CN113293014A - Negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and device - Google Patents

Negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and device Download PDF

Info

Publication number
CN113293014A
CN113293014A CN202110529924.0A CN202110529924A CN113293014A CN 113293014 A CN113293014 A CN 113293014A CN 202110529924 A CN202110529924 A CN 202110529924A CN 113293014 A CN113293014 A CN 113293014A
Authority
CN
China
Prior art keywords
hydrogen
pyrolysis
biomass
reactor
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110529924.0A
Other languages
Chinese (zh)
Inventor
肖睿
薛北辰
曾德望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110529924.0A priority Critical patent/CN113293014A/en
Publication of CN113293014A publication Critical patent/CN113293014A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/485Plants or land vegetals, e.g. cereals, wheat, corn, rice, sphagnum, peat moss
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Abstract

The invention discloses a negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and a device, wherein the method comprises the following steps: obtaining biochar and pyrolysis gas through biomass pyrolysis, introducing the pyrolysis gas into a chemical-looping hydrogen production system for reducing a metal oxide oxygen carrier, and simultaneously generating CO2Trapping and sequestration, the reduced oxygen carrier being regenerated by reaction with water vapour and producing hydrogen, which is used to generate electricity in a fuel cell. TheMethod and apparatus for producing no CO2And the emission of pollutants, and has the advantages of high power generation efficiency and small environmental pollution.

Description

Negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and device
Technical Field
The invention relates to the field of energy, in particular to a negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and a negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation device.
Background
Hydrogen energy is a green low carbon cleaningAnd (4) energy sources. With the development of fuel cells and hydrogen energy vehicles, the development of low-carbon and high-efficiency hydrogen production technology has important significance. The development of the hydrogen energy industry has received high attention from the state. The hydrogen yield in China reaches more than 2000 kilo/a, but more than 70 percent of hydrogen is produced by coal gasification and natural gas reforming. From the sustainable development point of view, fossil energy such as coal, natural gas and the like is nonrenewable resource, and hydrogen production is accompanied by a large amount of pollutants and CO2And the emission causes serious harm to the ecological environment. With the proposal of the targets of 'carbon peak reaching' and 'carbon neutralization' in China, the development and utilization of a new energy hydrogen production technology with low carbon become more important, and the method has an important role in promoting the transformation of energy structures in China.
Chemical looping hydrogen production is a low-carbon hydrogen production technology combining a chemical looping combustion concept and hydrogen production by a steam iron method. The chemical chain process decomposes the total reaction into a plurality of sub-reactions which occur in different time and space, and realizes the conversion of materials and the in-situ separation of products by transferring substances and energy through the recycling of the metal oxide oxygen carrier in the system. Therefore, the chemical-looping hydrogen production technology has the advantages of relatively simple device, low energy consumption, less pollution emission and easy separation and purification of hydrogen products.
Biomass is a variety of organisms formed directly or indirectly through plant photosynthesis, and is an energy carrier that converts solar energy into chemical energy. Biomass itself may be considered carbon neutral, i.e. CO produced by pyrolysis or conversion of biomass2With CO absorbed from the atmosphere during its growth2In contrast, biomass is thus converted into energy, followed by capture and sequestration of waste CO2Can be considered as negative carbon emissions. Compared with fossil resources, the biomass resources have the advantages of environmental protection and low carbon emission, accord with the sustainable development concept of China, and are beneficial to long-term development of China. The biomass pyrolysis conversion technology is an important utilization form of biomass energy and can generate biochar and pyrolysis gas products simultaneously. Wherein the biochar is an environmentally friendly multifunctional material in CO2The method has the advantages of a plurality of fields of adsorption, soil treatment, sewage treatment, electrochemical energy storage and the likeGood application prospect; heavy hydrocarbons, CO, CH in pyrolysis gas products4And the reducing substances can react with the metal oxygen carrier chemically to participate in the reaction process of chemical-looping hydrogen production.
Disclosure of Invention
Aiming at the defects or the improvement requirements of the prior art, the invention provides a negative-carbon-emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and a negative-carbon-emission biomass pyrolytic carbon hydrogen-electricity poly-generation device, which do not generate CO2And the emission of pollutants, and has the advantages of high power generation efficiency and small environmental pollution.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows:
in one aspect, an embodiment of the present invention provides a negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method, including:
obtaining biochar and pyrolysis gas through biomass pyrolysis, introducing the pyrolysis gas into a chemical-looping hydrogen production system for reducing a metal oxide oxygen carrier, and simultaneously generating CO2Trapping and sequestration, the reduced oxygen carrier being regenerated by reaction with water vapour and producing hydrogen, which is used to generate electricity in a fuel cell.
Preferably, the biomass pyrolysis is carried out in a nitrogen atmosphere, and agricultural wastes are used as biomass; the agricultural waste comprises straw and rice husk.
Preferably, the pyrolysis gas is dedusted and filtered to obtain reducing gas; the biochar is used for capturing and storing CO generated by the chemical-looping hydrogen production system2
Preferably, the chemical-looping hydrogen production system transfers substances and energy by recycling the metal oxide oxygen carrier in the system, so as to realize generation and in-situ separation of hydrogen;
the metal oxide oxygen carrier is FeOxThe metal oxide oxygen carrier firstly reacts with the reducing gas in the pyrolysis gas: CO/CnHm+FeOx→Fe+CO2+H2O; after the metal oxide oxygen carrier is reduced, introducing water vapor into the system to react: fe + H2O→FeOx+H2The metal oxide oxygen carrier is regenerated, and hydrogen is generated for power generation of the fuel cell; the value range of x is 1-1.5, the value range of n is 1-3, and the value range of m is 2-8; n and m are integers.
On the other hand, the embodiment of the invention provides a negative carbon emission biomass pyrolysis carbon hydrogen-electricity poly-generation device which comprises a biomass pyrolysis system, a chemical chain hydrogen production system, a fuel cell power generation system and CO2A capture system;
the CO is2The capture system is connected with the chemical-looping hydrogen production system and is used for capturing and storing the waste CO generated by the chemical-looping reactor2
The CO is2The collecting system is connected with a biomass pyrolysis system, and the biochar produced by the biomass pyrolysis system is used as CO2The trapping agent of (4);
the chemical looping hydrogen production system is connected with the biomass pyrolysis system, reducing gas generated by the biomass pyrolysis system is used as fuel, and the metal oxide oxygen carrier FeO is usedxReducing the iron into Fe;
the fuel cell power generation system is connected with the chemical-looping hydrogen production system, and hydrogen generated by the chemical-looping reaction device is used as fuel to chemically react with oxygen to convert chemical energy into electric energy.
Preferably, the biomass pyrolysis system comprises a material crushing device, a drying device, a pyrolysis reaction furnace, a biochar collecting device and a pyrolysis gas dedusting and purifying device; the outlet of the material crushing device is connected with the inlet of the drying device, the outlet of the drying device is connected with the inlet of the pyrolysis reaction furnace, the first outlet of the pyrolysis reaction furnace is connected with the inlet of the biochar collecting device, and the second outlet of the pyrolysis reaction furnace is connected with the inlet of the pyrolysis gas dedusting and purifying device;
the chemical looping hydrogen production system comprises a fuel reactor, a steam reactor, a water vapor generator, a tail gas collecting device, a hydrogen purifying device and a hydrogen collecting device; the outlet of the pyrolysis gas dust removal and purification device is connected with the inlet of the fuel reactor, the first outlet of the fuel reactor is connected with the inlet of the tail gas collection device, and waterThe outlet of the steam generator is connected with the first inlet of the steam reactor, the first outlet of the steam reactor is connected with the inlet of the hydrogen purification device, and the outlet of the hydrogen purification device is connected with the inlet of the hydrogen collection device; the fuel reactor is connected with the steam reactor; the fuel cell power generation system is connected with the outlet of the hydrogen collecting device; the CO is2The trapping system is respectively connected with the outlet of the tail gas collecting device and the outlet of the biochar collecting device.
Preferably, in the fuel reactor and the steam reactor, the fuel reactor is reacted first, and FeO is generatedxReduction to Fe followed by transfer of the Fe produced to the steam reactor; in the steam reactor, Fe is converted into FeOx(ii) a Then the FeO produced is recycledxTransferring back to the fuel reactor, and continuously circulating to realize solid FeOxAnd transfer of Fe between the fuel reactor and the steam reactor.
The invention fully utilizes the carbon element in the biomass, and the biomass is pyrolyzed to generate two valuable products of biochar and pyrolysis gas. By using reducing gases (CO, C) in the pyrolysis gasnHm) As fuel, participates in the reaction process of chemical-looping hydrogen production, and waste CO generated by conversion after the reaction is finished2Capturing and sealing; the biochar can be used as CO2The adsorbent can also be applied to the fields of soil improvement, sewage treatment, energy storage and the like, and has high application value. Because the biomass is a carbon neutral resource, the carbon element in the biomass is fully utilized and the generated waste CO2After being trapped, the whole system can be regarded as negative carbon emission, and accords with the national sustainable development concept. In addition, biomass resources such as straw, rice husk and the like are utilized, the problem of environmental pollution caused by agricultural and forestry waste can be effectively relieved, and the method has a good application prospect.
Drawings
FIG. 1 is a schematic flow diagram of the process of the present invention;
FIG. 2 is a schematic diagram of the system of the present invention.
Detailed Description
As shown in fig. 1, a method for hydrogen-electricity poly-generation of biomass pyrolytic carbon with negative carbon emission of the embodiment comprises: obtaining biochar and pyrolysis gas through biomass pyrolysis, introducing the pyrolysis gas into a chemical-looping hydrogen production system for reducing a metal oxide oxygen carrier, and simultaneously generating CO2Trapping and sequestration, the reduced oxygen carrier being regenerated by reaction with water vapour and producing hydrogen, which is used to generate electricity in a fuel cell.
In the above process, the biomass pyrolysis is performed in a nitrogen atmosphere. Thus, gas and solid products generated by pyrolysis can be prevented from being oxidized and burned by air, and agricultural wastes are used as biomass. The agricultural waste comprises straw and rice husk. Agricultural wastes are used as biomass, so that the wastes are fully utilized, and the wastes are changed into valuables. The pyrolysis gas is dedusted and filtered to obtain CO and CnHmAnd the like. The biochar is used for capturing and storing CO generated by the chemical-looping hydrogen production system2
In the process, the chemical-looping hydrogen production system transfers substances and energy by recycling the metal oxide oxygen carrier in the system, so that the generation and in-situ separation of hydrogen are realized. Specifically, the metal oxide oxygen carrier is FeOxThe metal oxide oxygen carrier firstly reacts with the reducing gas in the pyrolysis gas: CO/CnHm+FeOx→Fe+CO2+H2O; after the metal oxide oxygen carrier is reduced, introducing water vapor into the system to react: fe + H2O→FeOx+H2The metal oxide oxygen carrier is regenerated and hydrogen is generated for fuel cell power generation. The value range of x is 1-1.5, the value range of n is 1-3, and the value range of m is 2-8. n and m are integers. The value of x may be 1, 1.5 or 1.33.
According to the negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method, pyrolytic gas and biochar are generated by biomass pyrolysis, the pyrolytic gas is supplied to a chemical-looping hydrogen production system, high-purity hydrogen is obtained and used for power generation of a fuel cell, and meanwhile, the biochar is used for capturing waste CO in chemical-looping hydrogen production tail gas2. The invention utilizesThe biomass pyrolysis gas is used as fuel to participate in chemical looping hydrogen production, is a low-cost and low-energy-consumption hydrogen production mode, not only provides clean hydrogen energy for fuel cell power generation, but also fully utilizes carbon element in the biomass and generates waste CO2And the carbon is captured and sealed, and the whole system realizes negative carbon emission.
As shown in fig. 2, the embodiment further provides a negative carbon emission biomass pyrolysis carbon hydrogen-electricity poly-generation device, which comprises a biomass pyrolysis system, a chemical looping hydrogen production system, a fuel cell power generation system and a CO2A capture system;
the CO is2The capture system is connected with the chemical-looping hydrogen production system and is used for capturing and storing the waste CO generated by the chemical-looping reactor2(ii) a Wherein, CO2The trapping adopts an adsorption method, and the used adsorbent is biochar generated by biomass pyrolysis.
The CO is2The collecting system is connected with a biomass pyrolysis system, and the biochar produced by the biomass pyrolysis system is used as CO2The collector of (3).
The chemical looping hydrogen production system is connected with the biomass pyrolysis system, reducing gas generated by the biomass pyrolysis system is used as fuel, and the metal oxide oxygen carrier FeO is usedxReducing the reaction product into Fe.
The fuel cell power generation system is connected with the chemical-looping hydrogen production system, and hydrogen generated by the chemical-looping reaction device is used as fuel to chemically react with oxygen to convert chemical energy into electric energy.
In the above embodiment, the biomass pyrolysis system includes a material crushing device, a drying device, a pyrolysis reaction furnace, a biochar collecting device, and a pyrolysis gas dust removal and purification device; the outlet of the material crushing device is connected with the inlet of the drying device, the outlet of the drying device is connected with the inlet of the pyrolysis reaction furnace, the first outlet of the pyrolysis reaction furnace is connected with the inlet of the biochar collecting device, and the second outlet of the pyrolysis reaction furnace is connected with the inlet of the pyrolysis gas dust removal and purification device.
The chemical looping hydrogen production system comprises a fuel reactor, a steam reactor and waterThe system comprises a steam generator, a tail gas collecting device, a hydrogen purifying device and a hydrogen collecting device; the outlet of the pyrolysis gas dedusting and purifying device is connected with the inlet of the fuel reactor, the first outlet of the fuel reactor is connected with the inlet of the tail gas collecting device, the outlet of the water vapor generator is connected with the first inlet of the steam reactor, the first outlet of the steam reactor is connected with the inlet of the hydrogen purifying device, and the outlet of the hydrogen purifying device is connected with the inlet of the hydrogen collecting device; the fuel reactor is connected with the steam reactor. The fuel cell power generation system is connected with the outlet of the hydrogen collecting device. The CO is2The trapping system is respectively connected with the outlet of the tail gas collecting device and the outlet of the biochar collecting device.
In the fuel reactor and the steam reactor, the fuel reactor firstly reacts to obtain FeOxReduction to Fe followed by transfer of the Fe produced to the steam reactor; in the steam reactor, Fe is converted into FeOx(ii) a Then the FeO produced is recycledxTransferring back to the fuel reactor, and continuously circulating to realize solid FeOxAnd transfer of Fe between the fuel reactor and the steam reactor.
When the system is used, the biomass raw materials are input into the material crushing device, the crushed biomass raw materials are crushed to the particle size of 50-200 mm, then the biomass is conveyed to the drying device for drying, the dried biomass is conveyed to the pyrolysis reaction furnace, nitrogen is used as protective gas, the pyrolysis temperature is controlled to be 600-700 ℃, and the pyrolysis time is controlled to be 0.5-2 hours. And introducing the pyrolysis gas generated in the pyrolysis reaction furnace into a pyrolysis gas dedusting and purifying device to obtain reducing gas. Specifically, the reducing gas comprises CO and CH4、CxHyAnd the like. And discharging solid biochar generated by biomass pyrolysis from the bottom of the pyrolysis reaction furnace, entering a biochar collecting device, and waiting for further use.
The reducing gas generated by the pyrolysis gas dust removal and purification device is introduced into a fuel reactor and reacts with the metal oxide oxygen carrier FeOxReaction CO/C takes placenHm+FeOx→Fe+CO2+H2O, controlling the reaction temperature to be 800-1000 ℃ until FeOxAll are reduced to Fe. Reducing gas is FeOxOxidation to CO2And H2O, flows out from the gas outlet end of the fuel reactor and enters into CO2A capture system.
The steam reactor carries the product Fe recovered by the fuel reactor, the gas inlet end is connected with a steam generator which introduces steam into the furnace, and the gas outlet end is connected with the hydrogen purification device. The steam in the steam reactor enters from the air inlet end to react with Fe to generate Fe + H2O→FeOx+H2And controlling the reaction temperature to be 800-1000 ℃, and enabling the generated hydrogen to flow out of the gas outlet end and enter a hydrogen purification device to obtain high-purity hydrogen for power generation of the fuel cell.
The fuel reactor is connected with the pyrolysis gas dust removal and purification device and carries a metal oxide oxygen carrier FeOxOutlet with said CO2Connecting a trapping system; the steam reactor carries the product Fe of the fuel reactor, the inlet of the steam reactor is connected with a steam generator which leads steam into the furnace, and the outlet of the steam reactor is connected with the hydrogen purification device.
The chemical-looping hydrogen production technology adopted by the invention produces hydrogen by the reduction and regeneration of the metal oxide oxygen carrier, and the metal oxide oxygen carrier can be recycled, thereby saving the hydrogen production cost. The chemical chain process is to decompose the reaction into multiple sub-reactions that are different in time and space, so that hydrogen and waste CO can be separated in situ2And the hydrogen purification with low energy consumption is realized. The chemical chain process is to decompose the reaction into a plurality of sub-reactions which are different in time and space, firstly, the biomass pyrolysis gas is reduced into the metal oxide oxygen carrier FeO in the fuel reactorxTo obtain Fe and CO2(ii) a Then in a steam reactor, Fe reacts with water vapor to generate hydrogen and simultaneously carry FeOxAnd (4) regenerating. Thus, hydrogen and waste CO2Produced separately in a steam reactor and a fuel reactor, which can be easily separated in situ to achieve low energy consumption hydrogen purification.
The embodiment utilizes the biomass pyrolysis coupling chemical chain technology to produce hydrogen, and has simple hydrogen production device and pure hydrogenLow chemical difficulty, avoids the consumption of fossil energy and provides clean and low-cost hydrogen for the fuel cell. Because the biomass resource has the characteristic of carbon neutrality, the carbon element in the biomass resource is converted into a biochar material or participates in the chemical chain hydrogen production process, and finally, the produced CO2Is captured and sealed, so the whole system has the characteristic of carbon negativity.
The biomass pyrolysis coupling chemical chain hydrogen production technology adopted by the embodiment of the invention does not need the participation of fossil energy in the preparation process and does not generate CO2And the discharge of pollutants, and is a clean hydrogen production mode. The prepared hydrogen is supplied to a fuel cell for power generation, the hydrogen and oxygen react to convert chemical energy into electric energy, the hydrogen-oxygen hybrid power generation system has the advantages of high power generation efficiency, small environmental pollution and the like, and the fuel cell is the most promising power generation technology at present from the viewpoint of energy conservation and environmental protection.

Claims (7)

1. A negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method is characterized by comprising the following steps:
obtaining biochar and pyrolysis gas through biomass pyrolysis, introducing the pyrolysis gas into a chemical-looping hydrogen production system for reducing a metal oxide oxygen carrier, and simultaneously generating CO2Trapping and sequestration, the reduced oxygen carrier being regenerated by reaction with water vapour and producing hydrogen, which is used to generate electricity in a fuel cell.
2. The negative carbon biomass pyrolytic carbon hydrogen-electricity poly-generation method according to claim 1, wherein the biomass pyrolysis is performed in nitrogen atmosphere, using agricultural waste as biomass; the agricultural waste comprises straw and rice husk.
3. The negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method according to claim 1, wherein the pyrolysis gas is dedusted and filtered to obtain reducing gas; the biochar is used for capturing and storing CO generated by the chemical-looping hydrogen production system2
4. The method for the poly-generation of hydrogen and electricity from biomass pyrolytic carbon with negative carbon emission according to claim 1, wherein the chemical looping hydrogen production system transfers substances and energy by recycling metal oxide oxygen carriers in the system to realize the generation and in-situ separation of hydrogen;
the metal oxide oxygen carrier is FeOxThe metal oxide oxygen carrier firstly reacts with the reducing gas in the pyrolysis gas: CO/CnHm+FeOx→Fe+CO2+H2O; after the metal oxide oxygen carrier is reduced, introducing water vapor into the system to react: fe + H2O→FeOx+H2The metal oxide oxygen carrier is regenerated, and hydrogen is generated for power generation of the fuel cell; the value range of x is 1-1.5, the value range of n is 1-3, and the value range of m is 2-8; n and m are integers.
5. The device for negative carbon emission biomass pyrolysis carbon hydrogen-electricity poly-generation is characterized by comprising a biomass pyrolysis system, a chemical chain hydrogen production system, a fuel cell power generation system and CO2A capture system;
the CO is2The capture system is connected with the chemical-looping hydrogen production system and is used for capturing and storing the waste CO generated by the chemical-looping reactor2
The CO is2The collecting system is connected with a biomass pyrolysis system, and the biochar produced by the biomass pyrolysis system is used as CO2The trapping agent of (4);
the chemical looping hydrogen production system is connected with the biomass pyrolysis system, reducing gas generated by the biomass pyrolysis system is used as fuel, and the metal oxide oxygen carrier FeO is usedxReducing the iron into Fe;
the fuel cell power generation system is connected with the chemical-looping hydrogen production system, and hydrogen generated by the chemical-looping reaction device is used as fuel to chemically react with oxygen to convert chemical energy into electric energy.
6. The negative carbon emission biomass pyrolysis carbon hydrogen and electricity poly-generation device according to claim 5, wherein the biomass pyrolysis system comprises a material crushing device, a drying device, a pyrolysis reaction furnace, a biochar collecting device and a pyrolysis gas dedusting and purifying device; the outlet of the material crushing device is connected with the inlet of the drying device, the outlet of the drying device is connected with the inlet of the pyrolysis reaction furnace, the first outlet of the pyrolysis reaction furnace is connected with the inlet of the biochar collecting device, and the second outlet of the pyrolysis reaction furnace is connected with the inlet of the pyrolysis gas dedusting and purifying device;
the chemical looping hydrogen production system comprises a fuel reactor, a steam reactor, a water vapor generator, a tail gas collecting device, a hydrogen purifying device and a hydrogen collecting device; the outlet of the pyrolysis gas dedusting and purifying device is connected with the inlet of the fuel reactor, the first outlet of the fuel reactor is connected with the inlet of the tail gas collecting device, the outlet of the water vapor generator is connected with the first inlet of the steam reactor, the first outlet of the steam reactor is connected with the inlet of the hydrogen purifying device, and the outlet of the hydrogen purifying device is connected with the inlet of the hydrogen collecting device; the fuel reactor is connected with the steam reactor; the fuel cell power generation system is connected with the outlet of the hydrogen collecting device; the CO is2The trapping system is respectively connected with the outlet of the tail gas collecting device and the outlet of the biochar collecting device.
7. The negative carbon biomass pyrolysis carbon hydrogen and electricity poly-generation device according to claim 6, wherein in the fuel reactor and the steam reactor, the fuel reactor is firstly reacted, FeOxReduction to Fe followed by transfer of the Fe produced to the steam reactor; in the steam reactor, Fe is converted into FeOx(ii) a Then the FeO produced is recycledxTransferring back to the fuel reactor, and continuously circulating to realize solid FeOxAnd transfer of Fe between the fuel reactor and the steam reactor.
CN202110529924.0A 2021-05-14 2021-05-14 Negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and device Pending CN113293014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110529924.0A CN113293014A (en) 2021-05-14 2021-05-14 Negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110529924.0A CN113293014A (en) 2021-05-14 2021-05-14 Negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and device

Publications (1)

Publication Number Publication Date
CN113293014A true CN113293014A (en) 2021-08-24

Family

ID=77322283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110529924.0A Pending CN113293014A (en) 2021-05-14 2021-05-14 Negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and device

Country Status (1)

Country Link
CN (1) CN113293014A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979409A (en) * 2021-11-05 2022-01-28 华中科技大学 Organic solid waste treatment device and treatment method
CN114291788A (en) * 2021-11-30 2022-04-08 西安交通大学 High-nitrogen-content biomass-driven chemical chain reaction system and method
CN114860009A (en) * 2022-05-16 2022-08-05 华中科技大学 Thermoelectric integrated processing system and method
CN115353911A (en) * 2022-07-28 2022-11-18 中国科学院大学 Chemical chain gasification hydrogen production and CO production of high-water-content biomass waste 2 Fixing method
CN115403010A (en) * 2022-08-02 2022-11-29 北京科技大学 Method and system for purifying and recovering hydrogen in tail gas of nitrogen-hydrogen protective gas in cold rolling process
CN116453609A (en) * 2023-03-31 2023-07-18 深圳碳中和生物燃气股份有限公司 Biomass treatment method and system based on carbon emission
CN116656384A (en) * 2023-02-17 2023-08-29 张文斌 Carbon neutralization method for steel products based on carbon cycle of BECNU ecosystem engineering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202063884U (en) * 2011-04-26 2011-12-07 山东大学 Multi-production comprehensive utilization device for biomass
WO2013127215A1 (en) * 2012-02-29 2013-09-06 东南大学 Device and method for preparing oxygen-containing liquid fuel by bio-oil catalytic conversion
CN103972559A (en) * 2014-05-09 2014-08-06 东南大学 Method and device for biomass combined cycle power generation and carbon dioxide separation
CN106145107A (en) * 2016-06-24 2016-11-23 北京神雾环境能源科技集团股份有限公司 A kind of Arundo donax produces activated carbon, the system and method for bio oil coproduction generating
CN107804824A (en) * 2017-11-09 2018-03-16 东南大学 A kind of compound calcium iron oxygen carrier and its hydrogen production of chemical chain cooperate with CO2Capture method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202063884U (en) * 2011-04-26 2011-12-07 山东大学 Multi-production comprehensive utilization device for biomass
WO2013127215A1 (en) * 2012-02-29 2013-09-06 东南大学 Device and method for preparing oxygen-containing liquid fuel by bio-oil catalytic conversion
CN103972559A (en) * 2014-05-09 2014-08-06 东南大学 Method and device for biomass combined cycle power generation and carbon dioxide separation
CN106145107A (en) * 2016-06-24 2016-11-23 北京神雾环境能源科技集团股份有限公司 A kind of Arundo donax produces activated carbon, the system and method for bio oil coproduction generating
CN107804824A (en) * 2017-11-09 2018-03-16 东南大学 A kind of compound calcium iron oxygen carrier and its hydrogen production of chemical chain cooperate with CO2Capture method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜伟娜: "《可再生的碳源 生物质能》", 31 August 2015, 北京工业大学出版社 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979409A (en) * 2021-11-05 2022-01-28 华中科技大学 Organic solid waste treatment device and treatment method
CN113979409B (en) * 2021-11-05 2023-02-28 华中科技大学 Organic solid waste treatment device and treatment method
CN114291788A (en) * 2021-11-30 2022-04-08 西安交通大学 High-nitrogen-content biomass-driven chemical chain reaction system and method
CN114860009A (en) * 2022-05-16 2022-08-05 华中科技大学 Thermoelectric integrated processing system and method
CN115353911A (en) * 2022-07-28 2022-11-18 中国科学院大学 Chemical chain gasification hydrogen production and CO production of high-water-content biomass waste 2 Fixing method
CN115403010A (en) * 2022-08-02 2022-11-29 北京科技大学 Method and system for purifying and recovering hydrogen in tail gas of nitrogen-hydrogen protective gas in cold rolling process
CN115403010B (en) * 2022-08-02 2024-01-30 北京科技大学 Method and system for purifying and recovering hydrogen in tail gas of nitrogen-hydrogen protective gas in cold rolling process
CN116656384A (en) * 2023-02-17 2023-08-29 张文斌 Carbon neutralization method for steel products based on carbon cycle of BECNU ecosystem engineering
CN116656384B (en) * 2023-02-17 2024-04-16 张文斌 Carbon neutralization method for steel products based on carbon cycle of BECNU ecosystem engineering
CN116453609A (en) * 2023-03-31 2023-07-18 深圳碳中和生物燃气股份有限公司 Biomass treatment method and system based on carbon emission
CN116453609B (en) * 2023-03-31 2024-01-26 深圳碳中和生物燃气股份有限公司 Biomass treatment method and system based on carbon emission

Similar Documents

Publication Publication Date Title
CN113293014A (en) Negative carbon emission biomass pyrolytic carbon hydrogen-electricity poly-generation method and device
CN108321416B (en) CO 2 Near zero emission integrated coal gasification fuel cell power generation system and method
CN107221695B (en) Fuel cell system for producing hydrogen by biomass gasification and power generation method thereof
CN102268504B (en) Direct reduction process for producing sponge iron by using coke oven gas
CN107829786B (en) Near-zero emission coal gasification power generation system with pollutant control function and power generation method
CN103972559A (en) Method and device for biomass combined cycle power generation and carbon dioxide separation
CN101550846A (en) A chemical looping combustion power generation process and system using landfill gas
CN113353920A (en) Continuous preparation device and preparation method of carbon nano tube
CN115466637B (en) Fuel cell power generation system and method for coupling biomass energy and solar energy
CN110938473A (en) System and method for realizing energy utilization of traditional Chinese medicine waste residues by utilizing red mud solid waste
CN214936044U (en) Device for extracting hydrogen from organic solid waste by pyrolysis
CN215208467U (en) Coupling chemical chain reaction and CO2High-efficiency low-energy-consumption hydrogen electric heating cold poly-generation system for separation and trapping
CN211645136U (en) System for utilize red mud to gu useless realization traditional chinese medicine waste residue energy utilization
CN213446984U (en) Internal recycle system for tail gas in coal-to-olefin process
CN203932215U (en) The device of a kind of biomass combined cycle generation separating carbon dioxide
CN219972485U (en) New energy coupling chemical chain solid waste disposal and carbon dioxide trapping system
CN112408324A (en) Coupling chemical chain reaction and CO2High-efficiency low-energy-consumption hydrogen electric heating cold poly-generation system and method for separation and trapping
CN108722423B (en) Preparation method of biomass tar cracking catalyst
CN213012703U (en) Crude gas preparation system
CN206278923U (en) A kind of system of domestic garbage resource
CN216236593U (en) Device for preparing liquid ammonia and struvite from waste ammonia in sludge pyrohydrolysis anaerobic digestion process
CN110265995A (en) A kind of pneumoelectric coupling energy supplying system provided multiple forms of energy to complement each other
CN216972432U (en) Device for converting carbon dioxide by using green electric power and high-temperature formed carbon
CN107983111B (en) System and method for capturing power plant flue gas carbon dioxide by rice husk gasification coupling sodium silicate
CN213630429U (en) Device for generating electricity by burning household garbage and coupling coal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210824