盐酸+过氧化氢溶液(300:10:5)的稀刻蚀溶液反应7-12小时。溶铜完成后,利用去离子水反复漂洗,然后用刻蚀好的目标衬底将带有PMMA的石墨烯捞起晾干2小时,然后置于加热台150度烘30分钟,再将硅片进入丙酮溶液去除PMMA胶,石墨烯转移完成。
进一步的,步骤(4)中采用光刻+反应离子刻蚀的方式将石墨烯条带化,然后用氧气刻蚀掉多余石墨烯,该步骤主要是得到微米级的石墨烯条带。
进一步的,步骤(6)中将制备得到的离子聚合物通过匀胶机旋涂在器件表面,并在真空干燥箱中60℃烘烤2-3小时得到顶栅介质层,通过点铝丝焊引入顶栅金属接触点。
本发明的有益之处在于:
相比于传统的石墨烯复合结构探测器,本发明(1)可进行电压调控,结构和制备工艺简单易实现;(2)通过顶栅电压调控可实现石墨烯掺杂改变,无需化学掺杂;(3)调控后器件响应度提升的同时不会牺牲响应时间;(4)可调控的特点使得对于不同掺杂程度的石墨烯和绝缘体上硅都可以达到类似的效果;(5)器件的制备工艺简单不需要额外进行掺杂、离子注入和退火,提升了工艺的可靠性,减少了生产成本。
附图说明
图1为本发明的基于双栅压调控的高增益石墨烯光电探测器的结构示意图。
图2为本发明的基于双栅压调控的高增益石墨烯光电探测器的结构剖面图。
图3为本发明的基于双栅压调控的高增益石墨烯光电探测器的制备流程图。
图4为本发明的基于双栅压调控的高增益石墨烯光电探测器的电压调控效果图。
图中,1-轻掺杂顶硅,2-氧化硅,3-轻掺杂底硅,4-漏极电极/源极电极,5-离子凝胶,6-石墨烯条带,7-顶栅电极,8-底栅电极。
具体实施方式
下面结合附图,对本发明作详细的说明。
所举实施例是为了更好地对本发明进行说明,但并不是本发明的内容仅局限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1
本实施例为一种基于双栅压调控的高增益石墨烯光电探测器,其结构如图1所示。
该光电探测器包括SOI衬底、金属电极、离子凝胶(5)、石墨烯条带(6)。金属电极包括漏极电极(4)、源极电极(4)、顶栅电极(7)和底栅电极(8)。
其结构剖面如图2所示,衬底从上至下地为220nm厚的轻掺杂顶硅(1)、2μm厚的氧化硅(2)和450μm厚的轻掺杂底硅(3)。
漏极电极与源极电极分别设置在轻掺杂顶硅(1)上方两端处,二者由3nm的铬和50nm的金组成,间距为30μm。石墨烯条带(6)在漏极电极与源级电极之间,且漏极电极与源极电极通过石墨烯条带(6)连接。石墨烯条带为单晶石墨烯,迁移率为11218cm2V-1s-1、载流子浓度为7×1011/cm2,掺杂类型为P型。
离子凝胶(5)覆盖在石墨烯条带(6)上方,厚度为50nm。顶栅电极与源极电极、离子凝胶连接。底栅电极与轻掺杂底硅、漏极电极连接。
离子凝胶(5)为顶栅电极(7)的绝缘介质,对离子聚合物施加偏压作为顶栅电压时,在与石墨烯的界面处形成了稳定的双电层,而没有发生化学反应,这使我们能够通过电荷载流子密度来操纵石墨烯的性质。
实施例2
一种基于双栅压调控的高增益石墨烯光电探测器的制备方法,主要工艺步骤包括:
1、衬底准备。衬底SOI衬底。如图3所示,在本实施例中,采用的SOI衬底结构由上到下依次为220nm厚的轻掺杂顶硅,2μm厚的氧化硅和450μm厚的轻掺杂底硅。衬底在使用前,依次利用丙酮和乙醇超声30min来清洗。
2、石墨烯生长。利用化学气相沉积仪生长石墨烯薄膜,基底采用表面较为平整的铜箔,原料为分析纯乙醇。在高温作用下,乙醇中的碳原子通过在铜衬底上吸附、迁移等过程后沉积在衬底表面形成石墨烯薄膜。最终获得的石墨烯薄膜层数控制在1~2层。
3、金属电极制备。如图3所示,在本实施例中,采用磁控溅射3nm Cr+50nm Au在轻掺杂顶硅上方两端处分别制备源极电极与漏极电极。
4、石墨烯转移。如图3所示,利用PMMA胶有机光刻胶作为支撑体,将石墨烯从铜箔上转移到硅片表面。将石墨烯铜箔切割成3cm×3cm的尺寸,用高温胶带粘贴四周边缘固定到硬质衬底上,然后将PMMA溶液旋涂至石墨烯表面,转速为500转3秒接4000转25秒,随后取下石墨烯铜箔在加热台100度烘烤10分钟。然后用湿法腐蚀去除铜箔,以水+浓盐酸+过氧化氢溶液(120:10:5)为浓刻蚀溶液,拖拽背面铜箔半小时后转移到水+浓盐酸+过氧化氢溶液(300:10:5)的稀刻蚀溶液反应7-12小时。溶铜完成后,利用去离子水反复漂洗,然后用刻蚀好的目标衬底将带有PMMA的石墨烯捞起晾干2小时,然后置于加热台150度烘30分钟,再将硅片进入丙酮溶液去除PMMA胶,石墨烯转移完成。
5、石墨烯条带化。此工步主要实现微米级的石墨烯条带化,基于光刻+反应离子刻蚀的方式加工,用氧气刻蚀掉多余石墨烯。
6、旋涂凝胶。如图3所示,制备得到的离子聚合物通过匀胶机旋涂在器件表面,并在真空干燥箱中60℃烘烤2-3小时得到顶栅介质层,通过点铝丝焊引入顶栅金属接触点。
7.制备顶栅电极与底栅电极,将顶栅电极与源极电极、离子凝胶连接,底栅电极与漏极电极、轻掺杂底硅连接。
制备完成后,通过顶栅电极与底栅电极的电压对光电探测器进行调控,其效果如图4所示。
使用该制备方法制备光电探测器,结构简单、可调控、光电响应度高、响应速度快,工作稳定性高,工艺可靠性好,生产成本低。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种基于双栅压调控的高增益石墨烯光电探测器,其特征在于:包括衬底、金属电极、离子绝缘层、器件沟道;其中,所述衬底从上至下地包括顶层半导体、中间层绝缘介质、底层半导体;所述金属电极包括漏极电极、源极电极、顶栅电极和底栅电极;所述漏极电极与源极电极分别设置在所述顶层半导体上方两端处;所述器件沟道在所述漏极电极与源级电极之间,且所述漏极电极与源极电极通过所述器件沟道连接;所述离子绝缘层覆盖在所述器件沟道上方;所述顶栅电极、底栅电极分别与所述漏极电极、源极电极连接,还分别与所述离子绝缘层、底层半导体连接。
2.根据权利要求1所述的基于双栅压调控的高增益石墨烯光电探测器,其特征在于:所述顶层半导体厚度为220nm;所述中间层绝缘介质厚度为2μm;所述底层半导体厚度为450μm。
3.根据权利要求1所述的基于双栅压调控的高增益石墨烯光电探测器,其特征在于:所述顶层半导体和底层半导体材质为硅,或锗,或锗硅,或氮化镓,或铟镓砷。
4.根据权利要求1所述的基于双栅压调控的高增益石墨烯光电探测器,其特征在于:所述源极电极与漏极电极由3nm的铬和50nm的金组成,且二者之间间距为30μm。
5.根据权利要求1所述的基于双栅压调控的高增益石墨烯光电探测器,其特征在于:所述离子绝缘层为离子凝胶,厚度为50nm。
6.根据权利要求3所述的基于双栅压调控的高增益石墨烯光电探测器,其特征在于:所述器件沟道为石墨烯条带,所述石墨烯条带为单晶石墨烯,迁移率为11218cm2V-1s-1,载流子浓度为7×1011/cm2,掺杂类型为P型。
7.根据权利要求1-6所述的基于双栅压调控的高增益石墨烯光电探测器的制备方法,其特征在于,包括步骤:
(1)制备衬底,包括顶层半导体、中间层绝缘介质、底层半导体;
(2)在所述衬底上的顶层半导体的两端上方分别制备漏极电极和源极电极;
(3)制备石墨烯并转移到所述顶层半导体上,连接所述漏极电极与源极电极;
(4)采用光刻和刻蚀的方法将石墨烯条带化;
(5)制备底栅电极;
(6)旋涂离子绝缘层并烘干;
(7)制备顶栅电极。
8.根据权利要求7所述的基于双栅压调控的高增益石墨烯光电探测器的制备方法,其特征在于:步骤(2)中采用光刻+镀膜+剥离的方式制备漏极电极与源极电极,其中所述镀膜方式为磁控溅射或电子束蒸镀。
9.根据权利要求7所述的基于双栅压调控的高增益石墨烯光电探测器的制备方法,其特征在于:步骤(3)中使用化学气相沉积仪生长石墨烯薄膜,基底采用表面较为平整的铜箔,原料为分析纯乙醇;在石墨烯制备完成后,湿法转移至衬底上方。
10.根据权利要求7所述的基于双栅压调控的高增益石墨烯光电探测器的制备方法,其特征在于:步骤(4)中采用光刻+反应离子刻蚀的方式将石墨烯条带化。
CN202110692010.6A 2021-06-22 2021-06-22 基于双栅压调控的高增益石墨烯光电探测器及其制备方法 Active CN113471327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110692010.6A CN113471327B (zh) 2021-06-22 2021-06-22 基于双栅压调控的高增益石墨烯光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110692010.6A CN113471327B (zh) 2021-06-22 2021-06-22 基于双栅压调控的高增益石墨烯光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113471327A CN113471327A (zh) 2021-10-01
CN113471327B true CN113471327B (zh) 2022-08-02

Family

ID=77869114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110692010.6A Active CN113471327B (zh) 2021-06-22 2021-06-22 基于双栅压调控的高增益石墨烯光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113471327B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115458543B (zh) * 2022-09-15 2023-07-25 中国人民解放军军事科学院国防科技创新研究院 视觉传感器、光电子器件、图像识别方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293627B1 (en) * 2012-12-03 2016-03-22 Sandia Corporation Sub-wavelength antenna enhanced bilayer graphene tunable photodetector
CN111739964A (zh) * 2020-06-29 2020-10-02 西北工业大学 一种双栅结构的二维半导体光电探测器及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680038B2 (en) * 2013-03-13 2017-06-13 The Regents Of The University Of Michigan Photodetectors based on double layer heterostructures
US9558929B2 (en) * 2013-11-25 2017-01-31 Nutech Ventures Polymer on graphene
WO2016209666A2 (en) * 2015-06-15 2016-12-29 University Of Maryland, College Park Hybrid metal-graphene terahertz optoelectronic system with tunable plasmonic resonance and method of fabrication
CN108352424B (zh) * 2015-07-13 2022-02-01 科莱约纳诺公司 石墨基板上生长的纳米线或纳米锥
KR101938934B1 (ko) * 2016-03-02 2019-04-10 광주과학기술원 이득조절이 가능한 그래핀-반도체 쇼트키 접합 광전소자
CN105895729B (zh) * 2016-06-03 2017-06-30 泰州巨纳新能源有限公司 石墨烯光电探测器
US11217709B2 (en) * 2019-05-03 2022-01-04 Gwangju Institute Of Science And Technology Graphene-semiconductor heterojunction photodetector and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293627B1 (en) * 2012-12-03 2016-03-22 Sandia Corporation Sub-wavelength antenna enhanced bilayer graphene tunable photodetector
CN111739964A (zh) * 2020-06-29 2020-10-02 西北工业大学 一种双栅结构的二维半导体光电探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Determination of Quantum Capacitance and Band Filling Potential in Graphene Transistors with Dual Electrochemical and Field-Effect Gates";Chang-Hyun Kim等;《JOURNAL OF PHYSICAL CHEMISTRY C》;20140819;第118卷;摘要、方法和结果讨论部分 *
"Ultrasensitive and fast photoresponse in graphene/silicon-on-insulator hybrid structure by manipulating the photogating effect";Hao Jiang等;《Nanophotonics》;20200129;第9卷;摘要、结果讨论和方法部分 *

Also Published As

Publication number Publication date
CN113471327A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN109727846B (zh) 大面积制备金属相与半导体相接触的二维碲化钼面内异质结的方法及应用
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
JP2002524882A (ja) 亜鉛スズ酸塩緩衝層を含む光電デバイスおよび製造方法
de Cesare et al. Electrical properties of ITO/crystalline-silicon contact at different deposition temperatures
CN101861213A (zh) 等离子体处理的光伏器件
CN113471327B (zh) 基于双栅压调控的高增益石墨烯光电探测器及其制备方法
CN113972262B (zh) 氧化镓-二维p型范德华隧穿晶体管、双波段光电探测器件及制备方法
CN111341875A (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN111129169B (zh) 一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件及其制备方法
CN107731936B (zh) 一种基于三维狄拉克材料的隧穿型光电探测器及制备方法
CN110010710B (zh) 一种用于光检测应用的a-IGZO薄膜传感器及其制作方法
CN107808819A (zh) 一种液态石墨烯应用于GaN基材料及器件的方法
CN110034192A (zh) 利用氧化亚锡调节阈值电压的氧化镓场效应管及制备方法
CN111430244B (zh) 氮化镓二硫化钼混合尺度pn结的制备方法
CN109768111A (zh) 一种GaAs纳米柱-石墨烯肖特基结太阳能电池及其制备方法
CN105633282A (zh) 一种带有电致变色薄膜的光敏有机场效应晶体管
TW201917909A (zh) 用於製造同質接面光伏電池的方法
CN113990970A (zh) 一种石墨烯/二硫化钨-二硒化钨异质结/石墨烯光电探测器及其制备方法和应用
CN114695597B (zh) 一种基于二维碲化钼的同质异相光电探测器的制备及应用
CN112349777A (zh) 具有钙钛矿复合栅结构的GaN HEMT光电探测器及其制备方法
CN110120349A (zh) InGaZnO薄膜晶体管的源漏电极及晶体管制备方法
JP2004158556A (ja) 太陽電池
CN108807557A (zh) 提高石墨烯肖特基结太阳电池性能的复合减反膜、太阳电池及制备
JP2001223376A (ja) 多結晶半導体薄膜太陽電池の製造方法およびその方法で製造された太陽電池
Lee et al. 17.3% efficiency metal-oxide-semiconductor (MOS) solar cells with liquid-phase-deposited silicon dioxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant