CN113444975B - 一种可焊前免预热低碳当量600MPa级高强水电钢及其制造方法 - Google Patents

一种可焊前免预热低碳当量600MPa级高强水电钢及其制造方法 Download PDF

Info

Publication number
CN113444975B
CN113444975B CN202110752773.5A CN202110752773A CN113444975B CN 113444975 B CN113444975 B CN 113444975B CN 202110752773 A CN202110752773 A CN 202110752773A CN 113444975 B CN113444975 B CN 113444975B
Authority
CN
China
Prior art keywords
steel
less
equal
strength
carbon equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110752773.5A
Other languages
English (en)
Other versions
CN113444975A (zh
Inventor
隋轶
王昭东
邓想涛
韩严法
周成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202110752773.5A priority Critical patent/CN113444975B/zh
Publication of CN113444975A publication Critical patent/CN113444975A/zh
Application granted granted Critical
Publication of CN113444975B publication Critical patent/CN113444975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明属于微合金钢生产技术领域,公开了一种可焊前免预热低碳当量600MPa级高强水电钢及其制造方法,本方法采用“低C‑(Mn+Ni+Cr+Mo+Cu)‑(Nb+Ti+V)‑B”成分体系为基础,通过调整脱氧合金的加入顺序,在钢中形成高熔点微细氧化物,有效细化钢中奥氏体的晶粒,减少焊接热影响区晶粒粗化,在钢基体和焊接热影响区中诱导生成具有大角度晶粒取向的细密状针状铁素体,避免形成淬硬组织。通过该方法可生产厚度20‑60mm的钢板,该产品碳当量不大于0.42%,屈服强度达到490MPa以上,抗拉强度达到600MPa以上,焊接前不预热,焊接接头具有良好的韧性,焊接接头‑40℃的冲击功不低于80J。

Description

一种可焊前免预热低碳当量600MPa级高强水电钢及其制造 方法
技术领域
本发明属于微合金钢领域,特别涉及到一种焊前免预热低碳当量600MPa级高强水电钢及其制造方法。
背景技术
随着水电设备向着高参数化、轻量化、大型化的方向发展,水电行业对高强高韧机械用钢板的需求越来越大。传统的高强钢板通常采用离线调质(Q-T)工艺生产,即采用固溶强化和析出强化机制来提高强度,因此钢中的碳及合金元素含量比较高,由此引发的问题是给后续的焊接加工造成困难。焊接是这类钢板后续机加工的重要成型方法,随着钢材强度级别提高、板厚增大,在焊接过程中出现冷裂纹的倾向增大,而且焊接热影响区的软化和脆化非常容易导致焊接接头脆性断裂、诱发灾难性事故。为了避免此类问题产生,制造厂家多采用提高预热温度和严格控制焊接工艺的方式,焊前预热是防止冷裂纹、热裂纹和热影响区出现淬硬组织的有效措施,所有预热方式均会增加能源消耗,提高焊接成本,严格控制焊接工艺更是降低了焊接效率,本发明以此为主旨提供了一种焊前免预热、低碳当量、焊接工艺宽泛的600MPa级高强水电钢及其制造方法。
申请号201910119979.7一种焊前免预热大厚度低碳当量500MPa级高强钢及其制造方法,采用了TMCP工艺进行轧制,没有采用离线调质工艺,且没有对焊接工艺进行说明。
申请号201810916605.3一种基于氧化物冶金的战略石油储备罐钢板及其制造方法,屈服强度级别为500MPa,-20℃的冲击功≥80J,但对-40℃≥80J的冲击功指标没有提及。
申请号200910187463.2细小氧化物弥散钢的制备方法,提及了在中间包喷细小的氧化物粉剂制备氧化物弥散钢,但对具体钢种、强度级别及冲击功没有提及,与本发明在钢包精炼炉炉进行氧化物冶金方式不同。
发明内容
本发明公开了一种焊前免预热低碳当量600MPa级高强水电钢及其制造方法,采用“低C-(Mn+Ni+Cr+Mo+Cu)-(Nb+Ti+V)-B”成分体系为基础,通过调整脱氧合金的加入顺序,在钢中形成高熔点微细氧化物,有效细化钢中奥氏体的晶粒,减少焊接热影响区晶粒粗化,在钢基体和焊接热影响区中诱导生成具有大角度晶粒取向的细密状针状铁素体,避免形成淬硬组织,从而实现焊前免预热焊接,且焊接工艺宽泛,在焊接线能量≤100KJ,焊接热影响区-40℃Akv≥80J。
本发明的技术方案:
一种可焊前免预热低碳当量600MPa级高强水电钢,该水电钢的成分按质量百分比包括:C:0.06~0.10,Si:0.05~0.20,Mn:1.40~1.70,P:≤0.013,S:≤0.008,Nb:0.02~0.06,Cr:0.05~0.15,Mo:0.10~0.30,Ni:0.10~0.30,V:0.02~0.04,Cu:0.05~0.2,Ti:0.005~0.02,B:0.0005~0.0013,Mg 0.0010~0.0040,Al:0.003~0.008,其余为Fe及不可避免的杂质,其碳当量Ceq≤0.42%;其中Ceq=Ceq(%)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14≤0.42%。
本发明的化学成分设计,主要考虑如下:
C:C≤0.06%时需添加其它提高淬透性元素提高强度,使成本升高。当钢中碳含量在0.10%以下时,钢的碳当量对冷裂纹敏感性影响不大,本发明将C的含量控制在0.06%~0.10%。
Si:Si是钢中的基本元素,通常是作为脱氧元素以硅铁合金的形式加入钢中,可以提高钢的强度,本发明其含量控制在0.05%~0.20%。
Mn:Mn是钢中的基本元素,通常是作为脱氧剂和脱硫剂,以Mn铁合金的形式加入钢中,Mn能溶于铁素体中,与铁形成固溶体,能提高淬透性,可提高钢的强度,本发明中将Mn含量控制在1.40%~1.70%。
P:P在本钢种中是杂质元素。P对钢板母材的主要危害是冷脆现象,本发明中将P含量限制为P≤0.013%。
S:S在钢种中主要是杂质元素,但钢中的S也会以MnS形态依附在复合氧化物或氮化物周围,促进钢基体和焊接热影响区针状铁素体的形核与长大,本发明其含量控制在≤0.008%;
Ni:Ni可提高基体强度、低温韧性及延伸率,本发明中将Ni的含量控制为0.10%~0.30%。
Cr:Cr是弱碳化物形成元素,但与Ni、Mo、Cu等复合添加可以提高钢板淬透性,提高钢板强度,本发明将Cr含量控制在0.05%~0.15%。
Mo:Mo可有效提高钢材强度,同时能够提高母材高温回火稳定性,本发明将Mo含量控制为0.10%~0.30%。
V:V在钢中的作用主要是析出强化作用。其在回火过程中以V(C,N)形式析出并提高钢板的强度,本发明中将V的含量控制在0.02%~0.04%。
Nb:Nb通过微合金化与控轧工艺相结合使母材晶粒充分细化,并且结合析出强化和位错亚结构强化效应,达到提高母材综合性能的目的,本发明其含量控制在0.02%~0.06%。
B:B使先共析铁素体不易形核,从而在一个较大的冷速范围内能够获得针状铁素体组织和多位向贝氏体组织,使得钢种提高强度的同时提高低温韧性,本发明中将B含量控制在0.0005%~0.0013%。
Ti:适量的Ti含量能够和其他脱氧元素复合获得大量小尺寸的Ti的氧化物及氮化物,本发明中将Ti含量控制在0.005%~0.02%。
Mg:是强脱氧元素,也是氧化物或硫化物生成元素,也是本发明实施氧化物冶金新工艺的重要添加元素,Mg能够促使条状的MnS系夹杂球化,适量的Mg及合适的添加顺序会使夹杂物微细化,本发明中Mg控制在0.0010~0.0040%。
Al:是冶炼过程重要的脱氧元素,Al与N结合还能够提高钢板强度,适量的Al有利于Ti化物的形成,若大于0.003%,将使韧性劣化;本发明中将Al控制在0.0030%~0.008%。
Cu:能使Ar3温度降低而得到细化的铁素体晶粒,同时能提高钢的强度,增加耐蚀和耐候性。本发明中将Cu控制在0.05~0.2。
本发明焊前免预热低碳当量600MPa级高强水电钢制造方法,包括冶炼、连铸、加热、控制轧制、淬火和热处理工序。
(1)采用转炉-钢包精炼炉-真空循环脱气精炼炉/真空脱碳炉连铸工艺,制成上述成分的连铸坯;连铸坯厚度230~300mm,在钢包精炼炉-真空循环脱气精炼炉/真空脱碳炉炉中脱氧合金的加入顺序,Mn和Si联合脱氧,控制氧含量
≤130ppm,先加入Ti合金进行脱氧,然后加入Al合金进行脱氧,再加入Mg合金进行脱氧,控制各元素添加间隔时间≤10min,然后进入真空循环脱气精炼炉/真空脱碳炉工艺,最终完成后钢中气体含量[H]≤2ppm,[O]≤10ppm,[N]≤60ppm。
(2)铸坯加热温度为1140~1160℃;轧制工艺包含完全再结晶轧制阶段和未再结晶轧制阶段:完全再结晶轧制阶段温度控制在1050~1100℃,总压下率为30%~50%;未再结晶轧制阶段温度控制在800~860℃,总压下率为50%。
(3)淬火温度880~910℃,保温时间60~90min,回火温度610~630℃,回火保温时间系数2~3min/mm。
本发明的有益效果:
(1)本发明公开了一种焊前免预热低碳当量600MPa级高强水电钢及其制造方法,采用“低C-(Mn+Ni+Cr+Mo+Cu)-(Nb+Ti+V)-B”成分体系为基础,通过调整脱氧合金的加入顺序,在钢中形成高熔点微细氧化物,有效细化钢中奥氏体的晶粒,减少焊接热影响区晶粒粗化,在钢基体和焊接热影响区中诱导生成具有大角度晶粒取向的细密状针状铁素体,避免形成淬硬组织,从而实现焊前免预热焊接,且焊接工艺宽泛。
(2)可实现免预热焊接,在焊接线能量≤100KJ,焊接热影响区-40℃的冲击功≥80J。
附图说明
图1为实施例裂纹敏感性图片。(a)表面裂纹率为零,(b)断面裂纹率为零。
具体实施方式
以下实施例用于具体说明本发明内容,这些实施例仅为本发明内容的一般描述,并不对本发明内容进行限制。
实施例1和实施例2采用230mm厚连铸坯,实施例3采用300mm连铸坯,实施例1、2、3在钢包精炼炉炉Mn和Si联合脱氧,控制氧含量100ppm,先加入Ti合金进行脱氧,然后加入Al合金进行脱氧,再加入Mg合金进行脱氧,控制各元素添加间隔时间9分钟,然后进入真空循环脱气精炼炉/真空脱碳炉工艺,最终完成后气体含量[H]2ppm,[O]10ppm,[N]50ppm,实施例1、2、3的成分、轧制工艺、热处理工艺如表所示。
实施例的化学成分
元素 C Si Mn P S Ni Cr Mo V
实施例1 0.06 0.12 1.50 0.010 0.003 0.15 0.10 0.20 0.03
实施例2 0.08 0.10 1.45 0.013 0.004 0.18 0.13 0.16 0.04
实施例3 0.09 0.06 1.48 0.012 0.005 0.20 0.06 0.25 0.03
元素 Cu Nb Ti Al B Mg N O H
实施例1 0.10 0.03 0.010 0.003 0.0008 0.0020 0.0043 0.0008 0.0001
实施例2 0.06 0.04 0.013 0.008 0.0010 0.0015 0.0054 0.0009 0.0001
实施例3 0.12 0.02 0.012 0.005 0.0010 0.0038 0.0048 0.0009 0.0001
实施例的轧制工艺
Figure BDA0003145586910000061
实施例的调质工艺
淬火温度℃ 保温时间min 回火温度℃ 回火保温时间系数min/mm
实施例1 880 70 610 2.0
实施例2 890 80 615 2.5
实施例3 900 90 620 2.8
实施例的力学性能
Figure BDA0003145586910000062
实施例的焊接工艺及性能
Figure BDA0003145586910000063
Figure BDA0003145586910000071
实施例的裂纹敏感性试验
环境温度℃ 预热温度℃ 断面裂纹率 表面裂纹率
实施例1 15 不预热 0 0
实施例2 25 不预热 0 0
实施例3 10 不预热 0 0

Claims (2)

1.一种可焊前免预热低碳当量600MPa级高强水电钢的制造方法,其特征在于,该水电钢的成分按质量百分比包括:C:0.06%~0.09%,Si:0 .12%~0 .20%,Mn:1.40%~1.70%,P:≤0.013%,S:≤0 .008%,Nb:0.04%~0.06%,Cr:0.06%~0.15%,Mo:0.10%~0.25%,Ni:0.10%~0.30%,V:0.02%~0.04%,Cu:0.05%~0.2%,Ti:0.01%~0.02%,B:0.0005%~0.0013%,Mg 0.0010%~0.0040%,Al:0.003%~0.008%,其余为Fe及不可避免的杂质,其碳当量Ceq≤0.42%;其中Ceq=Ceq(%)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14≤0.42%;
水电钢中含有镁钛复合夹杂物,镁钛复合夹杂物的粒径为0.01~2.0μm;所述水电钢中含有镁钛复合夹杂物中粒径为2.0um以下的夹杂物占夹杂物总量的85%上;
所述高强水电钢的屈服强度为490MPa以上,抗拉强度为600MPa以上,焊接前不预热,焊接接头具有良好的韧性,焊接接头热影响区-40℃的冲击功不低于80J;
所述的制造方法,步骤如下:
(1)采用转炉-钢包精炼炉-真空循环脱气精炼炉/真空脱碳炉连铸工艺,按照该水电钢的成分制成连铸坯;连铸坯厚度230~300mm;
(2)铸坯加热温度为1140~1160℃;轧制工艺包含完全再结晶轧制阶段和未再结晶轧制阶段:完全再结晶轧制阶段温度控制在1050~1100℃;未再结晶轧制阶段温度控制在800~860℃,总压下率为50%;
(3)淬火温度880~910℃,保温时间65~90min,回火温度610~630℃,回火保温时间2~3min/mm;
所述步骤(1)中,在钢包精炼炉炉中脱氧合金的加入顺序为:Mn和Si联合脱氧,控制氧含量≤130ppm,先加入Ti合金进行脱氧,然后加入Al合金进行脱氧,再加入Mg合金进行脱氧,控制各元素添加间隔时间≤10min,然后进入真空循环脱气精炼炉/真空脱碳炉工艺,最终钢中完成后气体含量[H] ≤2ppm,[O] ≤10ppm,[N] ≤60ppm。
2.根据权利要求1所述的可焊前免预热低碳当量600MPa级高强水电钢的制造方法,其特征在于,步骤(2)完全再结晶轧制阶段总压下率为30%~50%。
CN202110752773.5A 2021-07-02 2021-07-02 一种可焊前免预热低碳当量600MPa级高强水电钢及其制造方法 Active CN113444975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110752773.5A CN113444975B (zh) 2021-07-02 2021-07-02 一种可焊前免预热低碳当量600MPa级高强水电钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110752773.5A CN113444975B (zh) 2021-07-02 2021-07-02 一种可焊前免预热低碳当量600MPa级高强水电钢及其制造方法

Publications (2)

Publication Number Publication Date
CN113444975A CN113444975A (zh) 2021-09-28
CN113444975B true CN113444975B (zh) 2022-05-17

Family

ID=77814976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110752773.5A Active CN113444975B (zh) 2021-07-02 2021-07-02 一种可焊前免预热低碳当量600MPa级高强水电钢及其制造方法

Country Status (1)

Country Link
CN (1) CN113444975B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105714193A (zh) * 2016-02-26 2016-06-29 江苏省沙钢钢铁研究院有限公司 一种氧化物增强型可大热输入焊接钢板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07824B2 (ja) * 1984-05-22 1995-01-11 新日本製鐵株式会社 溶接用高靭性鋼
AU680590B2 (en) * 1995-01-26 1997-07-31 Nippon Steel Corporation Weldable high-tensile steel excellent in low-temperature toughness
CN104451444B (zh) * 2014-11-27 2017-02-22 宝山钢铁股份有限公司 一种低碳当量可大线能量焊接用厚钢板及其制造方法
CN109321851B (zh) * 2017-07-31 2020-08-28 东北大学 一种可承受大线能量焊接的屈服强度690MPa级钢板及制造方法
CN108677096B (zh) * 2018-08-13 2020-04-17 东北大学 一种基于氧化物冶金的战略石油储备罐钢板及其制造方法
CN113046639A (zh) * 2021-03-11 2021-06-29 南京钢铁股份有限公司 一种460MPa级热轧态船体结构用钢及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105714193A (zh) * 2016-02-26 2016-06-29 江苏省沙钢钢铁研究院有限公司 一种氧化物增强型可大热输入焊接钢板

Also Published As

Publication number Publication date
CN113444975A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN109957712B (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN113637917B (zh) 一种690MPa级低温冲击性能优良的超高强度特厚船板钢及其生产方法
CN113862558B (zh) 一种屈服强度700MPa级低成本高韧性高强调质钢及其制造方法
JP4484123B2 (ja) 高強度かつ溶接熱影響部靭性に優れたクラッド鋼板用母材およびその製造方法
WO2020062564A1 (zh) 一种超高钢q960e厚板及制造方法
CN110629114A (zh) 一种低成本高强高韧桥梁钢及其制备方法
CN107937807B (zh) 770MPa级低焊接裂纹敏感性压力容器钢及其制造方法
CN114134407A (zh) 一种易焊接心部低温韧性优良的蜗壳用钢板及其制造方法
CN110983187A (zh) 一种新型高强耐候管线钢x80钢板及其生产方法
CN112813344A (zh) 一种屈服强度620MPa级高强高韧易焊接结构钢板及其制备方法
CN114959418B (zh) 一种船用抗海水腐蚀疲劳高强钢及制造方法
CN109913629B (zh) 一种屈服强度630MPa级易焊接结构钢及其制备方法
CN112877591A (zh) 一种高强韧五金工具及链条用钢及其制造方法
CN112063917B (zh) 一种人造板机器设备用耐磨钢板及其制造方法
CN113025885A (zh) 一种具有良好抗hic性能的低屈强比高强管线钢板及其制造方法
CN111763880A (zh) 一种低屈强比超厚水电高强钢板及其制造方法
CN114058960B (zh) 一种25~60mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法
CN113444975B (zh) 一种可焊前免预热低碳当量600MPa级高强水电钢及其制造方法
CN114480949B (zh) 一种690MPa级低屈强比耐候焊接结构钢、钢板及其制造方法
CN111187988B (zh) 一种低成本高强韧性压力容器钢板及其生产方法
CN113512682A (zh) 一种高强韧性超厚调质水电钢板及制备方法
CN109957731B (zh) 一种海洋工程用高锰中厚钢板及其生产方法
JP2705946B2 (ja) 耐ssc性の優れた高張力鋼板の製造法
CN115786806B (zh) 一种具有良好低温韧性的高强度低碳当量特厚钢板及其制造方法
CN115109990B (zh) 一种高强度热轧耐候钢板及制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant