CN113429561B - 一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法 - Google Patents

一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法 Download PDF

Info

Publication number
CN113429561B
CN113429561B CN202110501859.0A CN202110501859A CN113429561B CN 113429561 B CN113429561 B CN 113429561B CN 202110501859 A CN202110501859 A CN 202110501859A CN 113429561 B CN113429561 B CN 113429561B
Authority
CN
China
Prior art keywords
ether
polyether
ketone
exchange membrane
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110501859.0A
Other languages
English (en)
Other versions
CN113429561A (zh
Inventor
赵春辉
徐瑶洁
马春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN202110501859.0A priority Critical patent/CN113429561B/zh
Publication of CN113429561A publication Critical patent/CN113429561A/zh
Application granted granted Critical
Publication of CN113429561B publication Critical patent/CN113429561B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4018(I) or (II) containing halogens other than as leaving group (X)
    • C08G65/4025(I) or (II) containing fluorine other than as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法,该阴离子交换膜由甲基氢醌和4,4–二氟二苯甲酮聚合制得,制备方法包括:步骤一、制备聚醚醚酮主链;步骤二、将步骤一得到的聚醚醚酮主链上甲基进行溴化反应,溴化反应需要氮气保护及避光处理,得到溴化的聚醚醚酮主链;步骤三、将1,2‑双(4‑吡啶基)乙烷加入步骤二的溴化聚醚醚酮溶液中得到混合溶液;步骤四:将步骤三的混合溶液过滤后倒入聚四氟乙烯模具中,静置后鼓风干燥得到燃料电池用交联型聚醚醚酮类阴离子交换膜。本发明成功制备了同时具有高离子电导率及强耐碱稳定性的交联型聚醚醚酮类阴离子交换膜,且制备方法简单,原料易得,成本低,有望应用于燃料电池领域。

Description

一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备 方法
技术领域
本发明属于高分子化学和阴离子交换膜燃料电池领域,具体涉及一种燃料电池用交联型聚醚醚酮类阴离子交换膜的制备方法。
背景技术
作为燃料电池的重要组成部分,离子交换膜不仅可以传输离子还可以隔绝燃料,膜性能的好坏决定了电池***的效率和寿命。质子交换膜燃料电池是最先研发出的聚合物电解质膜燃料电池,也是目前最接近商业化的燃料电池。但是质子交换膜需使用贵金属作为催化剂,成本十分昂贵;阴离子交换膜燃料电池由于其在使用不含铂族等贵金属的催化剂时具有良好的功率密度和显著的成本优势,近来受到燃料电池界和能源界的广泛关注。
目前研发的阴离子交换膜仍然存在离子电导率较低的问题。提高离子电导率的最直接办法就是增加聚合物膜中传导官能团的数量,但可能会使膜过度溶胀减弱聚合物链间的相互作用力,导致阴离子交换膜的力学性能和耐碱稳定性大幅下降,最后达到极限会导致膜在碱液中破裂。由此可见,调控耐碱稳定性和离子电导率之间的平衡是研发阴离子交换膜材料的关键问题。
(Hydrogen Energy, 2021, 46, 8156-8166)报道了一种侧链为长烷基链的聚醚醚酮类阴离子交换膜;但是其耐碱稳定性不佳,1 M KOH溶液中浸泡30天后离子电导率损失了39.7%。(Journal of Membrane Science, 2019, 587, 117-118)报道了一种具有优异柔韧性和稳定性的双网络阴离子交换膜。交联结构能够增强膜的尺寸稳定性,而不会使离子电导率损失。
发明内容
本发明的目的是为了提供一种燃料电池用交联型聚醚醚酮类阴离子交换膜的制备方法,该阴离子交换膜具有较高的的力学稳定性和耐碱稳定性。同时,该制备方法操作简单、成本较低、前景广阔。
本发明从分子设计出发,选用甲基氢醌、六氟双酚A和4,4´–二氟二苯甲酮合成聚醚醚酮主链,具有良好的力学性能、尺寸稳定性、热稳定性和化学稳定性。并且芳香醚键允许沿着聚合物骨架有更多的旋转自由,活动性强,成膜性能好。但是,醚键容易受到OH-的进攻,导致主链断裂。采用交联结构的阴离子交换膜能够形成微相分离结构,构建高效离子传输通道,使该膜的离子电导率提高。采用1,2-双(4-吡啶基)乙烷作为交联剂具有一定的位阻效应阻碍了功能基团受到氢氧根离子的攻击,制备的膜具有优异的耐碱稳定性。通过改变甲基氢醌和六氟双酚A的摩尔比例,可以调控阳离子基团的含量,探究其对膜性能的影响。
一种燃料电池用交联型聚醚醚酮类阴离子交换膜,其特征在于,该阴离子交换膜由甲基氢醌、六氟双酚A和4,4´–二氟二苯甲酮聚合制得,其结构式如下:
Figure 799978DEST_PATH_IMAGE001
其中x代表甲基氢醌与4,4´–二氟二苯甲酮的摩尔比,分别为0.3、0.5、0.7和1.0。
进一步地,上述燃料电池用交联型聚醚醚酮类阴离子交换膜,其交联剂为1,2-双(4-吡啶基)乙烷,甲基氢醌所占摩尔比越大,功能位点越多,交联剂的数量也会增加。
一种燃料电池用交联型聚醚醚酮类阴离子交换膜的制备方法,其特征在于,包括如下步骤:
步骤一:制备聚醚醚酮主链;
步骤二:将步骤一得到的聚醚醚酮主链上甲基进行溴化反应,溴化反应需要氮气保护及避光处理,得到溴化的聚醚醚酮主链;
步骤三:将1,2-双(4-吡啶基)乙烷加入步骤二的溴化聚醚醚酮溶液中得到混合溶液;
步骤四:将步骤三的混合溶液过滤后倒入聚四氟乙烯模具中,静置2 h后,鼓风干燥后得到燃料电池用交联型聚醚醚酮类阴离子交换膜。
进一步地,所述步骤一具体步骤为:在100 mL三口瓶中加入甲基氢醌、4,4-二氟二苯甲酮、六氟双酚A、成盐剂K2CO3、带水剂甲苯和溶剂DMAc;反应体系进行抽真空充氮气三次循环。升温至140℃,恒温回流4 h,再升温至170℃反应24 h;将反应液倒入去离子水中,有絮状物沉淀出现,将得到的沉淀过滤并用甲醇溶液清洗三遍,80℃真空干燥24 h,得到聚醚醚酮主链。
进一步地,所述步骤二具体步骤为:先将聚醚醚酮主链完全溶解在氯苯溶液中,然后加入NBS溴化剂和AIBN引发剂,所述聚醚醚酮主链、NBS的摩尔比为1:1.1;在75℃下反应24 h,得到溴化聚醚醚酮主链。
进一步地,所述步骤三具体步骤为:将步骤二的溴化聚醚醚酮溶于NMP中,搅拌2h后加入1,2-双(4-吡啶基)乙烷,得到混合溶液。
进一步地,所述步骤四中鼓风干燥为60~80℃的鼓风烘箱中干燥12~24 h。
进一步地,将所述步骤四干燥后的交换膜进行碱化处理,交换膜上的Br-置换成OH-,再用去离子水清洗表面。
本发明的有益效果是:1、本发明成功制备了同时具有高离子电导率及强耐碱稳定性的交联型聚醚醚酮类阴离子交换膜。当x为0.5时,本发明的交联型阴离子交换膜在80℃的离子电导率为70.86 mS·cm-1,将膜浸泡在1 M的KOH水溶液中,定期取样测定膜的离子电导率。在经过1440 h的测试后,PEEK-QA-x膜均保持完整的状态,无破裂现象且仍具有优良的柔韧性。其中,PEEK-QA-0.5膜保留了91.74%的离子电导率。2、本发明制备交联型聚醚醚酮类阴离子交换膜的方法简单,原料易得,成本低,有望应用于燃料电池领域。
附图说明
图1为本发明实施例1~4制备交联型PEEK-QA-x膜的红外光谱图。
图2为本发明实施例1~4制备交联型PEEK-QA-x膜的扫描电镜图。
图3为本发明实施例1~4得到的PEEK-QA-x膜的离子电导率的变温曲线。
图4为本发明实施例1~4得到的PEEK-QA-x膜的离子电导率随时间的变化曲线。
具体实施方式
为了进一步了解本发明,下面结合实施实例对本发明的优选实施方案进行描述,但应当理解,此处所描述的具体实施实例只是为了进一步说明本发明的特征和优点而不是对本发明专利要求的限制。
本发明首先提供一种燃料电池用交联型聚醚醚酮类阴离子交换膜,结构式如下所示:
Figure 867291DEST_PATH_IMAGE002
其中x代表甲基氢醌与4,4´–二氟二苯甲酮的摩尔比,分别为0.3、0.5、0.7和1.0。
本发明还提供一种燃料电池用交联型聚醚醚酮类阴离子交换膜的制备方法,包括如下:
步骤一:制备聚醚醚酮主链;
在100 mL三口瓶中加入甲基氢醌、4,4´–二氟二苯甲酮、六氟双酚A、成盐剂K2CO3、带水剂甲苯和溶剂DMAc;反应体系进行抽真空充氮气三次循环。升温至140℃,恒温回流4h,再升温至170℃反应24 h;将反应液倒入去离子水中,有絮状物沉淀出现,将得到的沉淀过滤并用甲醇溶液清洗三遍,80℃真空干燥24 h,得到聚醚醚酮主链。
反应式如下:
Figure 884925DEST_PATH_IMAGE003
步骤二:制备溴化聚醚醚酮主链;
将步骤一的聚醚醚酮主链完全溶解于氯苯溶液,升温至75℃,在氮气保护下加入NBS溴化剂和AIBN引发剂;并且反应需要避光。反应24 h之后,将体系温度降到室温,倒入乙醇溶液中有白色粉末沉淀出现,抽滤用无水乙醇洗涤多次后,80℃真空干燥24 h。
反应式如下:
Figure 645071DEST_PATH_IMAGE004
步骤三:制备交联型聚醚醚酮类阴离子交换膜;
将步骤二得到的溴化聚醚醚酮溶于NMP溶液中,搅拌2 h后加入1,2-双(4-吡啶基)乙烷,得到混合溶液;将混合溶液倒入聚四氟乙烯模具中,60℃鼓风干燥12 h;将干燥后的膜进行碱化处理,去离子水清洗表面,得到交联型聚醚醚酮类阴离子交换膜。
Figure 849787DEST_PATH_IMAGE005
其中x代表甲基氢醌与4,4´–二氟二苯甲酮的摩尔比,分别为0.3、0.5、0.7和1.0。
下面结合具体实施例对本发明做进一步详细的描述,实施例中涉及到的原料均为商购获得。
实施例1
(1)将2 g 4,4´–二氟二苯甲酮(9.166 mmol),2.157 g六氟双酚A(6.416 mmol),0.3414 g甲基氢醌(2.750 mmol),2.534 g无水碳酸钾(18.322 mmol)于100 mL三口烧瓶中,再向三口烧瓶中加入40 mL DMAc以及10 mL甲苯,并加入磁力搅拌子。在三口烧瓶上安装好气体进出口、分水器、冷凝管,室温下搅拌将体系混合均匀,并对反应体系进行氮气保护。140°C恒温反应4 h;随后继续升温至170°C,随着体系黏度的增加观测反应的进行,24 h后反应结束,待反应液冷却至室温后,将反应液缓慢倒入0℃的去离子水中,水中出现淡紫色团聚物沉淀。过滤除去溶于水中的无机盐,并用甲醇溶液清洗沉淀物三次,将所得到的沉淀物置于80°C的真空干燥箱中干燥24 h,最终得到淡紫色聚合物PEEK-CH3-0.3。
(2)取1 g上述PEEK-CH3-0.3(2.609 mmol)完全溶解于40 mL氯苯溶液后,再向三口烧瓶中加入0.1393 g NBS(0.783 mmol)和0.016 g AIBN(0.102 mmol)作为引发剂,将反应体系升温至75℃,反应过程持续通入N2且避光,24 h后停止反应,待反应液冷却到室温后,将反应液缓慢倒入乙醇溶液中,出现白色粉末沉淀物,抽滤并用乙醇溶液洗涤数次,置于80℃下真空干燥24 h,最终得到白色聚合物PEEK-CH2Br-0.3。
(3)取1 g上述溴化产物PEEK-CH2Br-0.3完全溶解于20 mL NMP溶液中,利用400目的滤布过滤除去不溶物,加入0.179 g 1,2-双(4-吡啶基)乙烷并常温搅拌,再次过滤得到季铵化的聚合物溶液PEEK-QA-0.3。将过滤后的聚合物溶液倒入到干净且干燥的聚四氟乙烯模具中,在此过程中应注意不要在溶液中产生气泡,否则制备的阴离子交换膜会产生缺陷;将模具放入80℃的鼓风烘箱中干燥24 h后,取出模具在水中浸渍剥离得到完整的AEMs。将所得的阴离子膜浸入1 M的NaOH溶液中48 h,膜上的Br-置换成OH-。随后用经脱气处理的去离子水将制备好的聚合物薄膜清洗至中性,得到PEEK-QA-0.3阴离子膜。
实施例2
(1)将2 g 4,4´–二氟二苯甲酮(9.166 mmol),1.5409 g六氟双酚A(4.583 mmol),0.5689 g甲基氢醌(4.583 mmol),2.534 g无水碳酸钾(18.322 mmol)于100 mL三口烧瓶中,再向三口烧瓶中加入40 mL DMAc以及10 mL甲苯,并加入磁力搅拌子。在三口烧瓶上安装好气体进出口、分水器、冷凝管,室温下搅拌将体系混合均匀,并对反应体系进行氮气保护。140°C恒温反应4 h;随后继续升温至170°C,随着体系黏度的增加观测反应的进行,24 h后反应结束,待反应液冷却至室温后,将反应液缓慢倒入0℃的去离子水中,水中出现淡紫色团聚物沉淀。过滤除去溶于水中的无机盐,并用甲醇溶液清洗沉淀物三次,将所得到的沉淀物置于80°C的真空干燥箱中干燥24 h,最终得到淡紫色聚合物PEEK-CH3-0.5。
(2)取1.327 g上述PEEK-CH3-0.5(1.626 mmol)完全溶解于40 mL氯苯溶液后,再向三口烧瓶中加入0.28945 g NBS(1.626 mmol)和0.016 g AIBN(0.0976 mmol)作为引发剂,将反应体系升温至75℃,反应过程持续通入N2且避光,24 h后停止反应,待反应液冷却到室温后,将反应液缓慢倒入乙醇溶液中,出现白色粉末沉淀物,抽滤,置于80℃下真空干燥24 h,最终得到白色聚合物PEEK-CH2Br-0.5。
(3)取1 g上述溴化产物PEEK-CH2Br-0.5完全溶解于20 mL NMP溶液中,利用400目的滤布过滤除去不溶物,加入0.209 g 1,2-双(4-吡啶基)乙烷并常温搅拌,再次过滤得到季铵化的聚合物溶液PEEK-QA-0.5。将过滤后的聚合物溶液倒入到干净且干燥的聚四氟乙烯模具中,在此过程中应注意不要在溶液中产生气泡,否则制备的AEM会产生缺陷;将模具放入80℃的鼓风烘箱中干燥24 h后,取出模具在水中浸渍剥离得到完整的AEMs。将所得的阴离子膜浸入1 M的NaOH溶液中48 h,膜上的Br-置换成OH-。随后用经脱气处理的去离子水将制备好的聚合物薄膜清洗至中性,得到PEEK-QA-0.5阴离子膜。
实施例3
(1)将2 g 4,4´–二氟二苯甲酮(9.166 mmol),0.925 g六氟双酚A(2.750 mmol),0.796 g甲基氢醌(6.416 mmol),2.534 g无水碳酸钾(18.322 mmol)于100 mL三口烧瓶中,再向三口烧瓶中加入40 mL DMAc以及10 mL甲苯,并加入磁力搅拌子。在三口烧瓶上安装好气体进出口、分水器、冷凝管,室温下搅拌将体系混合均匀,并对反应体系进行氮气保护。140°C恒温反应4 h;随后继续升温至170°C,随着体系黏度的增加观测反应的进行,24 h后反应结束,待反应液冷却至室温后,将反应液缓慢倒入0℃的去离子水中,水中出现淡紫色团聚物沉淀。过滤除去溶于水中的无机盐,并用甲醇溶液清洗沉淀物三次,将所得到的沉淀物置于80°C的真空干燥箱中干燥24 h,最终得到淡紫色聚合物PEEK-CH3-0.7。
(2)取1 g上述PEEK-CH3-0.7(2.97 mmol)完全溶解于40 mL氯苯溶液后,再向三口烧瓶中加入0.370 g NBS(2.078 mmol)和0.025 g AIBN作为引发剂,将反应体系升温至75℃,反应过程持续通入N2且避光,24 h后停止反应,待反应液冷却到室温后,将反应液缓慢倒入乙醇溶液中,出现白色粉末沉淀物,抽滤,置于80℃下真空干燥24 h,最终得到白色聚合物PEEK-CH2Br-0.7。
(3)取1 g上述溴化产物PEEK-CH2Br-0.7完全溶解于20 mL NMP溶液中,利用400目的滤布过滤除去不溶物,加入0.152 g 1,2-双(4-吡啶基)乙烷并常温搅拌,再次过滤得到季铵化的聚合物溶液PEEK-QA-0.7。将过滤后的聚合物溶液倒入到干净且干燥的聚四氟乙烯模具中,在此过程中应注意不要在溶液中产生气泡,否则制备的AEM会产生缺陷;将模具放入80℃的鼓风烘箱中干燥24 h后,取出模具在水中浸渍剥离得到完整的AEMs。将所得的阴离子膜浸入1 M的NaOH溶液中48 h,膜上的Br-置换成OH-。随后用经脱气处理的去离子水将制备好的聚合物薄膜清洗至中性,得到PEEK-QA-0.7阴离子膜。
实施例4
(1)将2 g 4,4´–二氟二苯甲酮(9.166 mmol),0.796 g甲基氢醌(9.166 mmol),2.534 g无水碳酸钾(18.322 mmol)于100 mL三口烧瓶中,再向三口烧瓶中加入40 mL DMAc以及10 mL甲苯,并加入磁力搅拌子。在三口烧瓶上安装好气体进出口、分水器、冷凝管,室温下搅拌将体系混合均匀,并对反应体系进行氮气保护。140°C恒温反应4 h;随后继续升温至170°C,随着体系黏度的增加观测反应的进行,24 h后反应结束,待反应液冷却至室温后,将反应液缓慢倒入0℃的去离子水中,水中出现淡紫色团聚物沉淀。过滤除去溶于水中的无机盐,并用甲醇溶液清洗沉淀物三次,将所得到的沉淀物置于80°C的真空干燥箱中干燥24h,最终得到淡紫色聚合物PEEK-CH3-1.0。
(2)取1 g上述PEEK-CH3-1.0(3.311 mmol)完全溶解于40 mL氯苯溶液后,再向三口烧瓶中加入0.589 g NBS(3.311 mmol)和0.033 g AIBN(0.199 mmol)作为引发剂,将反应体系升温至75℃,反应过程持续通入N2且避光,24 h后停止反应,待反应液冷却到室温后,将反应液缓慢倒入乙醇溶液中,出现白色粉末沉淀物,抽滤,置于80℃下真空干燥24 h,最终得到白色聚合物PEEK-CH2Br-1.0。
(3)取1 g上述溴化产物PEEK-CH2Br-1.0完全溶解于20 mL NMP溶液中,利用400目的滤布过滤除去不溶物,加入0.249 g 1,2-双(4-吡啶基)乙烷并常温搅拌,再次过滤得到季铵化的聚合物溶液PEEK-QA-1.0。将过滤后的聚合物溶液倒入到干净且干燥的聚四氟乙烯模具中,在此过程中应注意不要在溶液中产生气泡,否则制备的AEM会产生缺陷;将模具放入80℃的鼓风烘箱中干燥24 h后,取出模具在水中浸渍剥离得到完整的AEMs。将所得的阴离子膜浸入1 M的NaOH溶液中48 h,膜上的Br-置换成OH-。随后用经脱气处理的去离子水将制备好的聚合物薄膜清洗至中性,得到PEEK-QA-1.0阴离子膜。
基于上述方法,本发明提供一种交联型聚醚醚酮类阴离子交换膜,其采用如上任一所述的制备方法制备而成。本发明的交联型阴离子交换膜具有离子传导率佳,耐碱稳定性好等优异性能。
将实例1~4中的PEEK-QA-0.3、PEEK-QA-0.5、PEEK-QA-0.7和PEEK-QA-1.0的各项性能进行对比分析。
(1)膜的红外表征
图1为实例1~4得到的PEEK-QA-x膜的红外光谱图,1222 cm-1处为醚键的伸缩振动的特征峰,1188 cm-1处为C-N的伸缩振动的特征峰,故表明交联反应的成功进行。
(2)膜的形貌
图2为实例1~4得到的PEEK-QA-x膜的表面及断面扫描电镜图,该类膜具有较好的透光性和柔韧性,能够随意弯曲且无破损。由SEM表面图可知,膜的表面致密光滑,没有缺陷。而SEM断面图没有明显的孔洞存在,表明膜的内部结构也均匀致密。
(3)膜的离子电导率
图3为实施例1~4得到的PEEK-QA-x膜的离子电导率的变温曲线,离子电导率随温度的增加而升高。一方面由于温度升高使聚合物链间距变大,自由体积变大,离子传输通道变宽,其降低了通过链的离子扩散阻力,从而使膜的电导率增加。另一方面由于OH-在水中的迁移率随温度的升高而增加。在80℃时PEEK-QA-0.5阴离子交换膜的离子电导率达最高。随着交联程度的增大,膜的离子电导率先上升后降低。
(4)膜的耐碱稳定性
图4为实施例1~4得到的PEEK-QA-x膜的离子电导率随时间的变化曲线,在经过1440 h的测试后,PEEK-QA-x膜的电导率都有轻微下降。但是阴离子膜均保持完整的状态,无破裂现象且仍具有优良的柔韧性。
综上所述,本发明提供的一种燃料电池用交联型聚醚醚酮类阴离子交换膜的制备方法,首先制备膜的聚合物主链聚醚醚酮,然后通过NBS上溴,将1,2-双(4-吡啶基)乙烷交联剂接上去。最后通过鼓风干燥成膜。交联可以改善膜的离子电导率,提高其化学稳定性。但交联度达到一定程度之后会使膜的柔韧性变差,当x=0.5时,在保证符合燃料电池的使用需求的条件下具有最高的离子电导率。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围。

Claims (2)

1.一种燃料电池用交联型聚醚醚酮类阴离子交换膜,其特征在于,该阴离子交换膜由甲基氢醌、六氟双酚A、4,4´–二氟二苯甲酮和1,2-双(4-吡啶基)乙烷聚合制得;该阴离子交换膜的结构式如下:
Figure DEST_PATH_IMAGE001
其中x代表甲基氢醌与4,4´–二氟二苯甲酮的摩尔比,分别为0.3、0.5、0.7和1.0。
2.一种燃料电池用交联型聚醚醚酮类阴离子交换膜的制备方法,包括如下步骤:
步骤一:制备聚醚醚酮主链,具体步骤为:在100 mL三口瓶中加入甲基氢醌、4,4´–二氟二苯甲酮、六氟双酚A、成盐剂K2CO3、带水剂甲苯和溶剂DMAc,反应体系进行抽真空充氮气三次循环;升温至140℃,恒温回流4 h,再升温至170℃反应24 h;将反应液倒入去离子水中,有絮状物沉淀出现,将得到的沉淀过滤并用甲醇溶液清洗三遍,80℃真空干燥24 h,得到聚醚醚酮主链;
步骤二:制备溴化聚醚醚酮主链,具体步骤为:先将步骤一的聚醚醚酮主链完全溶解在氯苯溶液中,然后加入NBS溴化剂和AIBN引发剂,所述聚醚醚酮主链、NBS的摩尔比为1:1.1;在75℃下反应24 h,得到溴化聚醚醚酮主链;
步骤三:制备聚合物溶液,具体步骤为:将步骤二的溴化聚醚醚酮溶于NMP中,搅拌2h后加入1,2-双(4-吡啶基)乙烷,得到混合溶液;
步骤四:将步骤三的混合溶液过滤后倒入聚四氟乙烯模具中,静置2 h后,60~80℃的鼓风烘箱中干燥12~24 h后成膜,再将干燥后的膜样品进行碱化处理,待膜上的Br-完全置换成OH-,再用去离子水清洗表面,得到燃料电池用交联型聚醚醚酮类阴离子交换膜。
CN202110501859.0A 2021-05-08 2021-05-08 一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法 Expired - Fee Related CN113429561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110501859.0A CN113429561B (zh) 2021-05-08 2021-05-08 一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110501859.0A CN113429561B (zh) 2021-05-08 2021-05-08 一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113429561A CN113429561A (zh) 2021-09-24
CN113429561B true CN113429561B (zh) 2022-07-05

Family

ID=77753101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110501859.0A Expired - Fee Related CN113429561B (zh) 2021-05-08 2021-05-08 一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113429561B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773607B (zh) * 2021-10-27 2023-01-17 常州大学 用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784946A (zh) * 2016-12-01 2017-05-31 长春工业大学 燃料电池用阳离子基团功能化的聚芴醚腈交联型阴离子交换膜材料及其制备方法
CN108110290A (zh) * 2017-12-19 2018-06-01 长春工业大学 燃料电池用交联咪唑型聚醚醚酮阴离子交换膜及其制备方法
CN109762190A (zh) * 2018-12-28 2019-05-17 吉林大学 侧链含n-螺环季铵盐基团的聚芳醚类阴离子交换膜材料及其制备方法
CN111342096A (zh) * 2020-03-09 2020-06-26 长春工业大学 燃料电池用吡啶化交联型阴离子交换膜及其制备方法
JP2020143267A (ja) * 2019-03-08 2020-09-10 ダブリュー−スコープ コリア カンパニー,リミテッド 陰イオン交換膜およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009170A1 (de) * 2014-06-12 2015-12-17 Universität Stuttgart Kombinatorisches Materialsystem für Ionenaustauschermembranen und dessen Verwendung in elektrochemischen Prozessen
CN114181415A (zh) * 2020-09-15 2022-03-15 长春工业大学 燃料电池用碱性阴离子交换膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784946A (zh) * 2016-12-01 2017-05-31 长春工业大学 燃料电池用阳离子基团功能化的聚芴醚腈交联型阴离子交换膜材料及其制备方法
CN108110290A (zh) * 2017-12-19 2018-06-01 长春工业大学 燃料电池用交联咪唑型聚醚醚酮阴离子交换膜及其制备方法
CN109762190A (zh) * 2018-12-28 2019-05-17 吉林大学 侧链含n-螺环季铵盐基团的聚芳醚类阴离子交换膜材料及其制备方法
JP2020143267A (ja) * 2019-03-08 2020-09-10 ダブリュー−スコープ コリア カンパニー,リミテッド 陰イオン交換膜およびその製造方法
CN111342096A (zh) * 2020-03-09 2020-06-26 长春工业大学 燃料电池用吡啶化交联型阴离子交换膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Improved conductivity and stability of anion exchange membranes by introducing steric hindrance and crosslinked structure;Xinming Du等;《 International Journal of Hydrogen Energy》;20190710;第44卷(第39期);第22129-22136页 *
燃料电池用交联型碱性膜的制备及表征;齐威等;《辽宁化工》;20200125(第01期);第5-10页 *
钒电池用含吡啶基杂萘联苯聚芳醚酮隔膜的研制;杨晓庆等;《功能材料》;20210831;第52卷(第8期);第08100-08105页 *

Also Published As

Publication number Publication date
CN113429561A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
Wu et al. Novel silica/poly (2, 6-dimethyl-1, 4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells: Effect of heat treatment
Wang et al. Synthesis and properties of new side-chain-type poly (arylene ether sulfone) s containing tri-imidazole cations as anion-exchange membranes
CN105566665B (zh) 一种共混交联型阴离子交换膜的制备方法
Zhang et al. Preparation and properties of novel cross-linked sulfonated poly (arylene ether ketone) for direct methanol fuel cell application
CN102449840B (zh) 高度碱性的离聚物和膜以及包括该离聚物和膜的阴离子/氢氧化物交换燃料电池
Yan et al. Anion exchange membranes by bromination of tetramethylbiphenol-based poly (sulfone) s
CN108164724B (zh) 芳香族二元酚交联聚芳醚型阴离子交换膜及其制备方法
Shang et al. Synthesis and characterization of sulfonated fluorene-containing poly (arylene ether ketone) for high temperature proton exchange membrane
Zhang et al. Novel side-chain-type sulfonated poly (arylene ether ketone) with pendant sulfoalkyl groups for direct methanol fuel cells
CN113429561B (zh) 一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法
CN108659243B (zh) 一种支化型聚醚醚酮阴离子交换膜及其制备方法
CN111533938B (zh) 一种密集磺化聚芳醚酮/SiO2复合质子交换膜及其制备方法
Qian et al. Dense 1, 2, 4, 5-tetramethylimidazolium-functionlized anion exchange membranes based on poly (aryl ether sulfone) s with high alkaline stability for water electrolysis
CN108192119B (zh) 交联型磺化聚芳醚质子交换膜的制备方法
Xiong et al. Chloromethylation and quaternization of poly (aryl ether ketone sulfone) s with clustered electron-rich phenyl groups for anion exchange membranes
CN109054063A (zh) 一种硅烷交联聚芳醚酮阴离子交换膜及其制备方法
Zhao et al. A novel strategy for constructing a highly conductive and swelling-resistant semi-flexible aromatic polymer based anion exchange membranes
Wang et al. Adamantane-based block poly (arylene ether sulfone) s as anion exchange membranes
Xu et al. Facile synthesis of fluorinated poly (arylene ether) s with pendant sulfonic acid groups for proton exchange membranes
Song et al. Imidazolium-functionalized anion exchange polymer containing fluorine group for fuel cell application
CN111342096B (zh) 燃料电池用吡啶化交联型阴离子交换膜及其制备方法
CN103996865A (zh) 高阻醇聚合物电解质膜及其制备方法
CN107353405A (zh) 一种含咪唑鎓盐高支化梳型聚芳醚砜及制备方法与应用
CN111530298B (zh) 一种含酞菁水解离催化基团单片型聚芳醚砜酮双极膜的制备方法
Oh et al. Preparation and characterization of acid-acid blend membranes for direct methanol fuel cell applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220705