CN113413920A - 单金属In2S3/In-MOF半导体材料在光解水产氢中的应用 - Google Patents

单金属In2S3/In-MOF半导体材料在光解水产氢中的应用 Download PDF

Info

Publication number
CN113413920A
CN113413920A CN202110797571.2A CN202110797571A CN113413920A CN 113413920 A CN113413920 A CN 113413920A CN 202110797571 A CN202110797571 A CN 202110797571A CN 113413920 A CN113413920 A CN 113413920A
Authority
CN
China
Prior art keywords
mof
mixture
single metal
hydrogen
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110797571.2A
Other languages
English (en)
Inventor
王立
周俞
孙世新
徐国栋
方东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Teachers University
Original Assignee
Yancheng Teachers University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Teachers University filed Critical Yancheng Teachers University
Priority to CN202110797571.2A priority Critical patent/CN113413920A/zh
Publication of CN113413920A publication Critical patent/CN113413920A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/33Indium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种单金属In2S3/In‑MOF半导体材料在光解水产氢中的应用。采用单金属半导体复合材料In2S3/In‑MOF为光催化剂,可见光照射下制备氢气。本发明与现有技术相比,优点为:(1) 制备过程只使用水热法和油浴法,操作过程简单,制备方便,对设备要求低;(2) 制备的单金属异质结的In2S3/In‑MOF复合光催化剂较现有公开报道的其它催化材料的催化效果有明显提升;(3) 反应采用去离子水、DMF作为反应介质,过程安全平稳,无明火、烟雾产生,无三废排放,环境友好且容易工业放大。

Description

单金属In2S3/In-MOF半导体材料在光解水产氢中的应用
技术领域
本发明涉及一种单金属In2S3/In-MOF半导体光催化材料,在可见光照射下分解水来制备氢气的应用方法,属于新型半导体材料与新能源领域。
背景技术
目前,受到我国工业高速发展以及化石燃料消耗的影响,新型能源供应的问题急需解决,同时,将太阳能转化为电能是研究人员面临的主要科学挑战之一,半导体材料可以用于这种能量转换,在此基础上,制备一种新型无污染的能源代替化石燃料变成首要目标。可见光可以通过催化化学键的形成而转化为化学能。这种方法的一个研究重点是光催化分解水以从水中生成氢气和氧气;光催化还原二氧化碳为碳基化学品也是研发的重点之一。利用半导体光催化剂进行人工光合作用生产氢气等清洁化学燃料,作为满足全球可再生能源供应需求、减少化石燃料燃烧有害影响的一种有希望的途径,引起了广泛的关注经过不断研究探索,科研工作者在氧化铟基础上制备了一种半导体光催化材料(In2O3/g-C3N4)用于可见光下制取氢气这种新型无污染的能源(Cao S-W, Liu X-F, Yuan Y-P, Zhang Z-Y,Liao Y-S, Fang J, et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybridphotocatalysts. Applied Catalysis B: Environmental. 2014; 147: 940-6.)以及半导体光催化材料(In2O3/In2S3)用于光电化学制取氢气(Li H, Chen C, Huang X, Leng Y,Hou M, Xiao X, et al. Fabrication of In2O3/In2S3 core-shell nanocubes forenhanced photoelectrochemical performance. Journal of Power Sources. 2014;247:915-9.)。可见光能光催化分解水制氢具有可再生、环保等优点,被认为是解决日益严重的能源危机的一种很有前途的策略,符合世界碳达峰、碳中和的战略方向。
各种半导体光催化剂,包括金属氧化物、硫族化合物、氮化物和金属有机骨架,在各种光催化反应中得到了广泛的应用。最后,发现半导体异质结的形成是一种常见而有效的方法。由于其良好的匹配能带和良好的光电性能,可以提高电荷转移和光电转换效率。因此,我们需要进一步探索一种更经济高效的光催化剂。含有两种或三种不同材料或相的半导体复合材料可以有效地促进电荷分离和载流子转移,大大提高光催化和光电化学的效率,但是,双或多金属复合材料制备、分离、后处理、回收等存在一定难度。因此,本发明采用操作简便、油浴-水热法制备了In2S3和In-MOF单金属复合半导体材料,构建了In2S3/In-MOF异质结复合光催化剂,应用于自然光催化产氢。
发明内容
本发明的目的在于提出一种In2S3和In-MOF单金属复合半导体材料在制备氢气中的新的应用方法。采用In2S3/In-MOF单金属复合半导体材料为光催化剂,加入到10 wt%三乙醇胺水溶液中,超声波或搅拌分散30 min,转移至产氢装置中,光照条件下制备氢气。
实现本发明目的的技术解决方案是由制备的In-MOF前驱体、硝酸铟水合物In(NO3)3·4H2O和硫代乙酰胺通过水热法等手段完成,其中,单金属硫化铟半导体材料In2S3/In-MOF的构建具体步骤如下:
步骤1)In-MOF的制备:N,N-二甲基甲酰胺中加入对苯二甲酸和硝酸铟水合物In(NO3)3·4H2O,然后将其放入超声波清洗器中超声30 min使其充分混合,搅拌均匀后油浴加热至120 ℃维持1 h。随油浴锅自然冷却至室温并静置分层后,吸除大部分清液,然后在转速3000 rpm下离心,并用DMF洗涤一次和乙醇洗涤二次得到白色沉淀,在60 ℃真空干燥2 h得到目标中间体,其中,对苯二甲酸与硝酸铟水合物In(NO3)3·4H2O的质量比为1:1;
步骤2)In2S3/In-MOF复合光催化剂的制备:将步骤1得到的In-MOF,硝酸铟水合物In(NO3)3·4H2O和硫代乙酰胺溶于去离子水,混合物超声30 min使其充分混合,置入不锈钢水热反应釜中,在180 ℃下加热10 h至12 h后冷却至室温,所得混合溶液在3000 rpm转速下离心并用去离子水、乙醇分别洗涤两次,在60 ℃下真空干燥2 h得到土黄色In2S3/In-MOF。在实验中通过改变硝酸铟水合物InCl3·4H2O和TAA的投料来改变其In、S的摩尔比,从而合成一系列不同比例的In2S3/In-MOF,In : S为1:1、1:1.5、1:2、1:4、1:6分别记为In2S3/In-MOF-1,In2S3/In-MOF-1.5,In2S3/In-MOF-2,In2S3/In-MOF-4,In2S3/In-MOF-6。
本发明的In2S3/In-MOF半导体材料与10 wt%三乙醇胺水溶液质量比为1:2500,产氢装置抽取真空后,光照一定时间,根据气相色谱所得峰面积及时间点计算产氢速率。
实现本发明目的的技术解决方案的关键技术在于:首先油浴加热制备出In-MOF前驱体,后与硝酸铟水合物In(NO3)3·4H2O和硫代乙酰胺通过水热反应釜中得到单金属异质结的In2S3/In-MOF复合光催化剂(见附图1~4),半导体In经光照激发的电子经异质结MOF结构中的碳骨架迅速传导出来,进行光催化反应,有效阻止了电子、空穴的再次复合而失去催化活性,这极大地提高了其光催化制取氢气的性能。
本发明与现有技术相比,优点为:(1) 制备过程只使用水热法和油浴法的普通加热方式,无需马沸炉、管式炉中高温煅烧、惰性气体保护等繁琐工艺,操作过程简单,制备方便,对设备要求低;(2) 制备的单金属异质结的In2S3/In-MOF复合光催化剂较现有公开报道的其它单金属催化材料的催化效果有显著提升,结构稳定性、催化活性较好,可接近、甚至优于双金属、多金属等复合催化剂;(3) 反应采用去离子水、DMF作为反应介质,整个反应、后处理过程安全平稳,溶剂均可回收,环境友好且容易工业放大。
附图说明
本发明有如下11幅附图:
图1是单金属In2S3/In-MOF、In2S3、In-MOF、In2S3标准图谱的XRD衍射图,
图2是In2S3 (a) In-MOF, (b), In2S3/In-MOF (c) 的SEM 图之一,
图3是In2S3 (a) In-MOF, (b), In2S3/In-MOF (c) 的SEM 图之二,
图4是In2S3 (a) In-MOF, (b), In2S3/In-MOF (c) 的SEM 图之三,
图5是In2S3/In-MOF 的TEM 图之一,
图6是In2S3/In-MOF 的TEM 图之二,
图7是In2S3/In-MOF 的TEM 图之三,
图8是In2S3/In-MOF 的TEM 图之四,
图9是In2S3/In-MOF 的XPS全扫描图,
图10是光催化产氢的速率图之一,
图11是光催化产氢的速率图之二。
具体实施方式
下面的实施例对本发明做进一步说明,其目的是能够更好理解本发明的内容。但是实施例不以任何方式限制本发明的范围。本专业领域的技术人员在本发明权利要求范围内做出的改进和调整也应属于本发明的权利和保护范围。
实施例1
In-MOF的制备:在150 ml N,N-二甲基甲酰胺中加入1.2 g对苯二甲酸和1.2 g硝酸铟水合物In(NO3)3·xH2O,然后将其放入超声波清洗器中超声30 min使其充分混合,搅拌均匀后油浴加热至120 ℃维持1 h。随油浴锅自然冷却至室温并静置分层后,倒出上层大部分清液,然后离心(3000 rpm)并用DMF洗涤一次和乙醇洗涤二次得到白色沉淀。最后,在60℃真空干燥2 h获得白色粉末,产量约0.8 g。
实施例2
In2S3/In-MOF的制备:将0.1190 g In-MOF,一定量的硝酸铟水合物InCl3·4H2O和0.02910 g TAA溶于20 ml去离子水。混合物超声30 min使其充分混合,磁力搅拌均匀后,置入50 ml的不锈钢反应釜中,在180 ℃下加热10 h至12 h后冷却至室温。将以上溶液离心(3000 rpm)并用去离子水洗涤和乙醇洗涤各两次。最后在60 ℃真空干燥2 h获得土黄色In2S3/In-MOF约0.12 g。通过同样制备方法,不加入In-MOF来制备纯的In2S3用于前驱体的空白对比。
通过改变硝酸铟水合物InCl3·4H2O和TAA的投料来改变其In、S的原子摩尔比,从而合成一系列不同比例的In2S3/In-MOF,选取优化后的In : S原子摩尔比为1:1、1:1.5、1:2、1:4、1:6的几种比例,分别记为In2S3/In-MOF-1,In2S3/In-MOF-1.5,In2S3/In-MOF-2,In2S3/In-MOF-4,In2S3/In-MOF-6,不同比例的In2S3/In-MOF产品均为土黄色粉末。
取40 mg实施例2制备的In2S3/In-MOF,加入到50 mL10 wt%三乙醇胺水溶液中,超声波分散30 min,再加入50 mL 10 wt%三乙醇胺水溶液,混合均匀,转移至产氢反应发生装置中,保持装置密闭,待抽取真空后,开启光源,每30 min自动取样记录峰面积,持续光照3h,根据气相色谱所得峰面积及时间点计算产氢速率,数据如附图10所示,为了比较复合前后的效果,复合材料In2S3/In-MOF 与In2S3、In-MOF 的比较结果如附图11所示。

Claims (2)

1.单金属In2S3/In-MOF材料在光解水产氢中的应用,其特征在于:采用单金属半导体复合材料In2S3/In-MOF为光催化剂,加入到10wt%三乙醇胺水溶液中,超声波或搅拌分散30min,转移到产氢装置中,模拟自然光照条件下制备氢气,其中,单金属硫化铟半导体材料In2S3/In-MOF的构建具体步骤如下:
步骤1)In-MOF的制备:N,N-二甲基甲酰胺中加入对苯二甲酸和硝酸铟水合物In(NO3)3·4H2O,然后将其放入超声波清洗器中超声30 min使其充分混合,搅拌均匀后油浴加热至120 ℃维持1 h,随油浴锅自然冷却至室温并静置分层后,吸除大部分清液,然后在转速3000 rpm下离心,并用DMF洗涤一次和乙醇洗涤二次得到白色沉淀,在60 ℃真空干燥2 h得到目标中间体,其中,对苯二甲酸与硝酸铟水合物In(NO3)3·4H2O的质量比为1:1;
步骤2) In2S3/In-MOF复合光催化剂的制备:将步骤1得到的In-MOF,硝酸铟水合物In(NO3)3·4H2O和硫代乙酰胺溶于去离子水,混合物超声30 min使其充分混合,置入不锈钢水热反应釜中,在180 ℃下加热10 h至12 h后冷却至室温,所得混合溶液在3000 rpm转速下离心并用去离子水、乙醇分别洗涤两次,在60 ℃下真空干燥2 h得到In2S3/In-MOF,实验中通过改变硝酸铟水合物In(NO3)3·xH2O与硫代乙酰胺的物料比来调控In2S3/In-MOF材料表面In2S3的铟、硫比,从而可以得到一系列不同比例的In2S3/In-MOF。
2.根据权利要求1所述的单金属In2S3/In-MOF材料在光解水产氢中的应用,其特征在于:单金属In2S3/In-MOF与10wt%的三乙醇胺水溶液质量比为1:2500,产氢装置抽取真空后,光照一定时间,根据气相色谱所得峰面积及时间点计算产氢速率。
CN202110797571.2A 2021-07-14 2021-07-14 单金属In2S3/In-MOF半导体材料在光解水产氢中的应用 Pending CN113413920A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110797571.2A CN113413920A (zh) 2021-07-14 2021-07-14 单金属In2S3/In-MOF半导体材料在光解水产氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110797571.2A CN113413920A (zh) 2021-07-14 2021-07-14 单金属In2S3/In-MOF半导体材料在光解水产氢中的应用

Publications (1)

Publication Number Publication Date
CN113413920A true CN113413920A (zh) 2021-09-21

Family

ID=77721021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110797571.2A Pending CN113413920A (zh) 2021-07-14 2021-07-14 单金属In2S3/In-MOF半导体材料在光解水产氢中的应用

Country Status (1)

Country Link
CN (1) CN113413920A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345418A (zh) * 2021-12-27 2022-04-15 东北大学 空心管状MIL-68(In)/In2S3/ZnIn2S4光催化剂的制备方法及应用
CN116393145A (zh) * 2023-02-27 2023-07-07 广东石油化工学院 一种Ga掺杂In2S3催化剂的制备方法及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345418A (zh) * 2021-12-27 2022-04-15 东北大学 空心管状MIL-68(In)/In2S3/ZnIn2S4光催化剂的制备方法及应用
CN116393145A (zh) * 2023-02-27 2023-07-07 广东石油化工学院 一种Ga掺杂In2S3催化剂的制备方法及其应用
CN116393145B (zh) * 2023-02-27 2024-04-26 广东石油化工学院 一种Ga掺杂In2S3催化剂的制备方法及其应用

Similar Documents

Publication Publication Date Title
CN105817253B (zh) 石墨相氮化碳纳米片/二氧化钛纳米管阵列光催化材料的制备方法
CN110152665B (zh) CuO/Cu2O/Cu三元复合材料的制备方法
CN105771948B (zh) 具有高光催化制氢性能的双壳二氧化钛催化剂的制备方法
CN105645459B (zh) 一种表面修饰海胆状ZnO/TiO2复合材料及其制备方法
CN111437846B (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
CN110841661A (zh) 1t-2h二硫化钼@硫化镉复合纳米材料的制备方法及其应用
CN113413920A (zh) 单金属In2S3/In-MOF半导体材料在光解水产氢中的应用
CN107983371B (zh) 一种光催化材料Cu2-xS/Mn0.5Cd0.5S/MoS2及其制备方法与应用
CN106268902B (zh) 一种g-C3N4量子点、Ag量子点敏化BiVO4光催化剂的制备方法
CN111420664A (zh) 一种片状氧化亚铜/氧化亚钴纳米复合材料的制备方法及其在催化氨硼烷水解产氢上的应用
CN103395822B (zh) 一种氧化亚铜微米空心球及其合成方法、应用方法
CN111841530A (zh) 一种促进水光解产氢的催化剂及其制备方法
CN114632549A (zh) 一种α-TiO2@NH2-MIL-125复合光催化材料的制备方法
CN113351226B (zh) 一种负载花瓣状ZnIn2S4的氧化铋复合可见光催化材料的制备方法及其制得的产品
CN105056965A (zh) 生物碳球负载钼酸亚铁Fenton催化剂、制备方法及应用
CN107349951A (zh) 一种CuO/g‑C3N4毛细血管状纳米复合物的制备方法
CN110981213A (zh) 一种交叉式板状三氧化钨-氧化铁复合材料的制备方法
CN115920929A (zh) MoO3-x/Cu0.5Cd0.5S复合光催化剂、制备方法及应用
CN116020496A (zh) 具有分立结构的BiOI/Zn2TiO4异质结纳米纤维光催化剂及其制备方法和应用
CN115090318A (zh) 一种高比表面积分子间异质结氮化碳光催化剂的制备方法及其应用
CN111468133B (zh) 一种铌酸钾/α-氧化铁异质光催化剂的制备方法
CN105567325A (zh) 一种用于太阳能光热化学转化的尖晶石类化合物与碳酸盐的混合物体系及其制备和应用
CN112657514A (zh) 一种填充多孔纳米ZnS@ZnO空心球光催化剂及其制备方法
CN112604705A (zh) 一种NPC-MoS2/Bi4O5Br2复合材料光催化剂的制备方法及其用途
CN112058289A (zh) 一种钛酸锶/碳酸锶异质结光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication