CN113461423B - 用于电场***的陶瓷电极的陶瓷材料及其制备方法 - Google Patents

用于电场***的陶瓷电极的陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113461423B
CN113461423B CN202111036962.9A CN202111036962A CN113461423B CN 113461423 B CN113461423 B CN 113461423B CN 202111036962 A CN202111036962 A CN 202111036962A CN 113461423 B CN113461423 B CN 113461423B
Authority
CN
China
Prior art keywords
ceramic
powder
hours
ceramic material
feo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111036962.9A
Other languages
English (en)
Other versions
CN113461423A (zh
Inventor
张建义
刘胜军
段红杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEBEI PUNI MEDICAL TECHNOLOGY CO.,LTD.
Original Assignee
Beijing Guoxietang Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Guoxietang Technology Development Co ltd filed Critical Beijing Guoxietang Technology Development Co ltd
Priority to CN202111036962.9A priority Critical patent/CN113461423B/zh
Publication of CN113461423A publication Critical patent/CN113461423A/zh
Application granted granted Critical
Publication of CN113461423B publication Critical patent/CN113461423B/zh
Priority to PCT/CN2022/085815 priority patent/WO2023029483A1/zh
Priority to EP22862629.7A priority patent/EP4400485A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

本发明涉及一种用于电场***的陶瓷电极的陶瓷材料制备方法,包括如下步骤:采用固相法合成a[0.67Bi0.995Ce0.005FeO3‑0.33BaTiO3]‑b[Sr1‑xPbxTi1‑yZryO3]‑c[Pb(Mg1/ 3Nb2/3)O3]粉体;其中,0<a<0.06,0.05<b<0.18,a+b+c=1;0.6≤x≤0.8,0<y<0.2;对粉体进行细磨,添加粘结剂造粒并压制成型以得到素坯;排除素坯中的有机物质;对素坯进行烧结,获得陶瓷材料。本发明还提供了一种采用该制备方法制备的陶瓷材料,该陶瓷材料具有高介电常数和低损耗的特点,适合制作导通电场但阻断传导电流的陶瓷电容电极。

Description

用于电场***的陶瓷电极的陶瓷材料及其制备方法
技术领域
本发明属于功能陶瓷材料技术领域,具体地说,涉及一种用于电场***的陶瓷电极的陶瓷材料及其制备方法。
背景技术
生物医学研究表明,如果直接利用金属电极施加电场到人体,在传导电流的作用下,人体细胞内的带电矿物离子会出现迁移,导致细胞内离子浓度的变化,这对于人体是有害的(PNAS,vol.104,pp10152-10157,2007)。另外由于高传导电流会直接与人体的生命安全有关,利用金属电极施加电场进行医学研究及治疗,电压不可过高,施加电压受限。
根据物理学原理,纯电容对于传导电流是绝缘的,对交流电场是导通的,所以在临床施加交流电压的实验中,如果利用绝缘的陶瓷电容作为电极施加交流电压,就可以避免人体内出现传导电流,从而避免传导电流对细胞的副作用。此外,一般治疗情况下通过电容电极施加在人体的电场是局部区域的,只有局部区域受到电场作用。而且由于电容的绝缘性质,没有传导电流通过加电场的人体区域。相对于金属导体电极,利用绝缘电容电极施加电场治疗具有更高的安全性,可以施加更高电压。
已经有生物医学实验证明,在特定交流频率下,通过绝缘电容电极施加交变电压可以有效抑制特定异常细胞的生长(PNAS,vol.104,pp10152-10157,2007)。在特定的电场频率下,电场可以有效地抑制动物及人体脑部的肿瘤细胞生长。实验证明施加电压越高,治疗效果越好。但是治疗施加的电压受到当地规定的安全电压限制。在临床治疗中,由于安全要求,外加电压必须低于当地规定的安全电压。目的在于防止一旦短路,不会出现安全事故。这样在外加电压受限的前提下,由于电容的容抗与电容材料的介电常数成反比,所以利用高介电常数的介电材料制作的电容电极,电极容抗会更小。电极上面的电压降就会更小。这样在安全电压一定的前提下, 施加在患者头部的电压就更高,治疗效果会更好。另外,介电损耗高的电容材料会在电场下发热, 影响电容电极工作,并且有发热烫伤病人的风险。因此,采用高介电常数而且低损耗的材料,可以更加有效的将电场通过低容抗的电容电极片加在直接需要研究或治疗的人体或动物的具体部位。基于以上应用背景,寻找有高介电常数,低损耗的介电材料,制作低容抗和低损耗的的电容电极,以满足阻断传导电流,导通电场实现不同应用就显得极为迫切。
(1-x)PMN-xPT [(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3] (x<1) 是具有高介电常数的铁电材料。但是对于这个体系材料的合成,如果采用一步法合成,容易获得焦绿石杂相,恶化性能。为了获得性能优良的钙钛矿结构的单相材料,一般都需要利用两步法合成。第一步在1000度以上保温合成MgNb2O6,然后利用MgNb2O6为部分原料,与其他氧化物原料混合,在800℃以上进行第二次合成,最后获得钙钛矿结构的PMN-PT陶瓷粉体。问题是,利用两步法合成,工序复杂,工时长,耗能高。另外,对于PMN-xPT的研究,大量研究关注准同晶相界成分(1-x)PMN-xPT,其中x= 0.3到0.4之间,但是准同晶相界的成分仅适合压电使用,不适合高介电电容使用。
发明内容
本发明提供了用于电场***的陶瓷电极的陶瓷材料制备方法以及采用该方法制备的陶瓷材料及元件。
根据本发明的一个方面,提供了一种用于电场***的陶瓷电极的陶瓷材料制备方法,所述制备方法包括如下步骤:
1)采用固相法一步合成
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3其中, 0<a<0.06,0.05<b<0.18,a+b+c=1; 0.6≤x≤0.8,0<y<0.2;
以Bi2O3,CeO2,Fe2O3,BaCO3,TiO2,SrCO3,Pb3O4,ZrO2,MgO,Nb2O5 为原料,在750 ℃~850 ℃的温度下保温4小时,合成
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]粉体;其中,0<a<0.06,0.05<b<0.18,a+b+c=1; 0.6≤x≤0.8,0<y<0.2;
2)对所述步骤1)中合成好的
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]
粉体进行细磨,细磨后添加粘结剂造粒并压制成型以得到素坯;
3)进行排塑,排除所述素坯中的有机物质;
4)对所述素坯进行烧结,获得陶瓷材料。
根据本发明的一个具体实施方式,所述步骤1)具体为:
以Bi2O3,CeO2,Fe2O3,BaCO3,TiO2,SrCO3,Pb3O4,ZrO2,MgO,Nb2O5 为原料,按照
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]的化学计量比配料后用湿式球磨法混料;
对混合后材料进行烘干;
在750 ℃~850 ℃的温度下保温4小时后一步合成得到
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]粉体,其中,0<a<0.06,0.05<b<0.18,a+b+c=1;0.6≤x≤0.8,0<y<0.2。
根据本发明的又一个具体实施方式,在所述步骤2)中,陶瓷粉体、磨球、去离子水的质量比如下:
陶瓷粉体:磨球:去离子水= 1:(1.8~2):(0.6~0.8)。
根据本发明的又一个具体实施方式,所述细磨时间为24~48小时。
根据本发明的又一个具体实施方式,所述磨球为氧化锆球。
根据本发明的又一个具体实施方式,在所述步骤2)中,所用粘结剂为PVA;所述粘结剂的添加量为陶瓷粉体质量的5%~8%。
根据本发明的又一个具体实施方式,在所述步骤3)中,所述排塑的温度为550℃~760℃,保温时间为2~3小时。
根据本发明的又一个具体实施方式,所述步骤4)具体为:
将所述素坯放入坩埚中密闭烧结,烧结温度为1185℃~1250℃,升温速率为2℃/min~5℃/min,保温时间为2~3小时。
根据本发明的另一个方面,提供了一种用于电场***的陶瓷电极的陶瓷材料,所述陶瓷材料通过前述制备方法制备。
根据本发明的另一个具体实施方式,在室温条件下,当频率处于1kHz~1MHz 频率范围内时,所述陶瓷材料的相对介电常数大于20000,介电损耗小于0.0217。
与现有技术相比,本发明有取得了以下效果:
本发明以四元体系BiFeO3-BaTiO3-Pb(Mg1/3Nb2/3)O3-PbTiO3为基础,利用BiFeO3的低熔点、高极化和钙钛矿结构的特征,利用一步法直接合成具有钙钛矿结构的改性的PMN-PT基陶瓷。引入适量的BaTiO3组分和 Ce 掺杂是为了避免出现杂项,并获得高电阻。引入适量的 Sr 和 Zr 是从A位和B位复合掺杂考虑,进一步降低铁电自发极化的长程有序和稳定性,获得高的极化活性,实现了在室温条件下具有高介电常数和低损耗材料的目标成分0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]的一步法合成,其中,0<a<0.06,0.05<b<0.18,a+b+c=1;0.6≤x≤0.8,0<y<0.2。
本发明提供的用于电场***的陶瓷电极的陶瓷材料制备方法,整合了包括铁电、介电化合物,BiFeO3,SrTiO3,Pb(Mg1/3Nb2/3)O3,BaTiO3,PbTiO3,PbZrO3,对于自发极化优化,低损耗,高介电常数,低合成温度多方面的优势,并且通过对掺杂元素与配比的优化,以及对制备方法各步骤具体操作的优化,通过一步合成法,获得了具有高介电常数与低介电损耗的介电陶瓷材料,为制备包括生物医学研究和临床应用所需要的阻断传导电路导通电场的电容电极以用于电场***领域方面做出了卓越贡献。且本发明提供的制备方法简单易行,适合大面积推广使用,有良好的应用前景。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1所示为采用本发明提供的用于电场***的陶瓷电极的陶瓷材料制备方法制备的一种陶瓷材料的XRD图谱。
图2所示为采用本发明提供的用于电场***的陶瓷电极的陶瓷材料制备方法制备的一种陶瓷材料的断口显微结构图。
图3所示为采用本发明提供的用于电场***的陶瓷电极的陶瓷材料制备方法制备的一种陶瓷材料的室温电滞回线图。
图4所示为采用本发明提供的用于电场***的陶瓷电极的陶瓷材料制备方法制备的另一种陶瓷材料的XRD图谱。
图5所示为采用本发明提供的用于电场***的陶瓷电极的陶瓷材料制备方法制备的另一种陶瓷材料的断口显微结构图。
图6所示为采用本发明提供的一种用于电场***的陶瓷电极的陶瓷材料制备方法制备的另一种陶瓷材料的室温电滞回线图。
具体实施方式
本发明提供的用于电场***的陶瓷电极的陶瓷材料制备方法包括如下步骤:
步骤S101:
采用固相法一步合成
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3;其中,0<a<0.06,0.05<b<0.18,a+b+c=1;0.6≤x≤0.8,0<y<0.2。
具体为:
首先,以Bi2O3,CeO2,Fe2O3,BaCO3,TiO2,SrCO3,Pb3O4,ZrO2,MgO,Nb2O5 为原料,按照a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3的化学计量比配料;随后,采用湿式球磨法进行混料;之后,对混合材料进行烘干;最后,在750℃~850℃的温度下保温4小时后得到a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3粉体;其中,0<a<0.06,0.05<b<0.18,a+b+c=1;0.6≤x≤0.8,0<y<0.2。
步骤S102:
将步骤S101合成的
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]粉体进行细磨,然后添加粘结剂造粒,压制成型以得到素坯。优选的,所用粘结剂为PVA。该粘结剂的添加量为陶瓷粉体质量的5%~8%,例如:5%,6%或者8%。当陶瓷粉体颗粒粒径较大时,粘结剂的添加量较少,当陶瓷粉体颗粒粒径较小时,粘结剂的添加量较多。
优选的,对粉体进行细磨时采用湿式球磨,其中,陶瓷粉体、磨球、去离子水的质量比如下:陶瓷粉体:磨球:去离子水= 1:(1.8~2):(0.6~0.8)。为了磨出的粉末颗粒度更为适宜,优选的,陶瓷粉体:磨球:去离子水= 1:1.8:0.6。
优选的,所述细磨时间为24~48小时。例如:24小时,36小时或者48小时。
优选的,磨球为氧化锆球更适合对上述合成的陶瓷粉体进行细磨操作。
步骤S103:
将步骤S102得到的素坯进行排塑,排除所述素坯中的有机物质。优选的,所述排塑的温度为550℃~760℃,例如:550℃或700℃。排塑过程需保温时间为2~3小时,优选为2.5小时。
步骤S104:
对步骤S103得到的排除有机物质的素坯进行烧结,获得陶瓷材料。进一步地:将排除有机物质的素坯放入坩埚中密闭烧结,烧结温度为1185℃~1250℃,例如:1185℃,1225℃或者1250℃。升温速率为2℃/min~5℃/min,例如:2℃/min,3℃/min或5℃/min。保温时间为2~3小时,例如:2小时或者3小时。
本发明还提供了一种采用本发明提供的制备方法所制备的陶瓷材料,所述陶瓷材料的化学成分符合化学通式
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3;其中,0<a<0.06,0.05<b<0.18,a+b+c=1;0.6≤x≤0.8,0<y<0.2。
优选的,所述陶瓷材料能够在1185℃~1250℃烧结,例如:1185℃,1225℃或者1250℃。在室温条件下,当频率处于1kHz~1MHz频率范围内时,所述陶瓷材料相对介电常数大于20000,介电损耗小于0.0217。
利用电容电极施加的电场,在生物医学研究中和在临床实验中,可以满足阻断传导电流,但导通电场的使用条件,适用于电场***的陶瓷电极中。
下面以两个具体实施例和五个对比例来进一步阐述本发明提供的技术方案。
实施例l:
陶瓷材料组成为:
0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.93[Pb(Mg1/3Nb2/3)O3
第一,固相法一步合成:
按0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.93[Pb(Mg1/3Nb2/3)O3化学式组成计算所需的Bi2O3,CeO2,Fe2O3,BaCO3,TiO2,SrCO3,Pb3O4,ZrO2,MgO,Nb2O5的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.8:0.8;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在800℃~ 810℃保温4小时,合成
0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.93[Pb(Mg1/3Nb2/3)O3 粉体。
第二,对0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.93[Pb(Mg1/3Nb2/3)O3 粉体进行细磨,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.6;
湿法细磨24小时后出料烘干;
烘干后过筛,优选40目筛对上述混合原料进行过筛操作。
添加质量为陶瓷粉体质量5%~8%的PVA造粒,在200MPa压强下将粉体压制成型。
第三,将压制成型的素坯在650℃保温2小时,排除素坯中的有机物质,排塑速率不超过3℃/min。
第四,将排塑后样品放入氧化铝坩埚中密闭烧结,为防止铅组分的挥发,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以5℃/min的升温速率升至1215℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第五,将烧结好的陶瓷材料磨平、清洗,烘干,利用XRD测试材料相结构。测试结果参照图1,本发明的陶瓷材料的相结构为钙钛矿结构。用扫描电子显微镜观测断口,结果如图2所示。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的本发明的陶瓷样品。
第七,对烧结的本发明的陶瓷进行介电性能及强场下铁电特性测试。介电性能由精密LCR(Agilent 4284A,Agilent公司产品)测试得到,参考表3。
实施例2:
陶瓷材料组成为:0.05[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.16[Sr0.2Pb0.8Ti0.85Zr0.15O3]-0.79[Pb(Mg1/3Nb2/3)O3
按上述陶瓷的组份配方重复实施例l的制备方法,并将得到的素坯在1225℃烧结,保温2小时。
对陶瓷样品进行结构测试,结果如图4所示,陶瓷的晶体结构为钙钛矿结构。陶瓷断口显微结构如图5所示。
之后,对陶瓷片进行介电性能,参考表3。
对比例1:
第一、固相法两步合成:
按0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.93[Pb(Mg1/3Nb2/3)O3化学式组成计算所需的Bi2O3,CeO2,Fe2O3,BaCO3,TiO2,SrCO3,Pb3O4,ZrO2,MgO,Nb2O5的原料。
第一步合成MgNb2O6:按MgNb2O6化学式组成计算所需的MgO,Nb2O5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。混合后的原料在 1150℃保温2小时合成MgNb2O6
第二步合成
0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.93[Pb(Mg1/3Nb2/3)O3
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
以MgNb2O6,Bi2O3,CeO2,Fe2O3,BaCO3,TiO2,SrCO3,Pb3O4,ZrO2 为原料采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量为原料:磨球:去离子水=1:1.8:0.8;混合6~8小时,使各组分混合均匀。之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在835℃保温4小时,合成
0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.93[Pb(Mg1/3Nb2/3)O3 粉体。
第二,对0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.93[Pb(Mg1/3Nb2/3)O3 粉体进行细磨,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.6;
湿法细磨24小时后出料烘干;
烘干后过筛,优选40目筛对上述混合原料进行过筛操作。
添加质量为粉体质量5%~8%的PVA造粒,在200MPa压强下将粉体压制成型。
第三,将压制成型的素坯在650℃保温2小时,排除素坯中的有机物质,排塑速率不超过3℃/min。
第四,将排塑后样品放入氧化铝坩埚中密闭烧结,为防止铅组分的挥发,用具有相同组分的粉料将坯体覆盖,盖上磨口盖,以5℃/min的升温速率升至1215℃,保温2小时,随炉冷却后得到成品。
第五,将烧结好的成品磨平、清洗,烘干,样品测试,利用XRD测算钙钛矿相的百分比 (表1)。钙钛矿的百分比计算公式如下(Mat. Res. Bull.,Vol.17,pp.1245-1250,1982.):
钙钛矿百分比 = [ΣIg(hkl) ]/[ΣIg(hkl) + ΣIfg(hkl) ]*100%
其中 (hkl) 代表晶面指数; g代表钙钛矿结构, fg代表非钙钛矿结构。
ΣIg(hkl) 为XRD图谱中所有钙钛矿衍射峰的强度的加和。
ΣIfg(hkl) 为XRD图谱中所有非钙钛矿衍射峰的强度的加和。
然后利用LCR计测试陶瓷介电性能,参考表3。
对比例2:
第一,固相法一步合成:
按0.01[Bi0.995Ce0.005FeO3]-0.06[PbTiO3]-0.93[Pb(Mg1/3Nb2/3)O3化学式组成计算所需的Bi2O3,CeO2,Fe2O3,TiO2,Pb3O4,MgO,Nb2O5 的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.8:0.8;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在800℃~810℃保温4小时,合成
0.01[Bi0.995Ce0.005FeO3]-0.06[PbTiO3]-0.93[Pb(Mg1/3Nb2/3)O3粉体。
第二,对0.01[Bi0.995Ce0.005FeO3]-0.06[PbTiO3]-0.93[Pb(Mg1/3Nb2/3)O3 粉体进行细磨,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.6;
湿法细磨24小时后出料烘干;
烘干后过筛,优选40目筛对上述混合原料进行过筛操作。
添加质量为粉体质量5%~8%的PVA造粒,在200MPa压强下将粉体压制成型。
第三,将压制成型的素坯在650℃保温2小时,排除素坯中的有机物质,排塑速率不超过3℃/min。
第四,将排塑后样品放入氧化铝坩埚中密闭烧结,为防止铅组分的挥发,用具有相同组分的粉料将坯体覆盖,盖上磨口盖,以5℃/min的升温速率升至1215℃,保温2小时,随炉冷却后得到成品。
第五,将烧结好的成品磨平、清洗、烘干,样品测试,利用XRD结果测算钙钛矿相的百分比,得不到100%的钙钛矿相 (表1)。
对比例3:
第一,固相法一步合成:
按0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[PbTiO3]-0.93[Pb(Mg1/3Nb2/3)O3化学式组成计算所需的原料。
原料:磨球:去离子水=1:1.8:0.8;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在800℃~810℃保温4小时,合成
0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[PbTiO3]-0.93 [Pb(Mg1/3Nb2/3)O3粉体。
第二,对0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[PbTiO3]-0.93[Pb(Mg1/ 3Nb2/3)O3 粉体进行细磨,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.6;
湿法细磨24小时后出料烘干;
烘干后过筛,优选40目筛对上述混合原料进行过筛操作。
添加质量为粉体质量5%~8%的PVA造粒,在200MPa压强下将粉体压制成型。
第三,将压制成型的素坯在650℃保温2小时,排除素坯中的有机物质,排塑速率不超过3℃/min。
第四,将排塑后样品放入氧化铝坩埚中密闭烧结,为防止铅组分的挥发,用具有相同组分的粉料将坯体覆盖,盖上磨口盖,以5℃/min的升温速率升至1215℃,保温2小时,随炉冷却后得到成品。
第五,将烧结好的成品磨平、清洗、烘干,样品测试,利用XRD结果测算钙钛矿相的百分比,得不到100%的钙钛矿相(表1)。
对比例4:
第一,固相法一步合成:
按0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.94[Pb(Mg1/3Nb2/3)O3化学式组成计算所需的原料。
采用湿式球磨法混料,之后,进行烘干,并于烘干后过筛。
混合后的原料在800℃~ 810℃保温4小时,合成0.06[Sr0.4Pb0.6Ti0.98Zr0.02O3]-0.94 [Pb(Mg1/3Nb2/3)O3
将合成后的粉体进行细磨,细节同对比例3。
湿法细磨24小时后出料烘干;
烘干后过筛,优选40目筛对上述混合原料进行过筛操作。
添加质量为粉体质量5%~8%的PVA造粒,在200MPa压强下将粉体压制成型。
第三,将压制成型的素坯在650℃保温2小时,排除素坯中的有机物质,排塑速率不超过3℃/min。
第四,将排塑后样品放入氧化铝坩埚中密闭烧结,为防止铅组分的挥发,用具有相同组分的粉料将坯体覆盖,盖上磨口盖,以5℃/min的升温速率升至1215℃,保温2小时,随炉冷却后得到成品。
第五,将烧结好的成品磨平、清洗,烘干,样品测试,利用XRD结果测算钙钛矿相的百分比,得不到100%的钙钛矿相 (表1)。
对比例5:
第一,固相法一步合成:
按0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Li0.4Pb0.6Ti0.98Zr0.02O2.98]-0.93Pb(Mg1/3Nb2/3)O3化学式组成计算所需的Bi2O3,CeO2,Fe2O3,BaCO3,TiO2,Li2CO3,Pb3O4,ZrO2,MgO,Nb2O5的原料合成配料。
采用湿式球磨法混料,之后,进行烘干,并于烘干后过筛。
混合后的原料在800℃~ 810℃保温4小时,合成
0.01[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-0.06[Li0.4Pb0.6Ti0.98Zr0.02O2.98]-0.93Pb(Mg1/3Nb2/3)O3
将合成后的粉体进行细磨,细节同上。
湿法细磨24小时后出料烘干;
烘干后过筛,优选40目筛对上述混合原料进行过筛操作。
添加质量为粉体质量5%~8%的PVA造粒,在200MPa压强下将粉体压制成型。
第三,将压制成型的素坯在650℃保温2小时,排除素坯中的有机物质,排塑速率不超过3℃/min。
第四,将排塑后样品放入氧化铝坩埚中密闭烧结,为防止铅组分的挥发,用具有相同组分的粉料将坯体覆盖,盖上磨口盖,以5℃/min的升温速率升至1215℃,保温2小时,随炉冷却后得到成品。
第五,将烧结好的成品磨平、清洗、烘干,样品测试,利用XRD结果测算钙钛矿相的百分比,得不到100%的钙钛矿相 (表1)。
效果例1:
对实施例1和实施例2,以及对比例1-对比例5的制备结果进行检测,得到如下结果。
Figure 829632DEST_PATH_IMAGE001
由表1可知,实施例1、实施例2、对比例1中的掺杂元素一致,能够得到钙钛矿结构的单相陶瓷;对比例2中缺少掺杂元素:Ba、Sr、Zr,对比例3中缺少掺杂元素:Sr、Zr,对比例4中缺少掺杂元素:Bi,Ce,Fe和Ba,对比例5中用Li元素代替Sr元素后均无法通过一步固相法得到钙钛矿结构的单相陶瓷。
因此,改变实施例中的掺杂元素后,用一步固相法得到的粉体通过烧结无法得到最后的钙钛矿结构的单相陶瓷。
效果例2:
对实施例1、实施例2和对比例1的制备条件进行了汇总,结果如表2所示。
Figure 340248DEST_PATH_IMAGE002
由表2可知,在其他制备条件不变的情况下,实施例1和实施例2中制备陶瓷粉体的时间短,温度更低,更节约资源。
效果例3:
对实施例1、实施例2和对比例1得到的陶瓷材料进行介电性能及强场下铁电特性测试。介电性能由精密LCR(Agilent 4284A,Agilent公司产品)测试得到,结果如表3所示。
Figure 149679DEST_PATH_IMAGE003
由表3可知,实施例1得到的陶瓷材料在室温下相对介电常数大于22000,介电损耗小于0.0217;实施例2得到的陶瓷材料在室温下相对介电常数大于20000,介电损耗小于0.0123;对比例1得到的陶瓷材料在室温下相对介电常数远远小于20000,介电损耗都高于0.03。
另外,还利用德国aixACCT公司的TF Analyzer 2000电滞回线测量仪测量实施例1和实施例2得到的陶瓷材料的陶瓷铁电特性。
实施例1得到的陶瓷材料的铁电特性参考图3,在10赫兹频率下测量得到的陶瓷电滞回线。在不同测试电压下,回线都很细,强场损耗很小。施加大于115 KV/cm 的交流电场下,样品不被击穿;实施例2得到的陶瓷材料的铁电特性参考图6,在10赫兹频率条件下,在不同测试电压下,得到的回线都很细,强场损耗很小。施加大于125 KV/cm 的交流电场下,样品不被击穿。
另外,与授权公告号为CN106946569B的中国发明专利公开的制备铁电陶瓷材料[Pb(Mg1/3Nb2/3)O3-xPb1-yLi0 .5yNa0 .5yTi1-yNbyO3]的方法相比,本发明提供的方法有以下优点:
1、利用一步合成法取代两步合成法,节约了时间,能耗,合成炉寿命等生产成本。
2、室温介电常数在1兆赫兹由13000以下增加到20000以上,而且损耗由0.03以上,降到0.03以下。
3、强场铁电性能明显提高,电滞回线面积变小,代表强场能耗降低,而且耐压强度由50 kV/cm 提高到100 kV/cm 以上。

Claims (9)

1.一种用于电场***的陶瓷电极的陶瓷材料制备方法,其特征在于,所述制备方法包括如下步骤:
1)采用固相法一步合成
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]:
以Bi2O3,CeO2,Fe2O3,BaCO3,TiO2,SrCO3,Pb3O4,ZrO2,MgO,Nb2O5 为原料,在750℃~850℃的温度下保温4小时,合成
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]粉体;其中,0<a<0.06,0.05<b<0.18,a+b+c=1;0.6≤x≤0.8,0<y<0.2;
2)对所述步骤1)中合成好的
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]粉体进行细磨,细磨后添加粘结剂造粒并压制成型以得到素坯;
3)进行排塑,排除所述素坯中的有机物质;
4)对所述素坯进行烧结,获得陶瓷材料;
所述步骤4)包括:将所述素坯放入坩埚中密闭烧结,烧结温度为1185℃~1250℃,升温速率为2℃/min~5℃/min,保温时间为2~3小时。
2.根据权利要求1所述的制备方法,其特征在于,步骤1)包括:
以Bi2O3,CeO2,Fe2O3,BaCO3,TiO2,SrCO3,Pb3O4,ZrO2,MgO,Nb2O5 为原料,按照
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]的化学计量比配料后用湿式球磨法混料;
对混合后材料进行烘干;
在750℃~850℃的温度下保温4小时后得到
a[0.67Bi0.995Ce0.005FeO3-0.33BaTiO3]-b[Sr1-xPbxTi1-yZryO3]-c[Pb(Mg1/3Nb2/3)O3]粉体;其中,0<a<0.06,0.05<b<0.18,a+b+c=1;0.6≤x≤0.8,0<y<0.2。
3.根据权利要求1~2中任意一项所述的制备方法,其特征在于,在步骤2)中,陶瓷粉体、磨球、去离子水的质量比如下:陶瓷粉体:磨球:去离子水= 1:(1.8~2):(0.6~0.8)。
4.根据权利要求1所述的制备方法,其特征在于,所述细磨时间为24~48小时。
5.根据权利要求3所述的制备方法,其特征在于,所述磨球为氧化锆球。
6.根据权利要求1所述的制备方法,其特征在于,在步骤2)中,所用粘结剂为PVA;所述粘结剂的添加量为陶瓷粉体质量的5%~8%。
7.根据权利要求1所述的制备方法,其特征在于,在步骤3)中,所述排塑的温度为550℃~760℃,保温时间为2~3小时。
8.一种由权利要求1-7任一项所述的制备方法制备的用于电场***的陶瓷电极的陶瓷材料。
9.根据权利要求8所述的陶瓷材料,其特征在于,在室温条件下,当频率处于1kHz~1MHz频率范围内时,所述陶瓷材料的相对介电常数大于20000,介电损耗小于0.0217。
CN202111036962.9A 2021-09-06 2021-09-06 用于电场***的陶瓷电极的陶瓷材料及其制备方法 Active CN113461423B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111036962.9A CN113461423B (zh) 2021-09-06 2021-09-06 用于电场***的陶瓷电极的陶瓷材料及其制备方法
PCT/CN2022/085815 WO2023029483A1 (zh) 2021-09-06 2022-04-08 用于电场***的陶瓷电极的陶瓷材料及其制备方法
EP22862629.7A EP4400485A1 (en) 2021-09-06 2022-04-08 Ceramic material of ceramic electrode for electric field treatment of tumors, and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111036962.9A CN113461423B (zh) 2021-09-06 2021-09-06 用于电场***的陶瓷电极的陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113461423A CN113461423A (zh) 2021-10-01
CN113461423B true CN113461423B (zh) 2021-11-16

Family

ID=77864650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111036962.9A Active CN113461423B (zh) 2021-09-06 2021-09-06 用于电场***的陶瓷电极的陶瓷材料及其制备方法

Country Status (3)

Country Link
EP (1) EP4400485A1 (zh)
CN (1) CN113461423B (zh)
WO (1) WO2023029483A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461423B (zh) * 2021-09-06 2021-11-16 北京国械堂科技发展有限责任公司 用于电场***的陶瓷电极的陶瓷材料及其制备方法
CN115429414B (zh) * 2022-11-09 2023-03-28 河北普尼医疗科技有限公司 一种向人体传递电场能量的器械装置及其控制电路
CN116462504B (zh) * 2023-05-06 2024-07-12 中国科学院上海硅酸盐研究所 一种高储能密度plzt四方相反铁电陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445367A (zh) * 2008-12-25 2009-06-03 张团 交流高压陶瓷电容器介质材料及其制备方法
CN101811865A (zh) * 2009-02-21 2010-08-25 微宏动力***(湖州)有限公司 电介质材料及其制备方法
CN103262274A (zh) * 2010-10-13 2013-08-21 H.C.材料公司 高频压电晶体复合材料、用于制造其的装置和方法
CN106946569A (zh) * 2017-02-24 2017-07-14 北京国械堂科技发展有限责任公司 一种可用于生物医学研究和临床应用的陶瓷电极材料及元件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774077B2 (en) * 2001-01-24 2004-08-10 Paratek Microwave, Inc. Electronically tunable, low-loss ceramic materials including a tunable dielectric phase and multiple metal oxide phases
JPWO2005122260A1 (ja) * 2004-06-11 2008-04-10 富士通株式会社 容量素子、集積回路および電子装置
CN103964845B (zh) * 2014-05-06 2015-11-18 中国科学院声学研究所 一种各向异性压电陶瓷材料及其制备方法
CN107129301A (zh) * 2017-06-22 2017-09-05 重庆工商大学 一种plzt/氧化铝复合陶瓷材料及其制备方法
US11428964B2 (en) * 2019-08-20 2022-08-30 Meta Platforms Technologies, Llc Transparent phase change actuator
CN112457011A (zh) * 2020-12-13 2021-03-09 贵州振华红云电子有限公司 扬声器用四元系压电陶瓷及其制备方法
CN113461423B (zh) * 2021-09-06 2021-11-16 北京国械堂科技发展有限责任公司 用于电场***的陶瓷电极的陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445367A (zh) * 2008-12-25 2009-06-03 张团 交流高压陶瓷电容器介质材料及其制备方法
CN101811865A (zh) * 2009-02-21 2010-08-25 微宏动力***(湖州)有限公司 电介质材料及其制备方法
CN103262274A (zh) * 2010-10-13 2013-08-21 H.C.材料公司 高频压电晶体复合材料、用于制造其的装置和方法
CN106946569A (zh) * 2017-02-24 2017-07-14 北京国械堂科技发展有限责任公司 一种可用于生物医学研究和临床应用的陶瓷电极材料及元件

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC);Soodabeh Hassanpour;《Microchemical Journal》;20210520;106424-1-15 *
Optimisation of matrix composition for texturing of morphotropic phase boundary Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 piezoelectric ceramics using BaTiO3 template;Minsu Kim et.al;《Journal of the European Ceramic Society》;20210821;in press *
压电陶瓷的应用进展与发展趋势;程仁志 等;《河南教育学院学报(自然科学版)》;20090930;17-19 *
锆钛酸铅压电陶瓷在换能器领域的热点应用与材料研究前沿;林铭 等;《中国陶瓷》;20191130;1-5 *

Also Published As

Publication number Publication date
EP4400485A1 (en) 2024-07-17
WO2023029483A1 (zh) 2023-03-09
CN113461423A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN113461423B (zh) 用于电场***的陶瓷电极的陶瓷材料及其制备方法
Zhao et al. Novel Ca doped Sr0. 7Bi0. 2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency
Yang et al. Relaxor ferroelectric (Na0. 5Bi0. 5) 0.4 Sr0. 6TiO3-based ceramics for energy storage application
CN106946569B (zh) 一种可用于生物医学研究和临床应用的陶瓷电极材料及元件
Liu et al. High efficiency and power density relaxor ferroelectric Sr0. 875Pb0. 125TiO3-Bi (Mg0. 5Zr0. 5) O3 ceramics for pulsed power capacitors
CN115196959B (zh) 一种通过氧空位调控具有超低损耗和高绝缘电阻率的巨介电陶瓷及其制备方法
CN109942292A (zh) 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
Wang et al. Effect of microwave processes on the energy-storage properties of barium strontium titanate glass ceramics
CN111018516A (zh) 钛酸钡基高储能密度电子陶瓷及其制备方法
Tudorache et al. Dielectric investigation of MIIMIV (PO4) 2 double orthophosphates (MII= Ca, Sr, Ba, Pb; MIV= Ti, Zr, Hf, Ge, Sn)
Xue et al. Improved discharged property for (BaO, Na2O)–Nb2O5–SiO2 glass-ceramics by La2O3 addition
Lahrar et al. Synthesis and structural and dielectric properties of Ca-doped PbTiO 3 ceramics prepared by a hydrothermal method
CN113636840B (zh) 用于电场***的陶瓷电极的陶瓷厚膜及其制备方法
Narang et al. Frequency and temperature dependence of dielectric and electric properties of BaSmTiO with structural analysis
CN113666741A (zh) 一种钒掺杂铌酸钠压电陶瓷及其制备方法
CN111825451B (zh) 稀土元素Tm掺杂的铌酸银反铁电陶瓷材料及其制备方法
Ye et al. Excellent energy storage properties in (Bi0. 4Na0. 2K0. 2Ba0. 2)(Ti0. 95Zr0. 05) O3-based high-entropy ceramics by introduction of Sr (Mg1/3Nb1/3Ta1/3) O3 medium-entropy endmember
Dulian et al. Dielectric properties of vanadium doped barium titanate synthesized via high-energy ball milling
US20240254052A1 (en) Ceramic material of ceramic electrode for tumor treating fields and preparation method thereof
CN1331803C (zh) (Ba1-x-ySrxYy)TiO3基电介质陶瓷材料及其制备方法
Lian et al. Improved dielectric temperature stability and energy storage properties of BNT-BKT-based lead-free ceramics
Cernea et al. Electrical investigations of holmium-doped BaTiO 3 derived from sol-gel combustion
KR101866717B1 (ko) BiFeO3-BaTiO3-BiGaO3 무연 세라믹스 조성물 및 그의 제조방법
Reda et al. Influence of ZnO on Physical, Mechanical and Dielectric Properties of Ceramic Bodies.
CN108117386A (zh) 一种二氧化锡掺杂st基储能材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220111

Address after: 050000 No. 203, building B-12, No. 501, Taihang South Street, high tech Zone, Shijiazhuang, Hebei

Patentee after: HEBEI PUNI MEDICAL TECHNOLOGY CO.,LTD.

Address before: 102629 room 402-403, building 2, yard 3, Tiangui street, Daxing biomedical industry base, Zhongguancun Science Park, Daxing District, Beijing

Patentee before: BEIJING GUOXIETANG TECHNOLOGY DEVELOPMENT CO.,LTD.

TR01 Transfer of patent right