CN113307332A - 一种用于电Fenton技术的活性碳纤维改性阴极的制备方法及应用 - Google Patents

一种用于电Fenton技术的活性碳纤维改性阴极的制备方法及应用 Download PDF

Info

Publication number
CN113307332A
CN113307332A CN202110502796.0A CN202110502796A CN113307332A CN 113307332 A CN113307332 A CN 113307332A CN 202110502796 A CN202110502796 A CN 202110502796A CN 113307332 A CN113307332 A CN 113307332A
Authority
CN
China
Prior art keywords
activated carbon
carbon fiber
electrode
ultrasonic treatment
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110502796.0A
Other languages
English (en)
Other versions
CN113307332B (zh
Inventor
秦侠
李明然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110502796.0A priority Critical patent/CN113307332B/zh
Publication of CN113307332A publication Critical patent/CN113307332A/zh
Application granted granted Critical
Publication of CN113307332B publication Critical patent/CN113307332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/13Ammonium halides or halides of elements of Groups 1 or 11 of the Periodic System
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic System
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0063Inorganic compounding ingredients, e.g. metals, carbon fibres, Na2CO3, metal layers; Post-treatment with inorganic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/047Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with fluoropolymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Abstract

一种用于电Fenton技术的活性碳纤维改性阴极的制备方法及应用属于环境功能材料领域。本发明在ACF电极的基础上,将60~200mg预处理后碳纳米管和20~60mg氮化碳以及22.5~67.5mg/L聚四氟乙烯(PTFE)溶于15mL水溶液中,利用超声浸渍法将CNTs和g‑C3N4吸附到ACF电极表面并在350℃条件下焙烧1小时,制成CNTs/g‑C3N4‑ACF复合电极。负载到活性炭纤维阴极表面的CNTs和g‑C3N4进一步提高了电极的氧气两电子还原活性,增多了电极的活性点位和比表面积,提高了电极的电流效率,大幅度增加了ACF阴极在电Fenton体系内的双氧水产量,进一步提升电Fenton体系对污染物的降解效果。

Description

一种用于电Fenton技术的活性碳纤维改性阴极的制备方法及 应用
技术领域
本发明提供一种负载碳纳米管和石墨相氮化碳的活性碳纤维改性阴极的制备及应用方法,属于环境功能材料技术领域,化学与环境工程的交叉领域。
背景技术
垃圾渗滤液是一种成分复杂的高浓度有机废水,在2010年,环保部发布的《生活垃圾填埋场渗滤液工程技术规范(试行)》中,把膜技术纳滤(NF)工艺和反渗透(RO)工艺作为推荐的垃圾填埋场的垃圾渗滤液深度处理工艺,该工艺被大量采用。膜滤浓缩液的各类特征共性较多,指标也存在在相对集中的范围。膜浓缩液可占垃圾渗滤液总体积的8%~20%,部分甚至可达40%。膜截留浓缩液COD高,COD约在200~10000mg/L之间,无机盐类含量高且成分复杂,废水TDS多在20000~60000mg/L之间,氨氮浓度在50~1000mg/L之间,氯离子浓度在4000-50000mg/L之间,色度在500~1500倍之间。如何有效处理膜截流浓缩液,是维持膜处理***长期稳定运行的关键因素,也是垃圾渗滤液处理的一个难点问题。
电Fenton法是利用电子作催化剂同位产生Fe2+和H2O2,并进一步生成高氧化活性的羟基自由基(·OH),来实现污染物的降解,其实质是电解过程生成Fenton反应所需试剂,Fenton反应所生成的羟基自由基(·OH),其氧化还原电位高达2.80V,具有十分高的氧化活性。电Fenton技术适用于处理高浓度难生化降解的有机废水,在垃圾渗滤液膜滤浓缩液处理领域成为研究热点。
活性碳纤维(ACF)是一种新型的环保材料,因为其大的比表面积(1000m2·g-1~3000m2·g-1)和占据总体孔容90%的微孔,具有很好的吸附特性。并且具有高析氢电位,导电性强,有利于氧气的两电子还原,无毒,廉价便于获取,化学特性稳定和抗腐蚀性的特点,在电Fenton中作为阴极材料被广泛使用。
通过浸渍煅烧的方法引入活性碳纤维的碳纳米管(CNTs)和氮化碳(g-C3N4),因其特殊的物理化学特性,提升了活性炭纤维的导电性,增大了比表面积,改变了孔径结构,并且提升了氧气的两电子还原活性,加快了Fe2+的还原,提升了过氧化氢的生成速率。同时,浸渍过程中加入适量的聚四氟乙烯(PTFE),可以更好地将碳纳米管和氮化碳结合到活性炭纤维上,并且能够保持氧气在活性炭纤维电极表面传递过程中的气液固三相平衡,提高传递效率。通过该种方法的活性炭纤维阴极地改性,有效提高了电Fenton***对污染物地降解效率。
发明内容
本发明为了提高过氧化氢的生成效率,提供了一种电Fenton体系内,对活性炭纤维阴极的一种改性方法。该方法制备步骤简单,成本低廉,在较为泛的pH环境下均能发挥良好的电催化效果,易于实现工业化。
电极的改性过程,包括以下步骤:
(1)活性碳纤维碳布预处理:将活性碳纤维碳布浸入10wt%NaOH溶液中并超声处理0.5h,用超纯水洗涤3次后浸入5wt%HCl溶液中2h,再用超纯水冲洗至中性,然后在80℃的烘箱中干燥24h待用。
(2)碳纳米管预处理:将多壁碳纳米管(MWCNTs)置于体积比1:1的硝酸水溶液中,超声处理4小时,用超纯水水洗至中性,冻干48小时备用。
(3)氮化碳制备:将适量的尿素置于培养皿中在50℃烘箱中干燥24h,将干燥好的尿素置于带盖坩埚中,在通氮气的气氛炉中焙烧,以4℃/min升温,达到550℃后保持4小时,冷却至室温取出。
(4)将预处理好的多壁碳纳米管和氮化碳溶于蒸馏水中,超声10分钟后加入聚四氟乙烯,继续超声10分钟,混合液中多壁碳纳米管浓度为4g/L~20g/L、氮化碳浓度为1g/L~6g/L和聚四氟乙烯的浓度为22.5~67.5mg/L。
(5)将预处理好的活性炭纤维碳布平铺在培养皿中,将超声好的混合液倾倒在碳布上,再次超声20分钟,超声结束后静置3分钟,将碳布翻面,共超声80分钟。
(6)超声结束后将培养皿内剩余的糊状物均匀的涂在碳布表面,置于80℃烘箱内干燥2小时。
(7)将干燥好的碳布置于马弗炉中,以5℃/min的速率升温,达到350℃后保持1小时,冷却至室温取出,即制得改性活性炭纤维阴极。
所述方法制备的活性炭纤维电极,在电Fenton体系内作为阴极处理富里酸配水和混凝预处理后的垃圾渗滤液膜滤浓缩液,其条件为:阳极采用钌铱钛电极,阴极采用本专利改性的活性炭纤维电极,pH值为3~9,电流为0.1~0.5A,体系内投加FeCl2,令体系内Fe2+浓度为0.1~0.6mM,反应时间为150min,极板间距为1cm,采用空气泵连接电解槽底部曝气条曝气,曝气速率为0.3L/min,富里酸配水投加电解质为0.05M硫酸钠。
本发明中,碳纳米管增加了活性炭纤维的导电性,改善了电极表面的孔径结构和增大了电极的比表面积,并且和氮化碳均增强了氧气的两电子还原催化特性,增加了电极的活性点位,有利于O2和Fe3+吸附还原,适量的PTFE有利于固定碳纳米管和氮化碳,并且有利于氧气在电极表面的传输,以上因素均使电极过氧化氢生成速率大幅提高,进一步与体系内Fe2+发生Fenton反应,产生高氧化性的·OH,无选择地将污染物氧化成小分子有机物或直接矿化成CO2和H2O。整个***易于操作,电流密度低,电流效率高,在广泛pH范围内,对多种难降解污染物均有良好地降解效果,是一种有工业应用前途的活性炭纤维阴极。
附图说明
图1为碳纳米管、氮化碳改性活性炭纤维电极的表观图
图2为碳纳米管、氮化碳改性活性炭纤维电极的X射线衍射图
图3为实例1中碳纳米管、氮化碳改性活性炭纤维电极过氧化氢产量随时间变化的关系图
图4为实例2中碳纳米管、氮化碳改性活性炭纤维电极处理富里酸模拟废水浓度随时间变化的关系图
图5为实例3中碳纳米管、氮化碳改性活性炭纤维电极重复使用6次稳定性的效果图
具体实施方式
为了更好的解释本发明的精神及内容,进一步的阐述本发明的用途,下面给出本发明的几个非限定性实例,即本发明的内容包括但不限于下述几个实例。
实例1
将活性碳纤维碳布裁成5cm×5cm规格,首先将其浸入10wt%NaOH溶液中并超声处理0.5h,用超纯水洗涤3次,然后浸入5wt%HCl溶液中2h,用超纯水冲洗至中性,然后在80℃的烘箱中干燥24h待用。
将碳纳米管置于体积比1:1的硝酸水溶液中,超声处理4小时,用超纯水稀释后,采用微孔膜过滤,用超纯水水洗至中性,放入真空箱中80℃干燥备用。将适量的尿素置于培养皿中在50℃烘箱中干燥24h,将干燥好的20g尿素置于带盖坩埚中,在通氮气的气氛炉中焙烧,升温速率4℃/min,达到550℃后保持4小时,冷却至室温取出,及得到氮化碳。将180mg碳纳米管和30mg氮化碳溶于15ml蒸馏水中,超声10分钟后加入0.7mg聚四氟乙烯,继续超声10分钟。将预处理好的活性炭纤维碳布平铺在培养皿中,将超声好的混合液倾倒在碳布上,再次超声20分钟,超声结束后静置3分钟,将碳布翻面,此步骤一共翻面3次,共超声80分钟。超声结束后将培养皿内剩余的糊状物均匀的涂在碳布表面,置于80℃烘箱内干燥2小时。将干燥好的碳布置于马弗炉中,以5℃/min的速率升温,达到350℃后保持1小时,冷却至室温取出,即制得改性活性炭纤维阴极。
将上述制备成的电极应用于下述电解体系中,在100ml电解池中加入80ml0.05M硫酸钠电解液,加入阳极采用钌铱钛电极,阴极采用制备电极,阴阳极接入0.2A恒流输出模式电源,极板间距1cm,空气通气速率为0.2L/min,用硫酸和氢氧化钠调节pH为3,测量体系内过氧化氢生成量。将80ml电解液替换成80ml混凝预处理后的垃圾渗沥液纳滤浓缩液,COD为1226mg/L,体系内投加0.4mM硫酸亚铁,电流大小、极板间距、通气速率、体系内的酸碱度保持与测量过氧化氢时的条件不变,反应150min内,过氧化氢最高生成量为130mg/L,150min后,预处理后的纳滤浓缩液COD下降到160mg/L。
实例2
将活性碳纤维碳布裁成5cm×5cm规格,首先将其浸入10wt%NaOH溶液中并超声处理0.5h用超纯水洗涤3次,然后浸入5wt%HCl溶液中2h,用超纯水冲洗至中性,然后在80℃的烘箱中干燥24h待用。
将碳纳米管置于体积比1:1的硝酸水溶液中,超声处理4小时,用超纯水稀释后,采用微孔膜过滤,用超纯水水洗至中性,放入真空箱中80℃干燥备用。将适量的尿素置于培养皿中在50℃烘箱中干燥24h,将干燥好的20g尿素置于带盖坩埚中,在通氮气的气氛炉中焙烧,升温速率4℃/min,达到550℃后保持4小时,冷却至室温取出,及得到氮化碳。将247mg碳纳米管和45mg氮化碳溶于15ml蒸馏水中,超声10分钟后加入0.9mg聚四氟乙烯,继续超声10分钟。将预处理好的活性炭纤维碳布平铺在培养皿中,将超声好的混合液倾倒在碳布上,再次超声20分钟,超声结束后静置3分钟,将碳布翻面,此步骤一共翻面3次,共超声80分钟。超声结束后将培养皿内剩余的糊状物均匀的涂在碳布表面,置于80℃烘箱内干燥2小时。将干燥好的碳布置于马弗炉中,以5℃/min的速率升温,达到350℃后保持1小时,冷却至室温取出,即制得改性活性炭纤维阴极。
将上述制备成的电极应用于下述电解体系中,在100ml电解池中加入80ml0.05M硫酸钠电解液,加入阳极采用钌铱钛电极,阴极采用制备电极,阴阳极接入0.1A恒流输出模式电源,极板间距1cm,空气通气速率为0.2L/min,用硫酸和氢氧化钠调节pH为7,测量体系内过氧化氢生成量。将80ml电解液替换成80ml的300mg/L富里酸配水,投加0.05M硫酸钠,体系内投加0.6mM硫酸亚铁,电流大小、极板间距、通气速率、体系内的酸碱度保持与测量过氧化氢时的条件不变,反应150min内,过氧化氢最高生成量为114mg/L,150min后富里酸去除率为88%。
实例3
将活性碳纤维碳布裁成5cm×5cm规格,首先将其浸入10wt%NaOH溶液中并超声处理0.5h,用超纯水洗涤3次,然后浸入5wt%HCl溶液中2h,再用超纯水冲洗至中性,然后在80℃的烘箱中干燥24h待用。
将碳纳米管置于体积比1:1的硝酸水溶液中,超声处理4小时,用超纯水稀释后,采用微孔膜过滤,用超纯水水洗至中性,放入真空箱中80℃干燥备用。将适量的尿素置于培养皿中在50℃烘箱中干燥24h,将干燥好的20g尿素置于带盖坩埚中,在通氮气的气氛炉中焙烧,升温速率4℃/min,达到550℃后保持4小时,冷却至室温取出,及得到氮化碳。将120mg碳纳米管和40mg氮化碳溶于15ml蒸馏水中,超声10分钟后加入0.3mg聚四氟乙烯,继续超声10分钟。将预处理好的活性炭纤维碳布平铺在培养皿中,将超声好的混合液倾倒在碳布上,再次超声20分钟,超声结束后静置3分钟,将碳布翻面,此步骤一共翻面3次,共超声80分钟。超声结束后将培养皿内剩余的糊状物均匀的涂在碳布表面,置于80℃烘箱内干燥2小时。将干燥好的碳布置于马弗炉中,以5℃/min的速率升温,达到350℃后保持1小时,冷却至室温取出,即制得改性活性炭纤维阴极。
将上述制备成的电极应用于下述电解体系中,在100ml电解池中加入80ml0.05mol/L硫酸钠电解液,加入阳极采用钌铱钛电极,阴极采用制备电极,阴阳极接入0.4A恒流输出模式电源,极板间距1cm,空气通气速率为0.3L/min,用硫酸和氢氧化钠调节pH为5,测量体系内过氧化氢生成量。将80ml电解液替换成80ml的300mg/L富里酸配水,投加0.05M硫酸钠,体系内投加0.2mM硫酸亚铁,电流大小、极板间距、通气速率、体系内的酸碱度保持与测量过氧化氢时的条件不变,反应150min内,过氧化氢最高生成量为108mg/L,150min后富里酸去除率为83%。

Claims (2)

1.一种用于电Fenton技术的活性碳纤维改性阴极的制备方法,其特征在于包括以下步骤:(1)将多壁碳纳米管置于体积比1:1的硝酸水溶液中,超声处理4小时,用超纯水稀释后,采用微孔膜过滤,用超纯水水洗至中性,放入真空箱中80℃干燥备用;(2)将尿素置于培养皿中在50℃烘箱中干燥24h,将干燥好的尿素置于带盖坩埚中,在通氮气的气氛炉中焙烧,升温速率4℃/min,达到550℃后保持4小时,冷却至室温取出,得到氮化碳粉末;(3)将活性碳纤维碳布浸入10wt%NaOH溶液中并超声处理0.5h,用超纯水洗涤3次,然后浸入5wt%HCl溶液中2h,再此用超纯水冲洗至中性,然后在80℃的烘箱中干燥24h待用;(5)将预处理好的多壁碳纳米管和氮化碳溶于蒸馏水中,超声10分钟后加入聚四氟乙烯,继续超声10分钟,混合液中多壁碳纳米管浓度为4g/L~20g/L、氮化碳浓度为1g/L~6g/L和聚四氟乙烯的浓度为22.5~67.5mg/L;(6)将预处理好的活性炭纤维碳布平铺在培养皿中,将超声好的混合液倾倒在碳布上,再次超声20分钟,超声结束后静置3分钟,将碳布翻面,此步骤一共翻面3次,共超声80分钟;(7)超声结束后将培养皿内剩余的混合液底部的糊状物均匀的涂在碳布表面,置于80℃烘箱内干燥2小时;(8)将干燥好的碳布置于马弗炉中,以5℃/min的速率升温,达到350℃后保持1小时,冷却至室温取出,即制得活性炭纤维阴极。
2.根据权利要求1的所述方法制备出的活性炭纤维电极在电Fenton***中作为阴极使用,其特征在于:
阳极采用钌铱钛电极,阴极采用制备的活性炭纤维电极,pH值为3~9,电流为0.1~0.5A,投加FeCl2,使体系内Fe2+的浓度为0.1~0.6mmol/L,反应时间为150min,极板间距为1cm,采用空气曝气,曝气速率为0.2L/min,富里酸配水投加电解质为0.05mol/L硫酸钠。
CN202110502796.0A 2021-05-10 2021-05-10 一种用于电Fenton技术的活性炭纤维改性阴极的制备方法及应用 Active CN113307332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110502796.0A CN113307332B (zh) 2021-05-10 2021-05-10 一种用于电Fenton技术的活性炭纤维改性阴极的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110502796.0A CN113307332B (zh) 2021-05-10 2021-05-10 一种用于电Fenton技术的活性炭纤维改性阴极的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113307332A true CN113307332A (zh) 2021-08-27
CN113307332B CN113307332B (zh) 2022-12-16

Family

ID=77371858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110502796.0A Active CN113307332B (zh) 2021-05-10 2021-05-10 一种用于电Fenton技术的活性炭纤维改性阴极的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113307332B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940532A (zh) * 2022-06-17 2022-08-26 燕山大学 一种改性氮化碳/泡沫铜阴极、制备方法及其在电芬顿***处理苯酚废水中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602012A (zh) * 2016-12-13 2017-04-26 上海交通大学 一种柔性薄膜电极及其制备方法和应用
CN107200384A (zh) * 2017-07-13 2017-09-26 陕西科技大学 一种高效产过氧化氢处理有机废水的碳纤维电极制备方法
EP3312909A1 (en) * 2016-10-24 2018-04-25 Basf Se Electroactive composites comprising silicon particles, metal nanoparticles and carbon nanostructures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312909A1 (en) * 2016-10-24 2018-04-25 Basf Se Electroactive composites comprising silicon particles, metal nanoparticles and carbon nanostructures
CN106602012A (zh) * 2016-12-13 2017-04-26 上海交通大学 一种柔性薄膜电极及其制备方法和应用
CN107200384A (zh) * 2017-07-13 2017-09-26 陕西科技大学 一种高效产过氧化氢处理有机废水的碳纤维电极制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘宗梅 等: "不同前驱体制备g-C_3N_4光催化性能及稳定性", 《应用化工》 *
张凤翻 等: "《热固性树脂基复合材料预浸料使用手册》", 30 June 2019, 北京:中国建材工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940532A (zh) * 2022-06-17 2022-08-26 燕山大学 一种改性氮化碳/泡沫铜阴极、制备方法及其在电芬顿***处理苯酚废水中的应用

Also Published As

Publication number Publication date
CN113307332B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
Ganiyu et al. A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process
Zhang et al. Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics
Mohamed et al. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell
Xia et al. Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton
Zhang et al. Nanocarbon based composite electrodes and their application in microbial fuel cells
Feng et al. Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells
CN107601624B (zh) 一种基于负载型活性炭纤维的电芬顿阴极材料的制备及应用
Liu et al. A graphene-based electrochemical filter for water purification
Le et al. Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution
Wang et al. A bio-electro-Fenton system with a facile anti-biofouling air cathode for efficient degradation of landfill leachate
CN102887567B (zh) 一种应用于电芬顿体系的石墨毡材料的改性方法
Mehdinia et al. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
González et al. Effect of Zeolite-Fe on graphite anode in electroactive biofilm development for application in microbial fuel cells
Kim et al. Microwave-treated expandable graphite granule for enhancing the bioelectricity generation of microbial fuel cells
Yu et al. Automatic microbial electro-Fenton system driven by transpiration for degradation of acid orange 7
CN113307332B (zh) 一种用于电Fenton技术的活性炭纤维改性阴极的制备方法及应用
Song et al. Enhanced antifouling performance for modified carbon nanotubes filtration cathode by the electric field
Li et al. Efficient H2O2 production from urine treatment based on a self-biased WO3/TiO2-Si PVC photoanode and a WO3/CMK-3 cathode
CN106410213A (zh) 电化学组装聚吡咯/二氧化锰复合物改性电极及其制备方法和应用
CN113896299A (zh) 一种锰铁层状双金属氢氧化物负载生物炭的电芬顿反应阴极材料及其制备方法与应用
WO2022067377A1 (en) Catalyst and electrolyser for the synthesis of hydrogen peroxide
Li et al. N-doped GO cathode catalyst boosting capacity of denitrification for air-cathode microbial fuel cell by shifting microbial community composition in treating marine wastewater
CN110801826A (zh) 一种光电催化石墨毡材料及其制备方法和应用
CN115957604A (zh) 一种可调控结构的碳纳米管修饰碳布电极及其制备方法与应用
CN114481187B (zh) 一种电芬顿阴极材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant