CN113467211B - 一种基于频谱损失函数梯度下降的全息编码方法 - Google Patents

一种基于频谱损失函数梯度下降的全息编码方法 Download PDF

Info

Publication number
CN113467211B
CN113467211B CN202110703230.4A CN202110703230A CN113467211B CN 113467211 B CN113467211 B CN 113467211B CN 202110703230 A CN202110703230 A CN 202110703230A CN 113467211 B CN113467211 B CN 113467211B
Authority
CN
China
Prior art keywords
hologram
frequency spectrum
phase
signal
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110703230.4A
Other languages
English (en)
Other versions
CN113467211A (zh
Inventor
***
张隽怿
刘旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110703230.4A priority Critical patent/CN113467211B/zh
Publication of CN113467211A publication Critical patent/CN113467211A/zh
Application granted granted Critical
Publication of CN113467211B publication Critical patent/CN113467211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • G03H2001/085Kinoform, i.e. phase only encoding wherein the computed field is processed into a distribution of phase differences

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

本发明公开了一种基于频谱损失函数梯度下降的全息编码方法,将纯相位全息图的频谱分成信号频谱区域和噪声频谱区域,将复振幅全息图的频谱滤波提取出信号频谱区域,然后用梯度下降法使纯相位全息图的信号频谱近似等于复振幅全息图的信号频谱,纯相位全息图的噪声频谱区域可以看作被优化的自由变量而忽略。对比常见的双相位编码法和GS算法,本发明方法的信噪比相对于双相位编码法更高,且比GS算法更适用于三维物体的全息显示。

Description

一种基于频谱损失函数梯度下降的全息编码方法
技术领域
本发明属于三维显示技术邻域,尤其涉及一种基于频谱损失函数梯度下降的全息编码方法。
背景技术
三维显示技术是显示技术的一个重要研究和发展方向。近年来,随着虚拟现实技术和增强现实技术的普及和应用,对头戴式显示设备的研究逐渐增多。其中全息近眼显示受到广泛关注。
全息近眼显示可以携带深度信息,在未来的近眼显示应用中具有潜在的优势。为了显示全息图,最好同时调节光的振幅和相位。但是空间光调制器只能显示振幅或相位。实验中可行的方法是用编码方法计算出相位型空间光调制器中能显示的纯相位全息图。目前,有两种普遍使用的全息编码算法:双相位编码(double-phase)算法和GS(Gerchberg-Saxton)算法。
双相位编码是把一个复振幅值编码成两个纯相位值。对于三维物体的显示,可以先用层析法或点云法先计算出三维物体的复振幅全息图,然后直接用双相位编码计算出纯相位全息图。然而,双相位编码存在的编码噪声的问题,导致显示的图像看起来存在噪声。GS算法是把显示图像的振幅作为优化目标、把显示图像的相位作为自由变量的一种迭代方法。但这种算法难以计算三维物体的全息图。而且把显示图像的相位作为自由变量时,实际重建的图像的每个像素值难免会有部分重叠,其相位值不同会发生干涉造成噪声。
因此,通过提出新的编码方法来提升显示质量是全息显示领域一个重要的研究方向。
发明内容
本发明的目的是为解决全息近眼中编码算法造成的显示质量问题,并且能适用于三维物体的显示,而提出的一种新的全息编码方法。
本发明的目的是通过以下技术方案来实现的:一种基于频谱损失函数梯度下降的全息编码方法,该方法将纯相位全息图的频谱分成信号频谱区域和噪声频谱区域,将复振幅全息图的频谱滤波提取出信号频谱区域,然后用梯度下降法使纯相位全息图的信号频谱近似等于复振幅全息图的信号频谱,纯相位全息图的噪声频谱区域可以看作被优化的自由变量而忽略;在实际光路中需要使用滤波器将噪声频谱滤掉;设纯相位全息图、复振幅全息图和原图大小为m*n像素(通常为1920*1080像素),该方法包括以下步骤:
1)对于二维或三维的原图像光场用快速傅里叶变换计算出复振幅全息图的频谱F0,F0为m*n的矩阵,将F0展开为一个m*n维的向量;
2)对复振幅全息图的频谱进行滤波,即选择频谱中心位置长、宽分别为原始一半大小的矩形区域,提取出该矩形区域作为信号频谱区域;将信号频谱表示为
Figure BDA0003131049080000021
其中
Figure BDA0003131049080000022
表示哈达马积,P表示一个m*n维的向量,P的某元素若在信号频谱区域内,则其值为1,否则为0;
3)对于初始的纯相位全息图,进行快速傅里叶变换计算出频谱F,选取某一位置长、宽分别为原始一半大小的矩形区域作为信号频谱区域,剩余区域为噪声频谱区域;将信号频谱表示为
Figure BDA0003131049080000023
4)对于纯相位全息图的信号频谱计算损失函数,因为频谱是复数,损失函数C定义为实部Re加虚部Im的形式:
Figure BDA0003131049080000024
5)根据步骤4)中损失函数计算损失函数的梯度,利用以下梯度下降公式更新纯相位全息图:
Figure BDA0003131049080000025
其中θk为当前的纯相位全息图的相位值构成的矩阵展开的一个m*n 维的向量,Ck为当前的损失函数,η为迭代的步长,θk+1为更新后的纯相位全息图的相位值构成的矩阵展开的一个m*n维的向量,k代表迭代的第 k次,
Figure BDA0003131049080000026
为一个m*n维的向量,公式为:
Figure BDA0003131049080000027
其中
Figure BDA0003131049080000031
为一个行和列均为m*n的矩阵,F(k)是迭代k次后的频谱F,
Figure BDA0003131049080000032
FFT是快速傅里叶变换,用于把光场转为频谱,
Figure BDA0003131049080000033
是由θk得到的一个m*n维的复数向量;
6)重复上述的4)、5)步骤进行迭代,直到损失函数收敛,得到最终的纯相位全息图。
进一步地,所述原图像光场的振幅值用原图像的灰度值计算得到,光场的相位值在同一深度设置为恒值,这样可以避免重建图像相邻像素因为相位不同,发生了干涉而造成噪声。
进一步地,既可以使用随机值生成初始的纯相位全息图,也可以使用双相位全息图作为初始的纯相位全息图,使用双相位全息图可以减少迭代次数。
进一步地,对于实际的情况,显示纯相位全息图所用的空间光调制器如果存在串扰效应会导致显示误差,可以在公式
Figure BDA0003131049080000034
中加入对串扰效应的校正;串扰效应可以表示为一个点扩散模型,纯相位全息图上相位值可以在迭代中卷积点扩散函数;频谱的计算公式可以改写为:
Figure BDA0003131049080000035
其中
Figure BDA0003131049080000036
代表卷积,a代表一个像素受串扰效应的点扩散函数。
进一步地,如果点扩散函数的尺寸处于一个像素的量级,则需要对纯相位全息图进行超采样计算。
进一步地,加入串扰效应校正,如果要实现离轴全息,不能像通常方法在最后一步加入相位光栅,因为加入的相位光栅也会受到串扰效应影响,可以在迭代过程中把纯相位全息图的信号频谱区域位置不设置在频谱中央,而是偏离一定距离,从而实现离轴全息。
本发明的有益效果是:对比常见的双相位编码法和GS算法,本发明方法的信噪比比双相位编码法更高,且比GS算法更适用于三维物体的全息显示。
附图说明
图1是本发明实施例的信号频谱区域与噪声频谱区域示意图,图中横纵坐标fx,fy表示实际实验中频谱面的空间距离,f表示傅里叶变换用的透镜的焦距,λ表示光的波长,p表示空间光调制器的像素尺寸,则频谱区域为
Figure BDA0003131049080000041
信号频谱区域可以选为
Figure BDA0003131049080000042
Figure BDA0003131049080000043
图2是本发明实施例与双相位编码的重建图像的仿真结果示意图,(a) 是原图,原图为A、B、C字母的二维图片,(b)是双相位编码的重建图的仿真结果,(c)是本发明方法的重建图的仿真结果;
图3是本发明实施例与GS编码的重建图像的仿真结果示意图,(a-c) 是原图,原图由3层二维图片构成,第1层(a)是一个字母图片,第2、3 层(b-c)分别为随机的雪花图片,(d)是GS编码的重建图的仿真结果,(e) 是本发明方法的重建图的仿真结果。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
实施例1
如图2所示,本实施例提供与双相位编码的重建图像的仿真结果的对比,(a)是原图,原图为A、B、C字母的二维图片。(b)是双相位编码的重建图的仿真结果,峰值信噪比PSNR为20.579。(c)是本发明方法的重建图的仿真结果,峰值信噪比PSNR为24.236。本发明方法的初始纯相位全息图采用双相位编码的全息图,迭代总次数为5次。其中全息编码和重建仿真的光强与灰度转换公式使用的是:
Figure BDA0003131049080000044
Figure BDA0003131049080000045
其中I为归一化光强,gray为归一化灰度。重建图像面与全息面的衍射距离为80mm。观察仿真结果明显可见,本发明方法的显示质量更高,噪声更少,本发明方法的信噪比相对于双相位编码更高。
实施例2
如图3所示,本实施例提供与GS算法的重建图像的仿真结果的对比, (a-c)是原图,原图由3层二维图片构成,第1层(a)是一个字母图片,与全息面的衍射距离为80mm,第2、3层(b-c)分别为随机的雪花图片,(b) 与全息面的衍射距离为81.5mm,(c)与全息面的衍射距离为83mm。(d) 是GS编码的重建图的仿真结果,与全息面的衍射距离为80mm。(e)是本发明方法的重建图的仿真结果,与全息面的衍射距离为80mm。由于GS 算法只能优化二维原图像,这里对3层原图分别计算了3个GS算法的全息图,然后仿真的3个重建图直接叠加起来,相当于模拟时分复用多层 GS算法。GS算法用的迭代总次数为30次。本发明方法的初始纯相位全息图采用双相位编码的全息图,迭代总次数为5次。
可以看出GS编码的重建图中第二层与第三层的雪花的离焦图案有很多噪声,因为GS编码把重建图像的相位作为自由变量,当图像离焦时,相邻像素会重叠干涉,而相位不一样造成了噪声。本发明方法的仿真结果中雪花的离焦图案没有明显的噪声,因为可以把原图像的相位设为恒值,这样在一定的离焦范围内不会出现明显的噪声。因此,本发明方法比GS 算法更适合三维物体的显示。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (6)

1.一种基于频谱损失函数梯度下降的全息编码方法,其特征在于,将纯相位全息图的频谱分成信号频谱区域和噪声频谱区域,将复振幅全息图的频谱滤波提取出信号频谱区域,然后用梯度下降法使纯相位全息图的信号频谱近似等于复振幅全息图的信号频谱,纯相位全息图的噪声频谱区域看作被优化的自由变量而忽略;设纯相位全息图、复振幅全息图和原图大小为m*n像素,该方法包括以下步骤:
1)对于二维或三维的原图像光场用快速傅里叶变换计算出复振幅全息图的频谱F0,F0为m*n的矩阵,将F0展开为一个m*n维的向量;
2)对复振幅全息图的频谱进行滤波,即选择频谱中心位置长、宽分别为原始一半大小的矩形区域,提取出该矩形区域作为信号频谱区域;将信号频谱表示为
Figure FDA0003537797690000015
其中
Figure FDA0003537797690000016
表示哈达马积,P表示一个m*n维的向量,P的某元素若在信号频谱区域内,则其值为1,否则为0;
3)对于初始的纯相位全息图,进行快速傅里叶变换计算出频谱F,选取某一位置长、宽分别为原始一半大小的矩形区域作为信号频谱区域,剩余区域为噪声频谱区域;将信号频谱表示为
Figure FDA0003537797690000017
4)对于纯相位全息图的信号频谱计算损失函数,因为频谱是复数,损失函数C定义为实部Re加虚部Im的形式:
Figure FDA0003537797690000011
5)根据步骤4)中损失函数计算损失函数的梯度,利用以下梯度下降公式更新纯相位全息图:
Figure FDA0003537797690000012
其中θk为当前的纯相位全息图的相位值构成的矩阵展开的一个m*n维的向量,Ck为当前的损失函数,η为迭代的步长,θk+1为更新后的纯相位全息图的相位值构成的矩阵展开的一个m*n维的向量,k代表迭代的第k次,
Figure FDA0003537797690000013
为一个m*n维的向量,公式为:
Figure FDA0003537797690000014
其中
Figure FDA0003537797690000021
为一个行和列均为m*n的矩阵,F(k)是迭代k次后的频谱F,
Figure FDA0003537797690000022
FFT是快速傅里叶变换,用于把光场转为频谱,
Figure FDA0003537797690000023
是由θk得到的一个m*n维的复数向量;
6)重复上述的4)、5)步骤进行迭代,直到损失函数收敛,得到最终的纯相位全息图。
2.根据权利要求1所述的方法,其特征在于,所述原图像光场的振幅值用原图像的灰度值计算得到,光场的相位值在同一深度设置为恒值,这样可以避免重建图像相邻像素因为相位不同,发生了干涉而造成噪声。
3.根据权利要求1所述的方法,其特征在于,使用随机值生成初始的纯相位全息图或双相位全息图作为初始的纯相位全息图,使用双相位全息图可以减少迭代次数。
4.根据权利要求1所述的方法,其特征在于,对于实际的情况,显示纯相位全息图所用的空间光调制器如果存在串扰效应会导致显示误差,在公式
Figure FDA0003537797690000024
中加入对串扰效应的校正;串扰效应表示为一个点扩散模型,纯相位全息图上相位值在迭代中卷积点扩散函数;频谱的计算公式改写为:
Figure FDA0003537797690000025
其中
Figure FDA0003537797690000026
代表卷积,a代表一个像素受串扰效应的点扩散函数。
5.根据权利要求4所述的方法,其特征在于,如果点扩散函数的尺寸处于一个像素的量级,则需要对纯相位全息图进行超采样计算。
6.根据权利要求4所述的方法,其特征在于,在迭代过程中把纯相位全息图的信号频谱区域位置不设置在频谱中央,而是偏离一定距离,从而实现离轴全息。
CN202110703230.4A 2021-06-24 2021-06-24 一种基于频谱损失函数梯度下降的全息编码方法 Active CN113467211B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110703230.4A CN113467211B (zh) 2021-06-24 2021-06-24 一种基于频谱损失函数梯度下降的全息编码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110703230.4A CN113467211B (zh) 2021-06-24 2021-06-24 一种基于频谱损失函数梯度下降的全息编码方法

Publications (2)

Publication Number Publication Date
CN113467211A CN113467211A (zh) 2021-10-01
CN113467211B true CN113467211B (zh) 2022-06-10

Family

ID=77872569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110703230.4A Active CN113467211B (zh) 2021-06-24 2021-06-24 一种基于频谱损失函数梯度下降的全息编码方法

Country Status (1)

Country Link
CN (1) CN113467211B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514696B2 (ja) 2020-08-19 2024-07-11 日本放送協会 位相符号化パターン生成方法、および位相符号化パターンを用いる光分布生成装置
CN114137812B (zh) * 2021-12-03 2022-10-11 北京理工大学 基于超颖表面的三重关联混合全息加密方法
CN115097709B (zh) * 2022-07-05 2023-11-17 东南大学 一种基于复数优化器或复数求解器的全息编码方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110738727A (zh) * 2019-09-29 2020-01-31 东南大学 一种基于光场的复振幅全息图算法
CN210666315U (zh) * 2019-05-16 2020-06-02 安徽大学 一种基于全息投影的多视图三维显示装置
CN111897197A (zh) * 2020-08-18 2020-11-06 四川大学 基于双相位编码的傅里叶相位全息图生成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10355648A1 (de) * 2003-11-28 2005-06-23 Tesa Scribos Gmbh Verfahren zum Berechnen und zum Erzeugen eines computergenerierten Hologramms sowie ein Speichermedium mit einem computergenerierten Hologramm
CN103645562B (zh) * 2013-12-20 2015-10-21 中南大学 一种同时调制振幅和相位的光束整形方法
US10976705B2 (en) * 2016-07-28 2021-04-13 Cy Vision Inc. System and method for high-quality speckle-free phase-only computer-generated holographic image projection
CN106210707B (zh) * 2016-09-14 2018-05-01 京东方科技集团股份有限公司 一种全息显示***及全息显示方法
CN106842880B (zh) * 2017-03-27 2018-09-28 深圳市美誉镜界光电科技有限公司 全息图像生成方法、处理器及全息图像显示装置、设备
GB2579234B (en) * 2018-11-27 2023-07-19 Dualitas Ltd Hologram calculation
US11137719B2 (en) * 2018-12-11 2021-10-05 University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for improved digital holography and display incorporating same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210666315U (zh) * 2019-05-16 2020-06-02 安徽大学 一种基于全息投影的多视图三维显示装置
CN110738727A (zh) * 2019-09-29 2020-01-31 东南大学 一种基于光场的复振幅全息图算法
CN111897197A (zh) * 2020-08-18 2020-11-06 四川大学 基于双相位编码的傅里叶相位全息图生成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三维纯相位全息显示中的散斑噪声抑制;周婷婷,韩超;《中国激光》;20181231;第45卷(第12期);全文 *
基于空间光调制器的三维相位全息图再现像优化;梁浩聪,蒋晓瑜,牛树来,闫兴鹏,赵锴;《光学技术》;20140531;第40卷(第3期);全文 *

Also Published As

Publication number Publication date
CN113467211A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN113467211B (zh) 一种基于频谱损失函数梯度下降的全息编码方法
Blinder et al. The state-of-the-art in computer generated holography for 3D display
US11137719B2 (en) Methods, systems, and computer readable media for improved digital holography and display incorporating same
Shimobaba et al. Deep-learning computational holography: A review
Liu et al. 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography
JP5266223B2 (ja) 伝播を使用して計算機ビデオホログラムをリアルタイムに生成する方法
US20230205133A1 (en) Real-time Photorealistic 3D Holography With Deep Neural Networks
WO2021216747A1 (en) Real-Time Photorealistic 3D Holography with Deep Neural Networks
CN113986163A (zh) 用于编码重建三维物体的复值信号的方法和装置
CN111240177B (zh) 一种基于分层像素扫描算法的全息散斑噪声抑制方法
CN114387395A (zh) 一种基于相位-双分辨率网络的全息图快速生成方法
CN109856944B (zh) 一种提高再现像质量的纯相位全息图生成方法
KR100910642B1 (ko) 홀로그래피 기법에 의해 획득된 영상의 3차원 집적 영상복원 방법 및 장치
CN117876591A (zh) 多个神经网络联合训练的真实模糊三维全息图重建方法
CN104090476A (zh) 用于全息显示的三维场景信息的获取方法
KR20170083865A (ko) 확대된 시야각을 가지는 홀로그래픽 디스플레이 장치
CN115797231A (zh) 基于傅里叶启发的神经网络的实时全息图生成方法
Shiomi et al. Fast hologram calculation method using wavelet transform: WASABI-2
JP7486381B2 (ja) ホログラムデータ生成装置およびそのプログラム
CN112765624B (zh) 基于相位优化和稀疏约束的可认证纯相位全息图生成方法
Dong et al. Vision transformer-based, high-fidelity, computer-generated holography
Ryu et al. Continuous depth control of phase-only hologram with depth embedding block
Liu et al. Radiance-field holography for high-quality 3D reconstruction
Park et al. Parallel Synthesis Algorithm for Layer-based Computer-generated Holograms Using Sparse-field Localization
CN114764220B (zh) 一种基于离轴数字全息改善散斑自相关重建效果的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant