CN113308694B - 一种钛氮共渗工艺及其加工的百年不烂锅 - Google Patents

一种钛氮共渗工艺及其加工的百年不烂锅 Download PDF

Info

Publication number
CN113308694B
CN113308694B CN202110735565.4A CN202110735565A CN113308694B CN 113308694 B CN113308694 B CN 113308694B CN 202110735565 A CN202110735565 A CN 202110735565A CN 113308694 B CN113308694 B CN 113308694B
Authority
CN
China
Prior art keywords
titanium
nitrogen
iron
pan
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110735565.4A
Other languages
English (en)
Other versions
CN113308694A (zh
Inventor
王文雄
王绍锋
谢泽华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Murenking Appliance Co ltd
Original Assignee
Guangdong Murenking Appliance Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Murenking Appliance Co ltd filed Critical Guangdong Murenking Appliance Co ltd
Priority to CN202110735565.4A priority Critical patent/CN113308694B/zh
Publication of CN113308694A publication Critical patent/CN113308694A/zh
Application granted granted Critical
Publication of CN113308694B publication Critical patent/CN113308694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明公开了一种钛氮共渗工艺及其加工的百年不烂锅。采用钛氮共渗工艺,具体为:将钛涂覆在铁锅内表面,钛层厚度130~550μm,在隔绝空气的条件下通入氮,并且在700~1000℃,8~12Kg压力下进行钛氮共渗处理。使炒锅反复冷热交替钛层不易脱落,钛氮共渗后对铁锅中的杂质重金属形成封闭,减少重金属对人体健康的影响,从而获得一种使用寿命长达百年且安全的炒锅。

Description

一种钛氮共渗工艺及其加工的百年不烂锅
技术领域
本发明涉及炊具领域,尤其是涉及一种钛氮共渗工艺及其加工的百年不烂锅。
背景技术
炒锅按照材质一般分为不锈钢锅和铁锅。不锈钢锅质地轻巧,能轻松翻炒,冷锅冷油都不会粘,特别是对于厨房新手,操作非常方便,不会出现焦糊粘底。但不锈钢锅不能长时间放置调味品,调味品的电解质会使不锈钢中的有毒物质溶解出来,长期铲容易磨损。铁锅共振后释放铁元素,用铁锅炒菜能补充铁元素。高温下,铁锅中的少量铁元素会渗入到食物中,因此在起到了补铁的作用。但铁锅容易生锈、表面不光滑、结构疏松并且容易粘锅。
为了加工出耐用、补充铁元素且安全的炒锅,通常会以铁锅为基层,在铁锅的表面镀钛,将镀件清洗干净,然后用适合的挂具将其固定在真空炉中,并在高真空环境中加热至200~500℃,再用电子枪对固体原料金属钛加热,使其熔化并蒸发、离化,最终沉积在生铁表面,得到镀钛的铁锅。
在实践中,采用上述方法制备的镀钛铁锅,在使用过程中反复加热冷却,由于铁和钛的膨胀、收缩程度不同,炒锅在反复加热冷却的过程中,将钛直接镀在炒锅表面,因为钛层和炒锅之间的结合力不够而容易出现钛涂层脱落的问题,另外,炒制过程中不断翻炒,铲子会来回刮动铁锅,也会导致表面涂层脱落,缩短了铁锅的使用寿命。因此,急需改善。
发明内容
为了制造出一种耐用、补充铁元素且安全的炒锅,本申请提供一种钛氮共渗工艺及其加工的百年不烂锅。
首先,本申请提供一种百年不烂锅的加工工艺,采用钛氮共渗工艺,具体为:将钛涂覆在铁锅内表面,钛层厚度130~550μm,钛层厚度130~550μm,在隔绝空气的条件下通入氮,并且在700~1000℃,8~12Kg压力下进行钛氮共渗处理。
优选的,所述钛氮共渗的压力为10~12Kg。
钛的强度大,纯钛抗拉强度最高可达180kg/m2。有些钢的强度高干钛合金,但钛合金的比强度(抗拉强度和密度之比)却超过优质钢。钛合金有好的耐热强度、低温韧性和断裂韧性,故多用作飞机发动机零件和火箭、导弹结构件。钛合金还可作燃料和氧化剂的储箱以及高压容器。已有用钛合金制造白动步检,迫击炮座板及无后座力炮的发射管。在石油工,业上主要作各种容器、反应器、热交换器、蒸馏塔、管道、泵和阀等。钛可用作申极和发电站的冷凝器以及环境污染控制装置。钛镍形状记忆合金在仪器仪表上已广泛应用。在医疗中,钛可作人造骨头和各种器具。有“空间金属”之称,在造船工业、化学工业、制造机械部件、申讯器材、硬质合金等方面有着日益广泛的应用。基于以上优点,发明人考虑将钛更好地应用在铁锅上,用以提高铁锅的强度和耐用性。
在700~1000℃,8~12Kg压力以及隔绝空气的条件对镀钛铁锅渗氮,氮渗透率强,能够使钛从铁表面渗入深层,与生铁结合稳定,反复冷热交替钛层不易脱落。表现为长时间使用后表面依旧光滑、硬度高。另外,钛氮共渗后对铁锅中的杂质重金属形成封闭,使铁锅中的重金属即使在长时间使用后也难以析出,减少重金属对人体健康的影响,从而获得一种使用寿命长达百年且安全的炒锅。
优选的,所述钛氮共渗处理时采用气体渗氮。
渗氮,是在一定温度下一定介质中使氮原子渗入铁锅表层的化学热处理工艺。常见有液体渗氮、气体渗氮、离子渗氮。气体渗氮是把铁锅放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到铁锅表面,并扩散渗入铁锅表层内,从而改变表层的化学成分和组织,获得优良的表面性能。
渗入铁中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钛元素结合形成氮化钛层,氮化钛具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性。
其中气体渗氮从成本和效果方面,综合能力较强,能够充分与生铁接触,使渗氮处理更充分,以此形成与生铁结合力更强的镀钛层,使得镀钛层不易脱落,从而延长了炒锅的使用寿命。
优选的,所述气体渗氮采用二段渗氮法,即第一阶段在700~800℃的渗氮温度下保温10~15h;第二阶段将温度提高至800~900℃,保温20~25h,完成钛氮共渗处理。
第一阶段保温10~15h,为吸氮阶段。这一阶段采用较低的氨分解率,铁锅表面在清洗后进行渗氮处理,表面和内部形成氮浓度差。第二阶段为扩散阶段,把渗氮温度提高到800~900℃,以加速氮原子的扩散,氨分解率提高,两段式渗氮方法处理时间比等温渗氮短,缩短了渗氮周期。
优选的,在渗氮结束前2~3h进行退氮处理,退氮温度提高到900~1000℃。
提高温度进行退火处理,降低了渗氮层的脆性,使氮化钛层抗疲劳强度得到进一步提升,具体表现为长时间使用炒锅后炒锅不易变形。
优选的,所述第一阶段的氨气换气率为1~2次/h,所述第二阶段的氨气换气率为3~4次/h。
钛氮共渗时,为了维持规定的氨分解率,就得连续不断地通入适量的氨气,以保证渗氮速度正常进行,如果停止通氨气,氨分解率会越来越高。炉气的氮势太低了,已经形成的铁表面高浓度氮化钛层的状态不能继续维持,渗氮速度大幅度下降,但因渗层具有浓度差,仍有向内部扩散的能力。与此同时,氮化钛层的氮浓度也会慢慢降低,致密的化合物层将发生碎化,氨分解率和新鲜氨气流刷过零件表面的速度决定着渗氮的能力。通过合理地控制通氮的速度,在本申请的钛氮共渗条件下,能够对形成的氮化钛层起到维持作用,最终形成较为牢固的镀钛层,从而获得寿命更长的炒锅。
优选的,进行钛氮共渗前先对铁锅表面进行粗糙处理,使其粗糙度Ra达到30~60μm。
提高铁锅表面的粗糙度,增大了钛与铁锅的接触面积,使钛与铁锅表面更充分接触,使热喷涂处理时的钛更牢固地涂覆在铁锅表面,也使得钛氮共渗时钛更容易渗入生铁内部,从而使得钛与铁结合性更好,进一步延长了使用寿命。
其次,本申请提供一种百年不烂锅,由上述加工方法加工而成,包括以铁为材料的基层,朝远离所述基层的方向依次为氮化铁层、氮化铁-氮化钛复合层和氮化钛层,所述氮化铁层的厚度为40~100μm,所述氮化铁-氮化钛复合层的厚度为40~60μm,所述氮化钛层的厚度为100~500μm。
综上所述,在700~1000℃,8~12Kg压力以及隔绝空气的条件对镀钛铁锅渗氮,使反复冷热交替钛层不易脱落,钛氮共渗后对铁锅中的杂质重金属形成封闭,减少重金属对人体健康的影响,从而获得一种使用寿命长达百年且安全的炒锅。
具体实施方式
实施例1
步骤1),镀钛:将生铁锅的内表面通过电弧热喷涂的方式在生铁锅的内表面上镀钛,钛层的厚度为130μm。
步骤2),钛氮共渗处理:将镀钛后的生铁锅放置在夹具上,生铁锅的锅口朝下,放入氮化炉中,并盖上盖子。通入氨气使压力至8Kg,氨气换气率3次/h,当炉内温度达到700℃时,保温60h;之后对炉内进行冷却,当温度降至400℃时,关闭氨气通道,打开氮气通道,将剩余的氨气排出。
步骤3),表面处理:取出处理后的铁锅,对其内表面打磨、抛光,去处内表面的沾污,再次通过热喷涂处理将氮化钛层表面的孔隙进行填充,最终获得氮化铁层的厚度为40μm,氮化铁-氮化钛复合层的厚度为40μm,氮化钛层的厚度为100μm的百年不烂锅。
实施例2
本实施例公开一种百年不烂锅,具体由以下步骤加工而成:
步骤1),镀钛:将生铁锅的内表面通过电弧热喷涂的方式在生铁锅的内表面上镀钛,钛层的厚度为550μm。
步骤2),钛氮共渗处理:将镀钛后的生铁锅放置在夹具上,生铁锅的锅口朝下,放入氮化炉中,并盖上盖子。通入氨气使压力至12Kg,氨气换气率3次/h,当炉内温度达到1000℃时,保温50h;之后对炉内进行冷却,当温度降至400℃时,关闭氨气通道,打开氮气通道,将剩余的氨气排出。
步骤3),表面处理:取出处理后的铁锅,对其内表面打磨、抛光,去处内表面的沾污,再次通过热喷涂处理将氮化钛层表面的孔隙进行填充,最终获得氮化铁层的厚度为100μm,氮化铁-氮化钛复合层的厚度为55μm,氮化钛层的厚度为500μm的百年不烂锅。
实施例3
与实施例2相比,区别仅在于,步骤2)中的压力为10Kg,获得氮化铁层的厚度为95μm,氮化铁-氮化钛复合层的厚度为60μm,氮化钛层的厚度为500μm的百年不烂锅
实施例4
本实施例公开一种百年不烂锅,与实施例3的区别在于:
步骤2),钛氮共渗处理:将镀钛后的生铁锅放置在夹具上,生铁锅的锅口朝下,放入氮化炉中,并盖上盖子。第一阶段:通入氨气使压力至8Kg,氨气换气率1次/h,当炉内温度达到700℃时,保温10h;第二阶段:继续升温至800℃,保温20h,调整氨气换气率3次/h;继续升温至900℃,氨气换气率0.5次/h,保温2h,之后对炉内进行冷却,当温度降至400℃时,关闭氨气通道,打开氮气通道,将剩余的氨气排出。
实施例5
本实施例公开一种百年不烂锅,与实施例3的区别在于:
步骤2),钛氮共渗处理:将镀钛后的生铁锅放置在夹具上,生铁锅的锅口朝下,放入氮化炉中,并盖上盖子。第一阶段:通入氨气使压力至12Kg,氨气换气率2次/h,当炉内温度达到800℃时,保温15h;第二阶段:继续升温至900℃,保温25h,调整氨气换气率4次/h;继续升温至1000℃,氨气换气率0.5次/h,保温3h,之后对炉内进行冷却,当温度降至400℃时,关闭氨气通道,打开氮气通道,将剩余的氨气排出。
实施例6
本实施例公开一种百年不烂锅,与实施例5的区别在于:
在步骤1)之前对生铁锅内表面进行喷砂处理,粗糙度Ra达到30μm。
实施例7
本实施例公开一种百年不烂锅,与实施例5的区别在于:
在步骤1)之前对生铁锅内表面进行喷砂处理,粗糙度Ra达到60μm。
对比例
对比例1
与实施例1的区别在于:步骤2)中炉内的温度为600℃。
对比例2
与实施例1的区别在于:步骤2)中炉内的温度为1100℃。
对比例3
与实施例1的区别在于:步骤2)中炉内的压力为7Kg。
对比例4
与实施例1的区别在于:步骤2)中炉内的压力为13Kg。
对比例5
以铁锅为基层,将铁锅内表面清洗干净,然后用适合的挂具将其固定在真空炉中,在高真空环境中加热至400℃,再用电子枪对固体原料金属钛加热,使其熔化并蒸发、离化,最终沉积在生铁表面,得到镀钛的铁锅。
百年不烂锅性能检测
测试1硬度测试
根据GB/T 230.1-2009《金属材料洛氏硬度实验》,采用型号为HR-150D的洛氏硬度计对对实施例1-7和对比例1-5的炒锅在使用前和模拟翻炒360万次后进行硬度测试,分别记为H1和H2。
具体检测结果见表1所示。
测试2重金属测试
对实施例1-7和对比例1-5的炒锅重金属离子进行检测:将锅具用于煮水,此处水为去离子水,烹煮时间为24小时,后测定水中的重金属含量,作为析出量A1。
对实施例1-7和对比例1-5的炒锅模拟翻炒360万次后的重金属离子进行检测:将锅具用于煮水,此处水为去离子水,烹煮时间为24小时,后测定水中的重金属含量,作为析出量A2。
具体检测结果见表3所示。
检测方法说明:
采用广东达元绿洲食品安全科技股份有限公司的重金属快速检测仪对Pb、Cd两种重金属元素进行测定;采用二苯碳酰二肼分光光度法对Cr元素进行测定;采用火焰原子吸收分光光度法对Ni元素进行测定。
国家标准GB/T 4806.9-2016《食品安全国家标准食品接触用金属材料及制品》,其中,对Pb、Cr、Cd、Ni等重金属有害物质的溶出进行了限量,具体可参见表2。
表1硬度测试
项目 H1/HRC H2/HRC
实施例1 62 60
实施例2 65 63
实施例3 64 63
实施例4 66 64
实施例5 65 63
实施例6 67 66
实施例7 68 67
对比例1 58 50
对比例2 57 50
对比例3 59 52
对比例4 57 51
对比例5 55 47
表2不锈钢食具容器中Pb、Cr、Cd、Ni等重金属有害物质溶出量的标准要求。
表3重金属检测数据
根据实施例1-2与对比例1-5的数据对比可得,实施例1-2的硬度大于对比例1-5,实施例1-2模拟前的重金属含量以及模拟360万次的重金属含量均小于对比例1-5且在标准范围内,360万次相当于每天铲100下,连续使用100年,在实验长达42天,完成360万次的模拟翻炒实验。说明本申请在700~1000℃,8~12Kg压力以及隔绝空气的条件对镀钛(130μm~500μm的镀钛层)铁锅渗氮,能够使炒锅反复冷热交替钛层不易脱落,钛氮共渗后对铁锅中的杂质重金属形成封闭,减少重金属对人体健康的影响,从而获得一种使用寿命长达百年且安全的炒锅。

Claims (2)

1.一种百年不烂锅的加工工艺,其特征在于:采用钛氮共渗工艺,具体为:将钛涂覆在铁锅内表面,钛层厚度130~550μm,在隔绝空气的条件下通入氮,8~12Kg压力下进行二段渗氮法,即第一阶段在700~800℃的渗氮温度下保温10~15h;第二阶段将温度提高至800~900℃,保温20~25h,完成钛氮共渗处理;在渗氮结束前2~3h进行退氮处理,退氮温度提高到900~1000℃;所述第一阶段的氨气换气率为1~2次/h,所述第二阶段的氨气换气率为3~4次/h;进行钛氮共渗前先对铁锅表面进行粗糙处理,使其粗糙度Ra达到30~60μm。
2.一种百年不烂锅的加工工艺,其特征在于:由权利要求1所述的加工工艺加工而成,包括以铁为材料的基层,朝远离所述基层的方向依次为氮化铁层、氮化铁-氮化钛复合层和氮化钛层,所述氮化铁层的厚度为 40~100μm,所述氮化铁-氮化钛复合层的厚度为 40~60μm,所述氮化钛层的厚度为 100~500μ m。
CN202110735565.4A 2021-06-30 2021-06-30 一种钛氮共渗工艺及其加工的百年不烂锅 Active CN113308694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110735565.4A CN113308694B (zh) 2021-06-30 2021-06-30 一种钛氮共渗工艺及其加工的百年不烂锅

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110735565.4A CN113308694B (zh) 2021-06-30 2021-06-30 一种钛氮共渗工艺及其加工的百年不烂锅

Publications (2)

Publication Number Publication Date
CN113308694A CN113308694A (zh) 2021-08-27
CN113308694B true CN113308694B (zh) 2023-09-01

Family

ID=77380993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110735565.4A Active CN113308694B (zh) 2021-06-30 2021-06-30 一种钛氮共渗工艺及其加工的百年不烂锅

Country Status (1)

Country Link
CN (1) CN113308694B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117179569B (zh) * 2023-08-09 2024-07-09 九阳股份有限公司 锅具及锅具制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194694A (en) * 1962-06-18 1965-07-13 Satoh Shinzoh Process for surface-treating iron and steel materials to bestow high acid and wear resistivity
US4857116A (en) * 1981-11-27 1989-08-15 S R I International Process for applying coatings of zirconium and/or titanium and a less noble metal to metal substrates and for converting the zirconium and/or titanium to a nitride, carbide, boride, or silicide
US5292555A (en) * 1990-07-04 1994-03-08 Degussa Aktiengesellschaft Process for applying nitride layers to titanium
CN103233219A (zh) * 2013-03-22 2013-08-07 常州大学 一种制备金属TiN陶瓷涂层的工艺方法
CN103349491A (zh) * 2013-07-11 2013-10-16 郑新科 钛或钛合金复合锅及制备工艺
CN103409722A (zh) * 2013-07-15 2013-11-27 北京航空航天大学 一种在航空发动机压气机叶片表面制备抗侵蚀涂层的方法
CN104172936A (zh) * 2013-05-21 2014-12-03 深圳力合金表面技术有限公司 用于食品热加工的防腐耐磨铁质容器及其表面处理方法
CN205493579U (zh) * 2016-03-07 2016-08-24 武汉苏泊尔炊具有限公司 防锈铁锅
CN108504975A (zh) * 2018-07-06 2018-09-07 武汉安在厨具有限公司 不锈铁质锅耐酸性材料及其制备方法、不锈铁质容器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194694A (en) * 1962-06-18 1965-07-13 Satoh Shinzoh Process for surface-treating iron and steel materials to bestow high acid and wear resistivity
GB1033194A (en) * 1962-06-18 1966-06-15 Shinzoh Satoh Process for surface-treating iron and steel materials to bestow high acid and wear resistivity
US4857116A (en) * 1981-11-27 1989-08-15 S R I International Process for applying coatings of zirconium and/or titanium and a less noble metal to metal substrates and for converting the zirconium and/or titanium to a nitride, carbide, boride, or silicide
US5292555A (en) * 1990-07-04 1994-03-08 Degussa Aktiengesellschaft Process for applying nitride layers to titanium
CN103233219A (zh) * 2013-03-22 2013-08-07 常州大学 一种制备金属TiN陶瓷涂层的工艺方法
CN104172936A (zh) * 2013-05-21 2014-12-03 深圳力合金表面技术有限公司 用于食品热加工的防腐耐磨铁质容器及其表面处理方法
CN103349491A (zh) * 2013-07-11 2013-10-16 郑新科 钛或钛合金复合锅及制备工艺
CN103409722A (zh) * 2013-07-15 2013-11-27 北京航空航天大学 一种在航空发动机压气机叶片表面制备抗侵蚀涂层的方法
CN205493579U (zh) * 2016-03-07 2016-08-24 武汉苏泊尔炊具有限公司 防锈铁锅
CN108504975A (zh) * 2018-07-06 2018-09-07 武汉安在厨具有限公司 不锈铁质锅耐酸性材料及其制备方法、不锈铁质容器
CN109124371A (zh) * 2018-07-06 2019-01-04 武汉安在厨具有限公司 不锈炊具材料、不锈炊具及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
等离子体渗氮与氮化钛膜沉积一体化工艺对膜基结合力的影响;肖志刚等;《强激光与粒子束》;20020131(第01期);第77-80页 *

Also Published As

Publication number Publication date
CN113308694A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
Dong S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys
CN102400099B (zh) 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
CN113308694B (zh) 一种钛氮共渗工艺及其加工的百年不烂锅
MX2011003923A (es) Aleacion de niquel-cromo.
Li et al. Corrosion of SS310 and Alloy 740 in high temperature supercritical CO2 with impurities H2O and O2
CN102719783B (zh) 一种合金表面原位氧化反应形成保护膜的制备方法
CN107245691B (zh) 金属材料复合热处理表面强化方法
KR100247657B1 (ko) 니켈합금의 질화방법
CN102828145A (zh) 一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法
Djellal et al. Thermal stability and phase decomposition of nitrided layers on 316L and 310 austenitic stainless steels
Kumari et al. Dry sliding wear behaviour of plasma nitrocarburised AISI 304 stainless steel using response surface methodology
CN110358981A (zh) 一种超级双相不锈钢无缝钢管及其制备方法
KR20130101840A (ko) 팩 시멘테이션으로 금속 소결 부품을 코팅하는 방법 및 팩 시멘테이션 코팅한 금속 소결 부품
Kim et al. Oxidation Kinetics of Nuclear Grade FeCrAl Alloys in Steam in the Temperature Range 600–1500◦ C
CN106591634A (zh) 一种耐蚀蝶阀阀瓣的加工工艺
CN103305787B (zh) 一种在不锈钢基体上制备阻氢及其同位素渗透层的方法
Mariani et al. Characterization and wear performance of borided AISI 304 and UNS S31254 stainless steels
CN109722621B (zh) 枪管防腐耐磨处理工艺
Yuan et al. The pack-cementation process of iron-aluminide coating on China low activation martensitic and 316L austenitic stainless steel
US20180065184A1 (en) Method for manufacturing sintered and carburized porous stainless steel parts
Hong et al. Properties of high temperature oxidation of heat-resistant steel with aluminium and copper
JPH0978204A (ja) 金属材料
Abe Crack growth of carburized materials due to thermal striping in sodium
Ennis et al. Mechanisms of oxidation and the influence of steam oxidation on service life of steam power plant components
JPH0971855A (ja) 浸炭硬化食器類およびその製法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant