CN113315251B - 一种无线电机***最优效率点跟踪装置及方法 - Google Patents

一种无线电机***最优效率点跟踪装置及方法 Download PDF

Info

Publication number
CN113315251B
CN113315251B CN202110604543.4A CN202110604543A CN113315251B CN 113315251 B CN113315251 B CN 113315251B CN 202110604543 A CN202110604543 A CN 202110604543A CN 113315251 B CN113315251 B CN 113315251B
Authority
CN
China
Prior art keywords
full
motor
permanent magnet
bridge
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110604543.4A
Other languages
English (en)
Other versions
CN113315251A (zh
Inventor
甘醇
杨震
石昊晨
陈宇
倪锴
曲荣海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202110604543.4A priority Critical patent/CN113315251B/zh
Publication of CN113315251A publication Critical patent/CN113315251A/zh
Application granted granted Critical
Publication of CN113315251B publication Critical patent/CN113315251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开一种无线电机***最优效率点跟踪装置及方法,属于无线电能传输技术领域。装置包括蓝牙模块、最优效率点控制模块、移相角控制器。本发明通过设计线圈参数,使得额定工况下的电机满足阻抗匹配条件;计算满足电机运行状况的最小全桥整流电路输出电压,估算满足阻抗匹配条件的全桥整流电路输出电压,根据两个电压的大小关系,相应地控制电机的d轴电流。考虑到估算误差,引入扰动观察法得出全桥整流电路输出参考电压,改变发射侧全桥逆变电路的移相角使得接收侧全桥整流电路输出电压为上述参考电压,从而满足阻抗匹配条件,提高耦合线圈两端的效率,提高电机非额定工况下的***效率。本发明可以实现在保障电机正常运行的同时提高***效率。

Description

一种无线电机***最优效率点跟踪装置及方法
技术领域
本发明属于无线电能传输技术领域,更具体地,涉及一种无线电机***最优效率点跟踪装置及方法。
背景技术
由于化石能源短缺和生态环境恶化的问题日益严重,人类对于清洁能源愈发关注,电能作为清洁高效的能源得到了更加广泛的使用,电动汽车产业近年来蓬勃发展。无线电机作为电动汽车未来的一个发展方向,由于无线电机可以为电动汽车带来更大的设计自由度和更加灵活的控制,它受到了越来越多的关注。
转速和电磁转矩恒定的电机可以视为一个恒功率负载,而且从三相逆变器的输入侧看进去,电机和逆变器整体可以等效为一个阻性负载,因此可以通过参数设计使得额定工况下的等效负载刚好等于耦合线圈的最优负载,满足阻抗匹配条件,使得耦合线圈两端的传输效率最高。目前无线电机还处在研究阶段,一些文献里提到的无线电机在额定工况下存在较高的传输效率。然而,实际运行中电机运行无法始终维持于额定工况,导致电机的等效负载将偏离阻抗匹配条件,进而引起线圈两端的传输功率下降。所以,应该研究一种满足非额定工况下的阻抗匹配、效率优化方法。
发明内容
针对现有技术的缺陷,本发明的目的在于提供一种无线电机***最优效率点跟踪装置及方法,旨在在各种电机工况下,无线电机耦合线圈两端的传输效率最高,从而保证整个***的效率。
为实现上述目的,本发明一方面提供了一种无线电机***最优效率点跟踪装置,无线电机***分为发射侧和接收侧,发射侧包括:直流电源、全桥逆变电路、发射模块,接收侧包括接收模块、全桥整流电路、三相逆变电路、永磁同步电机;所述全桥逆变电路用于将直流电源的直流电压逆变成方波电压;全桥逆变电路的输出端与发射模块的输入端相连,所述发射模块与接收模块为SS型补偿网络,均由线圈串联补偿电容组成,发射模块与接收模块之间电气隔离,通过电磁感应的方式无线传输电能;所述接收模块的输出端与全桥整流电路的输入端相连,所述全桥整流电路用于将接收线圈感应的交变电压整流成直流电压;全桥整流电路的输出端与三相逆变电路的输入端相连,所述三相逆变电路用于实现基于SVPWM调制的永磁同步电机调速控制。
该装置包括第一蓝牙模块、第二蓝牙模块、最优效率点控制模块、移相角控制器,移相角控制器与发射侧的第一蓝牙模块相连,最优效率点控制模块与接收侧的第二蓝牙模块相连;所述最优效率点控制模块用于生成全桥整流电路输出电压参考值;所述第二蓝牙模块通过无线传输的方式将全桥整流电路的输出电压实际值、输出电压参考值发送给第一蓝牙模块,所述移相角控制器用于处理第一蓝牙模块接收到的数据,改变全桥逆变电路移相角。
优选地,最优效率点控制模块用于处理全桥整流电路的输出电压和输出电流、电机三相电流和电机转速,计算满足电机运行状态的全桥整流电路的输出最小电压Udc_min和满足阻抗匹配条件的全桥整流电路的输出电压Udc0,通过比较Udc_min和Udc0的幅值选取相应控制策略,在保证电机运行状态的条件下满足阻抗匹配条件,最终得到全桥整流电路的输出电压参考值Uref
优选地,全桥整流电路的输出最小电压Udc_min和满足阻抗匹配条件的全桥整流电路的输出电压Udc0分别为:
Figure BDA0003093899800000031
其中,Uout为电机达到稳定运行状态时的全桥整流电路的输出电压,Iout为电机达到稳定运行状态时的全桥整流电路的输出电流,Rn为电机处于额定工况下的全桥整流电路的输出阻抗,ω为永磁同步电机同步角速度,Lq为永磁同步电机的q轴电感,Ld为永磁同步电机的d轴电感,iq为永磁同步电机的q轴电流,id为永磁同步电机的d轴电流,Rs为永磁同步电机定子相电阻,ψ为永磁同步电机相绕组中的永磁磁链幅值。
优选地,电机处于额定工况下的全桥整流电路的输出阻抗Rn可以使得线圈满足阻抗匹配的条件,实现最大传输效率,Rn与线圈参数的关系为:
Figure BDA0003093899800000032
其中,ωss为SS型补偿网络的谐振角频率,M为发射、接收线圈之间的互感,R1、R2分别为发射、接收线圈的电阻。
本发明另一方面提供了一种基于上述装置的无线电机***最优效率点跟踪方法,包括以下步骤:
(1)控制全桥整流电路的输出电压为电机额定电压的幅值,预设永磁同步电机的d轴电流参考值id_ref为零;
(2)基于SVPWM调制方法实现对电机的d轴电流和q轴电流的闭环控制,使电机达到稳态,计算阻抗匹配所需的全桥整流电路输出电压Udc0和满足电机运行状态所需的最小全桥整流电路输出电压Udc_min,根据Udc0和Udc_min的关系确定具体的最优效率点跟踪方法,使无线电机处于效率最优状态。
优选地,若Udc0≥Udc_min:改变移相角,将全桥整流电路的输出电压控制为Udc0,再通过扰动观察法得出全桥整流电路的输出参考电压Uref,使得全桥整流电路的输出等效负载追踪电机处于额定工况下的全桥整流电路的输出阻抗Rn
若Udc_min>Udc0:测量电机的三相电流,计算电机的q轴电流,求解电机的电磁转矩,给定定子相电压为
Figure BDA0003093899800000041
ε2为扰动观察法的电压变化步长,求解出永磁同步电机的d轴电流参考值id_ref,回到步骤(2)。
优选地,具体分析本发明提供的效率优化方法,分为两个阶段:
第一阶段:由电机的额定工况设计线圈参数,使得额定电机工况下满足阻抗匹配条件。
(1)三相逆变直流侧接直流电源,控制电机处于额定转速、额定转矩工况下,测量全桥整流电路的输出阻抗(纯阻性),设此负载为最优负载Rn
(2)针对SS型补偿网络,在谐振状态下,可以得出耦合线圈两端的传输效率为
Figure BDA0003093899800000042
其中,R1、R2分别为发射、接收线圈的电阻,M为发射、接收线圈之间的互感,RL为与接收线圈串联的负载,ωss为SS型补偿网络的谐振角频率。将ηcoil关于RL求导可知,当
Figure BDA0003093899800000043
时,ηcoil存在最大值,满足阻抗匹配条件。
(3)考虑到不控全桥整流电路的影响,当
Figure BDA0003093899800000044
时,额定电机工况下满足阻抗匹配条件。以此为约束条件,设计线圈。
第二阶段:电机在非额定工况运行,采用最优效率点跟踪方法,调节全桥整流电路的输出电压,从而改变全桥整流电路的输出阻抗,满足阻抗匹配条件。
(1)当电机处于非额定工况时,首先控制全桥整流电路的输出电压为电机额定电压的幅值,采用基于SVPWM调制的转子磁场定向FOC技术控制电机达到稳定运行状态。此时,控制电机的d轴电流id=0。
(2)测量电机转速ω,测量全桥整流电路的输出电压Uout、输出电流Iout,测量电机的三相电流ia、ib、ic,利用坐标变换求得的d、q轴电流:
Figure BDA0003093899800000051
(3)计算阻抗匹配所需的全桥整流电路输出电压Udc0,和满足电机运行状态所需的最小全桥整流电路输出电压Udc_min
Figure BDA0003093899800000052
其中,Rs为永磁同步电机定子相电阻,ψ为永磁同步电机相绕组中的永磁磁链幅值,ω为永磁同步电机同步角速度。
(4)根据Udc0和Udc_min的关系确定具体的最优效率点跟踪方法:
若Udc0≥Udc_min:改变移相角,先将全桥整流电路的输出电压控制为Udc0,考虑三相逆变电路在电压调节前后的损耗不同,所以Udc0是一个估算值。为了保证控制精度,之后通过扰动观察法得出全桥整流电路的输出参考电压Uref,使得全桥整流电路的输出等效负载追踪最优负载Rn,并且要保证Uref>Udc_min
若Udc_min>Udc0:说明保证电机运行的同时无法满足达到阻抗匹配的条件。为了同时满足这两个条件,需要控制电机的d轴电流id<0。首先,由之前计算得到的q轴电流,求解电机的电磁转矩Te
Te=1.5npψiq
之后,给定定子相电压为
Figure BDA0003093899800000061
ε2为扰动观察法的电压变化步长。联立电磁转矩方程和定子相电压方程:
Figure BDA0003093899800000062
可以求解出具体的id_ref。通过三相逆变电路,控制d轴电流为id_ref。之后,重复上述步骤(2)、(3)、(4)。
通过本发明所构思的以上技术方案,与现有技术相比,能够取得以下有益效果:
(1)目前的一些现有技术中,无线电机在额定工况下具有很高的传输效率,其他工况下的传输效率难以保证。本发明提出的无线电机***最优效率点跟踪方法通过改变全桥整流电路的输出电压,使得线圈满足阻抗匹配条件,最终提高非额定工况下的传输效率。
(2)本发明所提的最优效率点跟踪方法采用结合了估算法和扰动观察法。先估算出一个全桥整流电路输出电压参考值,然后在该参考值的基础上采用扰动观察法,得到最终的电压参考值。这样既保证了调节速度,又保证了调节精度。
(3)本发明所提的最优效率点跟踪方法结合了电机本身的运行特点,在保障电机的运行状态下进行阻抗匹配调节。相较其他无线充电领域所使用阻抗匹配调节方法,本发明所述的硬件***无需额外的阻抗匹配电路,降低了***硬件成本。
附图说明
图1为本发明实施例提供的一种无线电机***最优效率点跟踪方法;
图2为本发明实施例提供的无线电机***的电路图;
图3为本发明实施例提供的最优效率点控制模块的详细内容;
图4为本发明实施例提供的最优效率点跟踪方法的整体流程图;
图5为本发明实施例提供的基于扰动观察法的最优效率点跟踪方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间不构成冲突就可以相互组合。
如图1所示,本发明提供一种无线电机***最优效率点跟踪装置包括:直流电源、全桥逆变电路、发射模块、接收模块、全桥整流电路、三相逆变电路、永磁同步电机、输出电流传感器、输出电压传感器、电机电流传感器、转速传感器、蓝牙模块、最优效率点控制模块、移相角控制器。
如图2所示,全桥逆变电路由4个MOSFET组成,全桥逆变电路的输入端连接直流电源,输出端连接发射模块,全桥逆变电路用于按照一定的移相角将直流电源的直流电压逆变成高频方波电压,其运行特性由移相角控制器进行调节。
具体地,发射模块与接收模块属于SS型补偿网络,均由耦合线圈串联补偿电容组成,通过电磁感应的方式,无线传输能量。
具体地,全桥整流电路由4个二极管和一个电容组成。4个二极管组成不控整流桥,其交流侧连接接收线圈,直流侧连接电容。全桥整流电路用于将接收线圈感应的交变电压整流成直流电压。
具体地,三相逆变电路由6个IGBT组成,实现基于SVPWM的永磁电机调速控制。其工作模式由最优效率点跟踪方法进行控制。
具体地,输出电压传感器、输出电流传感器、电机电流传感器和转速传感器用于检测全桥整流电路的输出电压和输出电流、电机三相电流、电机转速。
如图3所示,所述最优效率点控制模块用于处理上述测量量,计算满足电机运行状态的全桥整流电路的输出最小电压Udc_min和估算满足阻抗匹配条件的全桥整流电路的输出电压Udc0。再针对这两个电压分类讨论,在保证电机运行状态的条件下满足阻抗匹配条件,最终得到全桥整流电路的输出电压参考值Uref
具体地,蓝牙模块将全桥整流电路输出电压实际值、参考值从接收侧发送到发射侧。
具体地,接收到的数据作为移相角控制器的输入信号,移相角控制器输出全桥逆变电路移相角,使全桥整流电路输出电压变为上述电压参考值Uref,进而满足阻抗匹配的条件,达到效率优化的目标。
基于上述***,本发明所提出的效率优化方法分为两个阶段:
第一阶段:由电机的额定工况设计线圈参数。使得额定电机工况下满足阻抗匹配条件。
(1)三相逆变直流侧接直流电源,控制电机处于额定转速、额定转矩工况下,测量全桥整流电路的输出阻抗(纯阻性),设此负载为最优负载Rn
(2)针对SS型补偿网络,在谐振状态下,可以得出耦合线圈两端的传输效率为
Figure BDA0003093899800000081
其中,R1、R2分别为发射、接收线圈的电阻,M为发射、接收线圈之间的互感,RL为与接收线圈串联的负载,ωss为SS型补偿网络的谐振角频率。将ηcoil关于RL求导可知,当
Figure BDA0003093899800000082
时,ηcoil存在最大值,满足阻抗匹配条件。
(3)考虑到不控全桥整流电路的影响,当
Figure BDA0003093899800000091
时,额定电机工况下满足阻抗匹配条件。以此为约束条件,设计线圈。
第二阶段:电机在非额定工况运行,采用最优效率点跟踪方法,调节全桥整流电路的输出电压,从而改变全桥整流电路的输出阻抗,满足阻抗匹配条件。具体流程如图4所示。
(1)当电机处于非额定工况时,首先控制全桥整流电路的输出电压为电机额定电压的幅值,采用基于SVPWM调制的转子磁场定向FOC技术控制电机达到稳定运行状态。此时,控制电机的d轴电流id=0。
(2)测量电机转速ω,测量全桥整流电路的输出电压Uout、输出电流Iout,测量电机的三相电流ia、ib、ic,利用坐标变换求得的d、q轴电流:
Figure BDA0003093899800000092
(3)计算阻抗匹配所需的全桥整流电路输出电压Udc0,和满足电机运行状态所需的最小全桥整流电路输出电压Udc_min
Figure BDA0003093899800000093
其中,Rs为永磁同步电机定子相电阻,ψ为永磁同步电机相绕组中的永磁磁链幅值,ω为永磁同步电机同步角速度。
(4)根据Udc0和Udc_min的关系确定具体的最优效率点跟踪方法:
若Udc0≥Udc_min:改变移相角,先将全桥整流电路的输出电压控制为Udc0,考虑三相逆变电路在电压调节前后的损耗不同,所以Udc0是一个估算值。为了保证控制精度,之后通过扰动观察法得出全桥整流电路的输出参考电压Uref,使得全桥整流电路的输出等效负载追踪最优负载Rn,并且要保证Uref>Udc_min。具体流程如图5所示。
若Udc_min>Udc0:说明保证电机运行的同时无法满足达到阻抗匹配的条件。为了同时满足这两个条件,需要控制电机的d轴电流id<0。首先,由之前计算得到的q轴电流,求解电机的电磁转矩Te
Te=1.5npψiq
之后,给定定子相电压为
Figure BDA0003093899800000101
ε2为扰动观察法的电压变化步长。联立电磁转矩方程和定子相电压方程:
Figure BDA0003093899800000102
对于表面式永磁同步电机(SPM),有Ld=Lq=L,上述方程组可以简化为:
Figure BDA0003093899800000103
可求解出小于0的d轴电流,记为id_ref,之后通过三相逆变电路,控制d轴电流为id_ref。之后,重复上述步骤(2)、(3)、(4)。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种无线电机***最优效率点跟踪装置,所述无线电机***分为发射侧和接收侧,发射侧包括直流电源、全桥逆变电路、发射模块,接收侧包括接收模块、全桥整流电路、三相逆变电路和永磁同步电机,全桥逆变电路用于将直流电源的直流电压逆变成方波电压,全桥逆变电路的输出端与发射模块的输入端相连,发射模块与接收模块为SS型补偿网络,均由线圈串联补偿电容组成,发射模块与接收模块之间电气隔离,通过电磁感应的方式无线传输电能,接收模块的输出端与全桥整流电路的输入端相连,全桥整流电路用于将接收线圈感应的交变电压整流成直流电压,全桥整流电路的输出端与三相逆变电路的输入端相连,三相逆变电路用于实现基于SVPWM调制的永磁同步电机调速控制;其特征在于,
装置包括:第一蓝牙模块、第二蓝牙模块、最优效率点控制模块、移相角控制器;移相角控制器与发射侧的第一蓝牙模块相连;最优效率点控制模块与接收侧的第二蓝牙模块相连;
所述最优效率点控制模块用于生成全桥整流电路输出电压参考值;所述最优效率点控制模块用于处理全桥整流电路的输出电压和输出电流、电机三相电流和电机转速,计算满足电机运行状态的全桥整流电路的输出最小电压Udc_min和满足阻抗匹配条件的全桥整流电路的输出电压Udc0,通过比较Udc_min和Udc0的幅值选取相应控制策略,在保证电机运行状态的条件下满足阻抗匹配条件,最终得到全桥整流电路的输出电压参考值Uref;全桥整流电路的输出最小电压Udc_min和满足阻抗匹配条件的全桥整流电路的输出电压Udc0分别为:
Figure FDA0003731754080000011
其中,Uout为电机达到稳定运行状态时的全桥整流电路的输出电压,Iout为电机达到稳定运行状态时的全桥整流电路的输出电流,Rn为电机处于额定工况下的全桥整流电路的输出阻抗,ω为永磁同步电机同步角速度,Lq为永磁同步电机的q轴电感,Ld为永磁同步电机的d轴电感,iq为永磁同步电机的q轴电流,id为永磁同步电机的d轴电流,Rs为永磁同步电机定子相电阻,ψ为永磁同步电机相绕组中的永磁磁链幅值;电机处于额定工况下的全桥整流电路的输出阻抗Rn为:
Figure FDA0003731754080000021
其中,ωss为SS型补偿网络的谐振角频率,M为发射、接收线圈之间的互感,R1、R2分别为发射、接收线圈的电阻;
所述第二蓝牙模块通过无线传输的方式将全桥整流电路的输出电压实际值、输出电压参考值发送给第一蓝牙模块;
所述移相角控制器用于处理第一蓝牙模块接收到的数据,改变全桥逆变电路移相角,控制全桥整流电路的输出电压。
2.基于权利要求1所述的装置的无线电机***最优效率点跟踪方法,其特征在于,包括以下步骤:
(1)控制全桥整流电路的输出电压为电机额定电压的幅值,预设永磁同步电机的d轴电流参考值id_ref为零;
(2)基于SVPWM调制方法实现对电机的d轴电流和q轴电流的闭环控制,使电机达到稳态,计算阻抗匹配所需的全桥整流电路输出电压Udc0和满足电机运行状态所需的最小全桥整流电路输出电压Udc_min,根据Udc0和Udc_min的关系确定具体的最优效率点跟踪方法,使无线电机处于效率最优状态;
若Udc0≥Udc_min:改变移相角,将全桥整流电路的输出电压控制为Udc0,再通过扰动观察法得出全桥整流电路的输出参考电压Uref,使得全桥整流电路的输出等效负载追踪电机处于额定工况下的全桥整流电路的输出阻抗Rn
若Udc_min>Udc0:测量电机的三相电流,计算电机的q轴电流,求解电机的电磁转矩,给定定子相电压为
Figure FDA0003731754080000031
ε2为扰动观察法的电压变化步长,求解出永磁同步电机的d轴电流参考值id_ref,回到步骤(2)。
3.如权利要求2所述的方法,其特征在于,全桥整流电路的输出最小电压Udc_min和满足阻抗匹配条件的全桥整流电路的输出电压Udc0分别为:
Figure FDA0003731754080000032
其中,Uout为电机达到稳定运行状态时的全桥整流电路的输出电压,Iout为电机达到稳定运行状态时的全桥整流电路的输出电流,Rn为电机处于额定工况下的全桥整流电路的输出阻抗,ω为永磁同步电机同步角速度,Lq为永磁同步电机的q轴电感,Ld为永磁同步电机的d轴电感,iq为永磁同步电机的q轴电流,id为永磁同步电机的d轴电流,Rs为永磁同步电机定子相电阻,ψ为永磁同步电机相绕组中的永磁磁链幅值。
4.如权利要求3所述的方法,其特征在于,电机处于额定工况下的全桥整流电路的输出阻抗Rn为:
Figure FDA0003731754080000033
其中,ωss为SS型补偿网络的谐振角频率,M为发射、接收线圈之间的互感,R1、R2分别为发射、接收线圈的电阻。
CN202110604543.4A 2021-05-31 2021-05-31 一种无线电机***最优效率点跟踪装置及方法 Active CN113315251B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110604543.4A CN113315251B (zh) 2021-05-31 2021-05-31 一种无线电机***最优效率点跟踪装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110604543.4A CN113315251B (zh) 2021-05-31 2021-05-31 一种无线电机***最优效率点跟踪装置及方法

Publications (2)

Publication Number Publication Date
CN113315251A CN113315251A (zh) 2021-08-27
CN113315251B true CN113315251B (zh) 2022-09-20

Family

ID=77376690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110604543.4A Active CN113315251B (zh) 2021-05-31 2021-05-31 一种无线电机***最优效率点跟踪装置及方法

Country Status (1)

Country Link
CN (1) CN113315251B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113829904B (zh) * 2021-10-22 2024-01-26 上海电力大学 一种大功率无线充电***及其充电控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106560980B (zh) * 2015-10-02 2021-04-27 松下知识产权经营株式会社 无线电力传输***
JP6945188B2 (ja) * 2016-11-30 2021-10-06 パナソニックIpマネジメント株式会社 無線給電ユニット、送電モジュール、受電モジュールおよび無線電力伝送システム
CN110571896B (zh) * 2018-06-15 2020-11-10 厦门新页科技有限公司 一种应用于不带bms的场内电动车的无线充电控制***及方法
CN111147002B (zh) * 2019-08-12 2021-09-03 东南大学 一种基于双向无线电能传输的矩阵式电机驱动***

Also Published As

Publication number Publication date
CN113315251A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN107994665B (zh) 使用绕线转子同步电动机的充电***
CN111799897B (zh) 电力变换器电路的控制方法
Chatterjee A novel magnetizing-curve identification and computer storage technique for induction machines suitable for online application
CN106533305B (zh) 永磁同步电机***及其弱磁控制方法和装置
JP2014513910A (ja) 可変動作速度において可変スイッチング周波数で電気モータを制御する方法およびシステム
CN107985083B (zh) 使用绕线转子同步电动机的充电***
CN105391360B (zh) 电热约束下电动汽车的最优效率控制方法、控制器及***
CN102780433A (zh) 一种基于电流控制的无刷直流电机瞬时转矩控制方法
JP2000032799A (ja) 回転電機の制御装置及び制御方法
CN108736776A (zh) 一种内置式永磁同步电机的控制方法
CN109194218B (zh) 直流偏置型混合励磁电机的控制装置、控制方法及***
JP2013143879A (ja) インバータ制御装置
CN113315251B (zh) 一种无线电机***最优效率点跟踪装置及方法
CN104767447A (zh) 一种无刷直流电机五段式矢量控制***
CN102364871B (zh) 一种感应电动机直接转矩控制的方法及控制装置
CN107947669B (zh) 一种混合励磁同步电机非线性逆推跟踪控制方法
CN104315651B (zh) 一种单相变频空调控制方法及控制器
CN108039843B (zh) 一种dfig-dc***的定子频率控制方法
CN110667418B (zh) 一种单相并网零转矩集成充电器及其电流控制方法
CN106849796B (zh) 一种直线感应电机驱动***稳态最小损耗控制方法和***
CN103986381B (zh) 海浪发电***的微网构建最优化功率因数复合控制方法
CN114598236B (zh) 基于可变电容的无线电机***
Li et al. Flux control of a CPPM machine for both a wide speed range and high efficiency
WO2022186200A1 (ja) ドライバ
CN109617467A (zh) 永磁同步电动机低复杂度预测控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant