CN113304755A - 一种BiVO4/MOOH的光电催化剂及其制备方法 - Google Patents

一种BiVO4/MOOH的光电催化剂及其制备方法 Download PDF

Info

Publication number
CN113304755A
CN113304755A CN202011227227.1A CN202011227227A CN113304755A CN 113304755 A CN113304755 A CN 113304755A CN 202011227227 A CN202011227227 A CN 202011227227A CN 113304755 A CN113304755 A CN 113304755A
Authority
CN
China
Prior art keywords
substrate
mooh
bismuth vanadate
target
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011227227.1A
Other languages
English (en)
Inventor
李彦兴
云山
郭探
张加栋
朱秀芳
洪坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN202011227227.1A priority Critical patent/CN113304755A/zh
Publication of CN113304755A publication Critical patent/CN113304755A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种BiVO4/MOOH的光电催化剂及其制备方法,所述钒酸铋薄膜厚度50~500 nm,所述金属包括Fe、Co和Ni中的一种或两种,所述基底为透明导电电极FTO、ITO、AZO、ATO或多孔电极泡沫镍或金属纳米线电极Cu、Au、Ag和Al。通过磁控溅射制备钒酸铋薄膜,通过后退火工艺获得高结晶质量的薄膜,再与制备好的钒酸铋薄膜表面沉积一层析氧催化剂MOOH(M=Ni,Co,Fe),从而获得性能最佳的表面修饰的钒酸铋光阳极薄膜;原位制备MOOH助催化剂,使其与BiVO4结合更好,更加均匀,更有利于光生电子和空穴在BiVO4与MOOH界面处的分离。

Description

一种BiVO4/MOOH的光电催化剂及其制备方法
技术领域
本发明涉及功能材料技术领域,特别涉及一种BiVO4/MOOH的光电催化剂及其制备方法。
背景技术
太阳能作为一种新兴的可再生的清洁能源,已经成为人们目前解决能源短缺和环境污染等问题的首选替代能源之一,但是如何高效地利用太阳能,成为了目前研究的重点和难点。
早在1972年,Fjulshima和Honda首次报道了二氧化钛薄膜在光照条件下可以将水分解成氢气和氧气,进而实现太阳能向化学能的转化,从此,光催化技术进入人们的视野,并引起广泛关注,成为目前研究热点之一。光催化氧化技术能够有效地利用清洁、可再生的太阳能,分解水产氢制氧以及降解水和大气中的有机污染物,可以有效地降低能耗,并降低副产物和二次污染的可能。它不仅能缓解能源短缺问题,还可以有效的处理环境污染,是一种很有发展前景的高效氧化技术。
BiVO4是一种环境友好、色泽明亮的淡黄色颜料,近年来,由于其组成元素来源广泛、化学和热稳定性好等特点,特别是其具有窄的禁带宽度和合适的价带位置,而表现出优异的光催化讲解有机污染物和光解水活性,从而引起人们的广泛关注。BiVO4主要存在三种晶相结构,分别是单斜白钨矿型、四方白钨矿型和四方锆石型,三种晶相之间在一定温度条件下可以相互转化。其中,单斜白钨矿型BiVO4结构是热力学上最稳定的晶相结构,在可见光降解有机污染物和光解水产氢制氧等方面表现出最好的光催化活性,从而获得广泛研究。
单斜白钨矿型BiVO4的禁带宽度Eg等于2.4 eV,价带位置充分满足氧化水的要求,导带位置几乎与氢气还原电位一致,这意味着在完整的光电化学(PEC)水分解过程中,BiVO4的产氢能耗小于其他可见光半导体,同时,理论计算表明BiVO4体内的光生电子和空穴有效质量小于其他传统氧化物半导体,如TiO2和In2O3,更有利于光生载流子的分离和传输。
然而,BiVO4光催化材料由于自身存在的一些问题,导致其实际的光电转换效率仍远远低于其理论值,从而限制了其实际应用,存在以下几个问题:(1)BiVO4材料中的电荷迁移,特别是电子迁移速率很慢,导致产生的电荷载流子在到达材料表面之间,已经有大约60%-80%发生复合;(2)相比于亚硫酸盐的氧化反应,该反应的释放氧动力学速率非常缓慢。
针对BiVO4的催化水氧活性差,在光阳极/电解液界面处产生的空穴积累经常可以导致光催化剂光腐蚀现象的发现,因此,如何来改善BiVO4的表面性质工作显得很有必要。为此,我们提出了一种BiVO4/MOOH的光电催化剂及其制备方法。
发明内容
本发明的主要目的在于提供本发明目的在于提供一种BiVO4/MOOH的光电催化剂及其制备方法,基于本发明制备的钒酸铋薄膜具有优异的光生载流子分离和运输能力,氧动力学速率高,在光催化、光电催化和电催化等领域有广泛的应用,相比于广泛使用的电沉积法,本方法效率更高,制备工艺简单,且不产生废弃溶液产物,所得薄膜更加致密平坦,有效地提升整体的氧化动力学速率,可以有效解决背景技术中的问题。
为实现上述目的,本发明采取的技术方案为:
一种BiVO4/MOOH的光电催化剂,包括在透明导电基底上的钒酸铋薄膜和层状羟基金属氧化物。
进一步地,所述钒酸铋薄膜厚度50~500 nm。
优选地,所述金属包括Fe、Co和Ni中的一种或两种。
进一步地,所述基底为透明导电电极FTO、ITO、AZO、ATO或多孔电极泡沫镍或金属纳米线电极Cu、Au、Ag和Al。
一种制备BiVO4/MOOH复合光阳极薄膜的方法,包括如下步骤:
S1.清洗基底后干燥;
S2.将基底置于沉积室,然后在基底表面采用直流磁控溅射法沉积钒酸铋薄膜,其中靶材为钒酸铋陶瓷靶,溅射气体为氩气和氧气,总压强为0.5~2.5 Pa,氧分压为0~4 %,靶材与基底的距离为7~20 cm,初始基底温度为室温,溅射过程中对基底进行加热,加热温度为350~500℃,施加于所述靶材上的直流电源的功率为 50~500 W 或者功率密度为0.6~6.4 W/cm2,沉积时间为5~60min,溅射钒酸铋陶瓷靶材;
S3. 在S2制得钒酸铋薄膜表面采用直流磁控溅射法制备MOOH,其中金属靶材为Fe、Co或Ni靶中的一种,通入流量为30-60sccm气体为氩气和流量为5-10sccm的氧气,同时通过微泵通入5-30sccm的水蒸气,总压强为0.5~2.5 Pa,靶材与基底的距离为7~20 cm,停止基底加热,施加于所述靶材上的直流电源的功率为 50~100 W 或者功率密度为0.2~1.3 W/cm2,沉积时间为5~60min;
S4.在S3结束等衬底温度降至室温,取出样品后将其送入马弗炉进行热处理,退火完成之后,等样品温度降回室温,制得BiVO4/MOOH。
进一步地,所述S1中清洗基材的方法是依次用丙酮和无水乙醇各超声清洗至少30min;所述干燥方法为压缩空气吹干。
优选地,所述S2沉积室内初始的本底真空度低于10-4 Pa,保证腔体中的杂质气体被排出。在样品进出样过程中会有少量的杂质气体,比如CO2,有机物等等。本地真空度保证了这些气体不会影响后续反应溅射的进行。
优选地,所述S4中热处理温度500~1000 ℃,升温速度1~10 ℃/min,保温时间60~480 min。
与现有技术相比,本发明具有如下有益效果:
一、本发明提供了一种MOOH(M=Ni,Co,Fe)析氧催化剂修饰的BiVO4光阳极薄膜及其制备方法,通过磁控溅射制备钒酸铋薄膜,通过后退火工艺获得高结晶质量的薄膜,再与制备好的钒酸铋薄膜表面沉积一层析氧催化剂MOOH(M=Ni,Co,Fe),从而获得性能最佳的表面修饰的钒酸铋光阳极薄膜;原位制备MOOH助催化剂,使其与BiVO4结合更好,更加均匀,更有利于光生电子和空穴在BiVO4与MOOH界面处的分离;
二、磁控溅射工艺条件温和,工艺简单,周期短,能够连续制备,且不受限制于衬底尺寸、质地和形貌,整个过程制备效率高,工艺步骤少,同时避免了后续制备过程可能产生的二次污染;
三、与常规水热沉积或者电沉积相比,这种在溅射过程中通入微量水,在等离子辉光的辅助下产生的化学合成MOOH,制备程序更简单,更容易推广,通过沉积MOOH层修饰钒酸铋薄膜,能够促进界面氧化反应,提升光电催化效率。
附图说明
图1 MOOH/BiVO4双层薄膜的结构示意图
图2 不同MOOH修饰的钒酸铋薄膜于中性电解液中的光电流曲线。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
以下实施例所用的设备为北京创世威纳科技有限公司组装的型号为MSP-3200三靶共溅射镀膜机,***可包括沉积腔室、进样室、若干靶头、一个托盘、若干直流电源以及一系列真空泵,其中靶头与衬底板成一定角度,直流电源连接在靶头上;且设备置于22℃恒温房间内。
以下实施例涉及的氩气和氧气纯度为99.99%。
实施例1
S1. 将基材(FTO玻璃)超声清洗,分别用丙酮和无水乙醇超声清洗基材各30min后,有序地固定在托盘上,放入进样室中,然后打开闸门装载到真空度(本底真空度) 已达到10-4 Pa以下的沉积腔室中;
S2. 向沉积室中通入60sccm的氩气和1sccm的氧气混合气体,,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,腔室加热至500℃,开启直流电源(电功率为200W),沉积时间为10 min,溅射钒酸铋陶瓷靶材;
S3.向沉积室中通入60sccm的氩气和10sccm的氧气混合气体,流量比为6:1,同时通过微泵通入20sccm的水蒸气,总压强为1.5 Pa,靶材与基底的距离为8 cm,溅射靶材为金属镍靶,停止基底加热,施加于所述靶材上的直流电源的功率为 100 W,其中沉积时间为20min;
S4.沉积结束后,等衬底温度降至室温,取出样品送入马弗炉,热处理样品,升温速度5℃/min,退火温度500℃,保温时间240 min;退火完成之后,等样品温度降回室温,取出样品。该样品即为以NiOOH表面修饰的钒酸铋光电催化剂 ,NiOOH的尺寸和厚度与光生载流子的迁移距离相匹配,能够显著提高其分离效率和速度。BiVO4/NiOOH光电流曲线如图2所示。
实施例2
S1.同实施例1;
S2.向沉积室通入纯氩气,流量为60 sccm,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,腔室加热至500℃,开启直流电源(电功率为200W),沉积时间为10min,溅射钒酸铋陶瓷靶材;
S3.向沉积室中通入60sccm的氩气和10sccm的氧气混合气体,流量比为6:1,同时通过微泵通入20sccm的水蒸气,总压强为1.5 Pa,靶材与基底的距离为8 cm,溅射靶材为金属镍靶,停止基底加热,施加于所述靶材上的直流电源的功率为 100 W,其中沉积时间为10min;
S4. 热处理方式同实施例1。该样品即为以NiOOH表面修饰的钒酸铋光电催化剂,NiOOH的尺寸和厚度与光生载流子的迁移距离相匹配,能够显著提高其分离效率和速度。
实施例3
S1.同实施例1;
S2. 向沉积室中通入60sccm的氩气和2sccm的氧气混合气体,,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,腔室加热至500℃,开启直流电源(电功率为200W),沉积时间为10 min,溅射钒酸铋陶瓷靶材;
S3. 向沉积室中通入60sccm的氩气和10sccm的氧气混合气体,流量比为6:1,同时通过微泵通入20sccm的水蒸气,总压强为1.5 Pa,靶材与基底的距离为8 cm,溅射靶材为金属镍靶,停止基底加热,施加于所述靶材上的直流电源的功率为 100 W,其中沉积时间为30min;
S4. 热处理方式同实施例1。该样品即为以NiOOH表面修饰的钒酸铋光电催化剂,NiOOH的尺寸和厚度与光生载流子的迁移距离相匹配,能够显著提高其分离效率和速度。
实施例4
S1.除了基材是ITO,其余实施方式同实施例1;
S2. 向沉积室中通入纯氩气,流量为60 sccm,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,腔室加热至500℃,开启直流电源(电功率为200W),沉积时间为10min,溅射钒酸铋陶瓷靶材;
S3. 向沉积室中通入60sccm的氩气和10sccm的氧气混合气体,流量比为6:1,同时通过微泵通入20sccm的水蒸气,总压强为1.5 Pa,靶材与基底的距离为8 cm,溅射靶材为金属铁靶,停止基底加热,施加于所述靶材上的直流电源的功率为 100 W,其中沉积时间为5min;
S4.热处理方式同实施例1。该样品即为以FeOOH表面修饰的钒酸铋光电催化剂,FeOOH的尺寸和厚度与光生载流子的迁移距离相匹配,能够显著提高其分离效率和速度。
实施例5
S1.同实施例1;
S2. 向沉积室中通入60sccm的氩气和1sccm的氧气混合气体,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,腔室加热至500℃,开启直流电源(电功率为200W),沉积时间为10 min,溅射钒酸铋陶瓷靶材;
S3.向沉积室中通入60sccm的氩气和10sccm的氧气混合气体,流量比为6:1,同时通过微泵通入20sccm的水蒸气,总压强为1.5 Pa,靶材与基底的距离为8 cm,溅射靶材为金属钴靶,停止基底加热,施加于所述靶材上的直流电源的功率为 100 W,其中沉积时间为10min;
S4.热处理方式同实施例1。该样品即为以CoOOH表面修饰的钒酸铋光电催化剂,CoOOH的尺寸和厚度与光生载流子的迁移距离相匹配,能够显著提高其分离效率和速度。
实施例6
S1.除基材为ATO为,其实方式同实施例1;
S2. 向沉积室中通入60sccm的氩气和1sccm的氧气混合气体,,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,腔室加热至500℃,开启直流电源(电功率为200W),沉积时间为10 min,溅射钒酸铋陶瓷靶材;
S3.向沉积室中通入60sccm的氩气和10sccm的氧气混合气体,流量比为6:1,同时通过微泵通入20sccm的水蒸气,总压强为1.5 Pa,靶材与基底的距离为8 cm,溅射靶材为金属铁靶,停止基底加热,施加于所述靶材上的直流电源的功率为 100 W,其中沉积时间为15min。
S4.热处理方式同实施例1。BiVO4/FeOOH光电流曲线如图2所示。
实施例7
S1.同实施例1;
S2. 向沉积室中通入60sccm的氩气和2sccm的氧气混合气体,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,腔室加热至350℃,开启直流电源(电功率为200W),沉积时间为10 min,溅射钒酸铋陶瓷靶材;
S3.向沉积室中通入60sccm的氩气和10sccm的氧气混合气体,流量比为6:1,同时通过微泵通入20sccm的水蒸气,总压强为1.5 Pa,靶材与基底的距离为8 cm,溅射靶材为金属铁靶和镍靶,停止基底加热,施加于所述靶材上的直流电源的功率为 100 W,其中沉积时间为15 min。
S4.热处理方式同实施例1。该样品即为以FeOOH/NiOOH复合修饰的钒酸铋光电催化剂,FeOOH/NiOOH的尺寸和厚度与光生载流子的迁移距离相匹配,能够显著提高其分离效率和速度,从而提高BiVO4复合薄膜的光电转换效率。光电流曲线如图2所示,具有最佳的光电转换效率。
实施例8
S1.同实施例1;
S2. 向沉积室中通入纯氩气,流量为60 sccm,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,腔室加热至500℃,开启直流电源(电功率为200W),沉积时间为10min,溅射钒酸铋陶瓷靶材;
S3. 向沉积室中通入60sccm的氩气和10sccm的氧气混合气体,流量比为6:1,同时通过微泵通入5sccm的水蒸气。总压强为1.5 Pa,靶材与基底的距离为8 cm,溅射靶材为金属铁靶和镍靶,停止基底加热,施加于所述靶材上的直流电源的功率为 100 W,其中沉积时间为15 min;
S4.热处理方式同实施例1。该样品即为以FeOOH/NiOOH复合修饰的钒酸铋光电催化剂,此时,形成片状复合物尺寸较小,但是仍然表现出很好的光电转换效率。
实施例9
S1.同实施例1;
S2. 通入60sccm的氩气和2sccm的氧气混合气体,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,腔室加热至500℃,开启直流电源(电功率为200W),沉积时间为10 min,溅射钒酸铋陶瓷靶材;
S3. 向沉积室中通入60sccm的氩气和10sccm的氧气混合气体,流量比为6:1,同时通过微泵通入30sccm的水蒸气,总压强为1.5 Pa,靶材与基底的距离为8 cm,溅射靶材为金属铁靶和镍靶,初始基底温度为室温,施加于所述靶材上的直流电源的功率为 100 W,其中沉积时间为15 min;
S4.热处理方式同实施例1。该样品即为以厚片状的FeOOH/NiOOH复合修饰的钒酸铋光电催化剂。此时负载的FeOOH/NiOOH复合助催化剂生长时间较长,厚度较厚,不利于光生电子的分离和传输;所以并不是通入的水蒸气越多越好。
对比例1
将基材(FTO玻璃)超声清洗,分别用丙酮和无水乙醇超声清洗基材各30min后,有序地固定在托盘上,放入进样室中,然后打开闸门装载到真空度(本底真空度) 已达到10-4 Pa以下的沉积腔室中;
通入纯氩气,流量为60 sccm,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,初始的腔室温度保持在室温条件下开启直流电源(电功率为200W),沉积时间为10min。溅射钒酸铋陶瓷靶材,衬底保持室温;
随后将样品送入马弗炉,热处理样品。升温速度5℃/min,退火温度500℃,保温时间240 min。退火完成之后,等样品温度降回室温,取出样品。纯BiVO4光电流曲线如图2所示。
对比例2
将基材(FTO玻璃)超声清洗,分别用丙酮和无水乙醇超声清洗基材各30min后,有序地固定在托盘上,放入进样室中,然后打开闸门装载到真空度(本底真空度) 已达到10-4 Pa以下的沉积腔室中;
通入纯氩气,流量为60 sccm,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,初始的腔室温度保持在室温条件下开启直流电源(电功率为200W),沉积时间为10min。溅射钒酸铋陶瓷靶材,衬底保持室温;
随后将样品送入马弗炉,热处理样品。升温速度5℃/min,退火温度500℃,保温时间240 min。退火完成之后,等样品温度降回室温,取出样品;
随后,配置Fe(NO3)2·6H2O和Ni(NO3)2·6H2O浓度为30mM的混合溶液,取出50ml置于烧杯中,采用CHI-600电化学工作站恒电位-1V下载薄膜表面沉积45s。沉积完成后用去离子水和乙醇反复冲洗,最后真空烘箱中60oC干燥1小时。最终制备FeOOH/NiOOH复合修饰的钒酸铋光电催化剂。相对标准氢电极1.23V处的光电流为0.5 mA/cm2,远小于本专利实施例2中的光电流大小(图2)。
对比例3
将基材(FTO玻璃)超声清洗,分别用丙酮和无水乙醇超声清洗基材各30min后,有序地固定在托盘上,放入进样室中,然后打开闸门装载到真空度(本底真空度) 已达到10-4 Pa以下的沉积腔室中;
通入纯氩气,流量为60 sccm,压强0.6 Pa,靶材为纯钒酸铋靶材,靶材与基片的距离为8cm,初始的腔室温度保持在室温条件下开启直流电源(电功率为200W),沉积时间为10min。溅射钒酸铋陶瓷靶材,衬底保持室温;
随后将样品送入马弗炉,热处理样品。升温速度5℃/min,退火温度500℃,保温时间240 min。退火完成之后,等样品温度降回室温,取出样品;
随后,分别取Fe(NO3)2·6H2O和Ni(NO3)2·6H2O配置浓度10mM的溶液,并通过持续搅拌得到透明溶液。将上述BiVO4薄膜和40ml上述溶液装入水热釜中,120oC保温6h。反应完成之后取出样品并用去离子水和乙醇反复冲洗,最后真空烘箱中60oC干燥1小时。最终制备FeOOH/NiOOH复合修饰的钒酸铋光电催化剂。相对标准氢电极1.23V处的光电流为0.6 mA/cm2,远小于本专利实施例7中的光电流大小(图2)。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种BiVO4/MOOH的光电催化剂,其特征在于,包括在透明导电基底上的钒酸铋薄膜和层状羟基金属氧化物。
2.根据权利要求1所述的一种BiVO4/MOOH的光电催化剂,其特征在于,所述钒酸铋薄膜厚度50~500 nm。
3.根据权利要求1所述的一种BiVO4/MOOH的光电催化剂,其特征在于,所述金属包括Fe、Co和Ni中的一种或两种。
4.根据权利要求1所述的一种BiVO4/MOOH的光电催化剂,其特征在于,所述基底为透明导电电极FTO、ITO、AZO、ATO或多孔电极泡沫镍或金属纳米线电极Cu、Au、Ag和Al。
5.一种制备权利要求1~4中所述的BiVO4/MOOH复合光阳极薄膜的方法,其特征在于,包括如下步骤:
S1.清洗基底后干燥;
S2.将基底置于沉积室,然后在基底表面采用直流磁控溅射法沉积钒酸铋薄膜,其中靶材为钒酸铋陶瓷靶,溅射气体为氩气和氧气,总压强为0.5~2.5 Pa,氧分压为0~4 %,靶材与基底的距离为7~20 cm,初始基底温度为室温,溅射过程中对基底进行加热,加热温度为350~500℃,施加于所述靶材上的直流电源的功率为 50~500 W 或者功率密度为0.6~6.4 W/cm2,沉积时间为5~60min,溅射钒酸铋陶瓷靶材;
S3. 在S2制得钒酸铋薄膜表面采用直流磁控溅射法制备MOOH,其中金属靶材为Fe、Co或Ni靶中的一种,通入流量为30-60sccm气体为氩气和流量为5-10sccm的氧气,同时通过微泵通入5-30sccm的水蒸气,总压强为0.5~2.5 Pa,靶材与基底的距离为7~20 cm,停止基底加热,施加于所述靶材上的直流电源的功率为 50~100 W 或者功率密度为0.2~1.3 W/cm2,沉积时间为5~60min;
S4.在S3结束等衬底温度降至室温,取出样品后将其送入马弗炉进行热处理,退火完成之后,等样品温度降回室温,制得BiVO4/MOOH。
6.根据权利要求书5所述的一种制备BiVO4/MOOH复合光阳极薄膜的方法,其特征在于,所述S1中清洗基材的方法是依次用丙酮和无水乙醇各超声清洗至少30min;所述干燥方法为压缩空气吹干。
7.根据权利要求书5所述的一种制备BiVO4/MOOH复合光阳极薄膜的方法,其特征在于,所述S2沉积室内初始的本底真空度低于10-4 Pa。
8.根据权利要求书5所述的一种制备BiVO4/MOOH复合光阳极薄膜的方法,其特征在于,所述S4中热处理温度500~1000 ℃,升温速度1~10 ℃/min,保温时间60~480 min。
CN202011227227.1A 2020-11-06 2020-11-06 一种BiVO4/MOOH的光电催化剂及其制备方法 Pending CN113304755A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011227227.1A CN113304755A (zh) 2020-11-06 2020-11-06 一种BiVO4/MOOH的光电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011227227.1A CN113304755A (zh) 2020-11-06 2020-11-06 一种BiVO4/MOOH的光电催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN113304755A true CN113304755A (zh) 2021-08-27

Family

ID=77370330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011227227.1A Pending CN113304755A (zh) 2020-11-06 2020-11-06 一种BiVO4/MOOH的光电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113304755A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115970765A (zh) * 2023-02-13 2023-04-18 吉林大学 具有3d三相界面的仿生可漂浮光催化材料、制备方法及其在光催化氮还原合成氨中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679880A (zh) * 2016-01-19 2016-06-15 新疆中兴能源有限公司 一种光解水用大面积钒酸铋薄膜的简易制备方法
CN107324441A (zh) * 2017-07-07 2017-11-07 黄河科技学院 镍铁羟基氧化物修饰钒酸铋光电极及其制备方法、应用
CN107354476A (zh) * 2017-06-27 2017-11-17 青岛鲁润中科环境工程技术开发有限公司 铁基双金属氢氧化物/钒酸铋光阳极的制备方法及其应用
CN109772355A (zh) * 2019-03-11 2019-05-21 辽宁石油化工大学 非晶羟基氧化铁/矾酸铋复合光催化材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679880A (zh) * 2016-01-19 2016-06-15 新疆中兴能源有限公司 一种光解水用大面积钒酸铋薄膜的简易制备方法
CN107354476A (zh) * 2017-06-27 2017-11-17 青岛鲁润中科环境工程技术开发有限公司 铁基双金属氢氧化物/钒酸铋光阳极的制备方法及其应用
CN107324441A (zh) * 2017-07-07 2017-11-07 黄河科技学院 镍铁羟基氧化物修饰钒酸铋光电极及其制备方法、应用
CN109772355A (zh) * 2019-03-11 2019-05-21 辽宁石油化工大学 非晶羟基氧化铁/矾酸铋复合光催化材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AADESH P. SINGH ET AL: "Hydrogen treatment and FeOOH overlayer: Effective approaches for enhancing the photoelectrochemical water oxidation performance of bismuth vanadate thin films", 《CATALYSIS TODAY》 *
HIDEAKI UETA ET AL: "Ni Oxyhydroxide Thin Films Prepared by Reactive Sputtering Using O2 + H2O Mixed Gas", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115970765A (zh) * 2023-02-13 2023-04-18 吉林大学 具有3d三相界面的仿生可漂浮光催化材料、制备方法及其在光催化氮还原合成氨中的应用

Similar Documents

Publication Publication Date Title
Rong et al. Ni (OH) 2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting
CN111841589B (zh) 一种镍钴钨磷化物催化剂及其制备方法和应用
CN110714187B (zh) 一种钒离子空位型钒酸铋光阳极薄膜及其制备方法
WO2022062228A1 (zh) 一种构建z型异质结光阳极的方法及z型异质结光阳极
CN112958116A (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
CN104525209A (zh) 氧化铁—铁酸锌异质结薄膜及其制备方法和在光催化中的应用
CN109943857B (zh) 一种硅基光电极、及其制备方法和用途
CN108579775B (zh) 一种磷酸银/银/二氧化钛纳米花复合材料及其制备方法与应用
WO2021103478A1 (zh) 一种铋酸铜薄膜的制备方法
CN113304755A (zh) 一种BiVO4/MOOH的光电催化剂及其制备方法
Lv et al. How titanium and iron are integrated into hematite to enhance the photoelectrochemical water oxidation: a review
CN110444402B (zh) 一种提高BiVO4光阳极光电化学性能的方法
CN101935819B (zh) 在钛或钛合金材料表面原位生长二氧化钛薄膜的制备方法
CN112442704B (zh) 一种氧化物半导体纳米线光阳极的通用制备方法
CN109518213B (zh) 一种NiB助剂改性的钒酸铋纳米多孔薄膜电极及其制备方法和应用
CN113289622B (zh) 一种水分解制氢复合材料及其制备方法
CN113957394B (zh) 一种p型半导体薄膜氧化铋铜及其制备方法与应用
CN112359376A (zh) 一种金属氧化物-绝缘体-半导体结构光阳极的制备方法
CN110359058B (zh) 一种锆钛酸铅修饰的赤铁矿纳米棒阵列光阳极的制备方法
Han et al. Preparation of TiO 2/ITO film electrode by AP-MOCVD for photoelectrocatalytic application
CN112452322A (zh) 一种高性能光阳极BiVO4薄膜催化剂的制备方法
CN114059078B (zh) 一种压电增强光电催化剂的制备方法
CN111547822A (zh) 一种高催化活性电极及其光电催化降解活性红195的方法
CN115896851A (zh) 一种光电催化光阳极纳米材料及其制备方法
CN113136601B (zh) 二氧化钛半导体薄膜及制备方法与其在光电催化中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210827

RJ01 Rejection of invention patent application after publication