CN113255174B - 考虑岩石动态强度和混合破碎模式的钻齿力学计算方法 - Google Patents

考虑岩石动态强度和混合破碎模式的钻齿力学计算方法 Download PDF

Info

Publication number
CN113255174B
CN113255174B CN202110797870.6A CN202110797870A CN113255174B CN 113255174 B CN113255174 B CN 113255174B CN 202110797870 A CN202110797870 A CN 202110797870A CN 113255174 B CN113255174 B CN 113255174B
Authority
CN
China
Prior art keywords
rock
drill
tooth
dynamic
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110797870.6A
Other languages
English (en)
Other versions
CN113255174A (zh
Inventor
董广建
陈平
付建红
杨迎新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202110797870.6A priority Critical patent/CN113255174B/zh
Publication of CN113255174A publication Critical patent/CN113255174A/zh
Application granted granted Critical
Publication of CN113255174B publication Critical patent/CN113255174B/zh
Priority to US17/866,461 priority patent/US11657193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/42Rotary drag type drill bits with teeth, blades or like cutting elements, e.g. fork-type bits, fish tail bits
    • E21B10/43Rotary drag type drill bits with teeth, blades or like cutting elements, e.g. fork-type bits, fish tail bits characterised by the arrangement of teeth or other cutting elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B12/00Accessories for drilling tools
    • E21B12/02Wear indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Earth Drilling (AREA)

Abstract

本发明公开了考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,该计算方法包括:首先,选定目标钻齿和岩石,确定目标钻齿的类型、钻齿的几何尺寸、岩石类型、岩石参数;然后,通过钻齿水平切削力学计算方法计算钻齿的水平切削力;而后,通过钻齿垂直压入力学计算方法计算钻齿的垂直压入力;最后,通过钻齿的合力计算方法计算钻齿所受到的合力。本发明公开了一种考虑岩石动态强度和混合破碎模式的钻齿力学计算流程,提供了一种能够准确快速的获得不同工况下的钻齿力学的计算方法,为钻头设计与研发、钻井工程参数优化、工具优化或优选,提速降本增效提供重要指导和支撑作用,具有广阔应用前景。

Description

考虑岩石动态强度和混合破碎模式的钻齿力学计算方法
技术领域
本发明涉及油气井工程领域,特别是考虑岩石动态强度和混合破碎模式的钻齿力学计算方法。
背景技术
在深部钻探领域,钻头破碎岩石在提高钻井速度及岩石开挖效率方面起到至关重要的作用。而岩石破碎过程中,钻头-岩石互作用钻齿力学一直是核心热点问题,钻头-岩石互作用下,钻齿力学可以为钻头设计、工具优选、新工具研发、提高机械钻速提供有意义的指导。
钻齿破碎岩石是一个很复杂的过程,钻齿受力计算方法分成两大类,一类是数值模拟手段,主要包括有限元方法、有限差分法、离散元法、数字仿真法等,但是数值解计算速度慢于解析解。解析解算法主要包括以下几种,①基于拉伸破碎理论,建立的经典楔形钻齿-岩石互作用力学解析解模型;②考虑剪切破坏理论、切削齿与岩石的摩擦力、岩石孔隙压力,建立了切削齿-岩石互作用解析模型;③考虑钻齿破碎力是通过密实核传递,建立了楔形齿侵入力学模型;④基于切削实验观测,考虑压实核和拉伸破坏模式,建立了钻齿-岩石互作用力学模型。
不难发现,钻齿破碎岩石一种复杂受力过程,包括了拉伸破坏、压缩破坏、剪切破坏,而且钻齿破岩过程,岩石受到的是动态载荷,岩石在不同动载作用下岩石强度会产生变化,然而上述关于钻齿-岩石互作用力学模型和计算方法主要考虑的是单一破坏模式、单一破碎强度模式、静态或准静态强度力学理论,未综合考虑切削速度、动态强度和混合破碎模式,并不能考虑真实的钻齿破岩动态受力特点。目前,考虑岩石动态强度、混合破碎模式、钻齿运动速度、钻齿形状和岩石应变率的钻齿力学计算方法鲜有涉及。
发明内容
本发明的目的在于克服现有技术的缺点,提供考虑岩石动态强度和混合破碎模式的钻齿力学计算方法。该计算方法包括:首先,选定目标钻齿和岩石,确定目标钻齿的类型、钻齿的几何尺寸、岩石类型、岩石参数;然后,通过钻齿水平切削力学计算方法计算钻齿的水平切削力;而后,通过钻齿垂直压入力学计算方法计算钻齿的垂直压入力;最后,通过钻齿的合力计算方法计算钻齿所受到的合力。提供了一种能够准确快速的获得不同工况下的钻齿力学的计算方法。
为了实现上述发明目的,采用如下技术方案:
考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,其特征在于,所述钻齿力学计算方法包括以下步骤:
步骤S1:选定目标钻齿和岩石,确定目标钻齿的类型、钻齿的几何尺寸、岩石类型、岩石参数;
步骤S2:通过钻齿水平切削力学计算方法计算钻齿的水平切削力;
步骤S3:通过钻齿垂直压入力学计算方法计算钻齿的垂直压入力;
步骤S4:通过钻齿的合力计算方法计算钻齿所受到的合力。
所述步骤S1中,目标钻齿的类型包括了圆柱形钻齿、楔形钻齿;钻齿的几何尺寸包括圆柱形钻齿的直径、圆柱形钻齿的高度、楔形钻齿高度、楔形钻齿的楔角;岩石参数包括岩石静态单轴压缩强度、静态岩石拉伸强度、静态岩石剪切强度、岩石内摩擦角、动态岩石单轴压缩强度、动态岩石拉伸强度、动态岩石剪切强度。
所述步骤S2中,钻齿水平切削力学计算方法根据以下公式确定:
Figure DEST_PATH_IMAGE001
其中,
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE003
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
Figure DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE013
Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE015
式中,
Figure DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N;
Figure DEST_PATH_IMAGE017
为动态岩石单轴压缩强度,其单位为MPa;
Figure DEST_PATH_IMAGE018
为动态岩石拉伸强度,其单位为MPa;
Figure DEST_PATH_IMAGE019
为动态岩石剪切强度,其单位为MPa;
Figure DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad;
Figure DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure DEST_PATH_IMAGE023
为岩石内摩擦角,
Figure DEST_PATH_IMAGE024
为钻齿侵入等效宽度,其单位为mm;
Figure DEST_PATH_IMAGE025
为切削深度,其单位为mm。
所述步骤S3中,钻齿垂直压入力学计算方法根据以下公式确定:
Figure DEST_PATH_IMAGE026
式中,
Figure DEST_PATH_IMAGE027
为钻齿的垂直压入力,其单位为N;
Figure 619247DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 441709DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 505480DEST_PATH_IMAGE016
为钻齿的垂直压入力,其单位为N。
所述步骤S4中,钻齿的合力计算方法根据以下公式确定:
Figure DEST_PATH_IMAGE028
其中,
Figure 579747DEST_PATH_IMAGE002
Figure 45363DEST_PATH_IMAGE003
Figure 38727DEST_PATH_IMAGE004
Figure 448849DEST_PATH_IMAGE005
Figure 185860DEST_PATH_IMAGE006
Figure 505983DEST_PATH_IMAGE007
Figure 404669DEST_PATH_IMAGE008
Figure 52819DEST_PATH_IMAGE009
Figure 390260DEST_PATH_IMAGE010
Figure 502572DEST_PATH_IMAGE011
Figure 24689DEST_PATH_IMAGE012
Figure 222452DEST_PATH_IMAGE013
Figure 363584DEST_PATH_IMAGE014
Figure 595982DEST_PATH_IMAGE015
式中,
Figure 508574DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N;
Figure 521530DEST_PATH_IMAGE017
为动态岩石单轴压缩强度,其单位为MPa;
Figure 138456DEST_PATH_IMAGE018
为动态岩石拉伸强度,其单位为MPa;
Figure 412311DEST_PATH_IMAGE019
为动态岩石剪切强度,其单位为MPa;
Figure 823701DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 58373DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad;
Figure 478990DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 92505DEST_PATH_IMAGE023
为岩石内摩擦角,
Figure 2693DEST_PATH_IMAGE024
为钻齿侵入等效宽度,其单位为mm;
Figure 662344DEST_PATH_IMAGE025
为切削深度,其单位为mm;
Figure DEST_PATH_IMAGE029
为钻齿的合力,其单位为N。
所述岩石参数的岩石静态单轴压缩强度、静态岩石拉伸强度、静态岩石剪切强度、岩石内摩擦角通过现场测井数据或室内岩石力学实验测得;所述岩石参数的动态岩石单轴压缩强度、动态岩石拉伸强度、动态岩石剪切强度根据以下步骤获得:
步骤S11:通过分离式霍普金森压杆岩石力学实验测得动态岩石单轴压缩强度,并建立动态岩石单轴压缩强度、岩石静态单轴压缩强度、载荷动态加载应变率之间的关系,表达形式如下:
Figure DEST_PATH_IMAGE030
步骤S12:通过分离式霍普金森压杆岩石力学实验测得动态岩石拉伸强度,动态岩石拉伸强度为巴西劈裂间接拉伸强度,并建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系,表达形式如下:
Figure DEST_PATH_IMAGE031
步骤S13:通过分离式霍普金森压杆岩石力学实验测得动态岩石剪切强度,并建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系,表达形式如下:
Figure DEST_PATH_IMAGE032
式中,
Figure DEST_PATH_IMAGE033
Figure DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE035
Figure DEST_PATH_IMAGE036
Figure DEST_PATH_IMAGE037
Figure DEST_PATH_IMAGE038
Figure DEST_PATH_IMAGE039
Figure DEST_PATH_IMAGE040
为拟合系数,无量纲;
Figure DEST_PATH_IMAGE041
为岩石静态单轴压缩强度,其单位为MPa;
Figure DEST_PATH_IMAGE042
为静态岩石拉伸强度,其单位为MPa;
Figure DEST_PATH_IMAGE043
为静态岩石剪切强度,其单位为MPa;
Figure 791712DEST_PATH_IMAGE017
动态岩石单轴压缩强度,其单位为MPa;
Figure 915526DEST_PATH_IMAGE018
为动态岩石拉伸强度,其单位为MPa;
Figure 934297DEST_PATH_IMAGE019
为动态岩石剪切强度,其单位为MPa;
Figure DEST_PATH_IMAGE044
为载荷动态加载应变率,其单位为s-1
Figure DEST_PATH_IMAGE045
为载荷动态加载临界应变率,其单位为s-1
所述钻齿破岩过程载荷动态加载应变率
Figure 18928DEST_PATH_IMAGE044
计算方法表达形式如下:
Figure DEST_PATH_IMAGE046
式中,
Figure 702719DEST_PATH_IMAGE044
为为载荷动态加载应变率,其单位为s-1
Figure DEST_PATH_IMAGE047
为切削齿速度,其单位为mm/s;
Figure 415460DEST_PATH_IMAGE025
为切削深度,其单位为mm;
Figure 542816DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 973797DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad。
所述钻齿和岩石接触面之间的平均摩擦角与钻齿后倾角关联关系,具体表达式如下:
Figure DEST_PATH_IMAGE048
式中,
Figure DEST_PATH_IMAGE049
Figure DEST_PATH_IMAGE050
为上式拟合公式系数,无量纲;
Figure 726859DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 497369DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad。
所述钻齿和岩石接触面之间的平均摩擦角与钻齿后倾角关联关系可通过如下步骤确定:
步骤S31:开展n组不同后倾角钻齿破岩实验,获得实验过程的钻齿水平切削力和垂直压入力,通过如下关系求得钻齿和岩石接触面之间的平均摩擦角:
Figure DEST_PATH_IMAGE051
式中,
Figure 326784DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 182745DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 473918DEST_PATH_IMAGE027
为钻齿的垂直压入力,其单位为N;
Figure 364513DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N;
步骤S32:通过拟合方法确定钻齿和岩石接触面之间的平均摩擦角与后倾角关联关系。
所述成屑-压实过渡角与切削深度的关系,通过n组不同压入深度钻齿破岩实验和回归方法确定,具体表达式如下:
Figure DEST_PATH_IMAGE052
式中,
Figure DEST_PATH_IMAGE053
Figure DEST_PATH_IMAGE054
Figure DEST_PATH_IMAGE055
为上式拟合公式系数,无量纲;
Figure 895989DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad;
Figure 239245DEST_PATH_IMAGE025
为切削深度,其单位为mm,n为压入深度钻齿破岩实验组数。
所述钻齿侵入等效宽度的计算方法如下:
Figure DEST_PATH_IMAGE056
式中,R为圆柱形钻齿直径,其单位为mm;w为钻齿侵入等效宽度,其单位为mm;
Figure 599689DEST_PATH_IMAGE025
为切削深度,其单位为mm。
本发明的有益效果为:
本发明考虑岩石动态强度和混合破碎模式,建立一种钻齿力学计算方法,本发明充分考虑钻石破岩过程的真实力学状态,充分考虑考虑岩石动态强度、混合破碎模式、钻齿运动速度、钻齿形状和岩石应变率,克服了现有钻齿力解析计算方法考虑岩石破坏模式单一,只考虑静态或准静态岩石强度的缺点,为钻头设计与研发、钻井工程参数优化、工具优化或优选,提速降本增效提供重要指导和支撑作用,具有广阔应用前景。
附图说明
图1为本发明实施例1中的考虑岩石动态强度和混合破碎模式的钻齿力学计算方法流程示意图;
图2为本发明实施例1中的水平切削力和垂直压入力关系示意图。
具体实施方式
下面结合附图对本发明做进一步的描述,本发明的保护范围不局限于以下所述:
实施例1:
1、考虑岩石动态强度和混合破碎模式的钻齿力学计算理论方法
如图1及图2所示,考虑岩石动态强度和混合破碎模式的钻齿力学计算方法按照以下步骤:
步骤S1:选定目标钻齿和岩石,确定目标钻齿的类型、钻齿的几何尺寸、岩石类型、岩石参数;
步骤S2:通过钻齿水平切削力学计算方法计算钻齿的水平切削力;
步骤S3:通过钻齿垂直压入力学计算方法计算钻齿的垂直压入力;
步骤S4:通过钻齿的合力计算方法计算钻齿所受到的合力。
步骤S1中,目标钻齿的类型包括了圆柱形钻齿、楔形钻齿;钻齿的几何尺寸包括圆柱形钻齿的直径、圆柱形钻齿的高度、楔形钻齿高度、楔形钻齿的楔角;岩石参数包括岩石静态单轴压缩强度、静态岩石拉伸强度、静态岩石剪切强度、岩石内摩擦角、动态岩石单轴压缩强度、动态岩石拉伸强度、动态岩石剪切强度。
所述步骤S2中,钻齿水平切削力学计算方法根据以下公式确定:
Figure 344791DEST_PATH_IMAGE001
其中,
Figure 984851DEST_PATH_IMAGE002
Figure 815403DEST_PATH_IMAGE003
Figure 323745DEST_PATH_IMAGE004
Figure 188933DEST_PATH_IMAGE005
Figure 249162DEST_PATH_IMAGE006
Figure 301431DEST_PATH_IMAGE007
Figure 347885DEST_PATH_IMAGE008
Figure 5262DEST_PATH_IMAGE009
Figure 49441DEST_PATH_IMAGE010
Figure 651324DEST_PATH_IMAGE011
Figure 439152DEST_PATH_IMAGE012
Figure 200303DEST_PATH_IMAGE013
Figure 415384DEST_PATH_IMAGE014
Figure 770142DEST_PATH_IMAGE015
式中,
Figure 96081DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N;
Figure 728050DEST_PATH_IMAGE017
为动态岩石单轴压缩强度,其单位为MPa;
Figure 910770DEST_PATH_IMAGE018
为动态岩石拉伸强度,其单位为MPa;
Figure 424928DEST_PATH_IMAGE019
为动态岩石剪切强度,其单位为MPa;
Figure 741509DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 290302DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad;
Figure 909502DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 910956DEST_PATH_IMAGE023
为岩石内摩擦角,
Figure 781960DEST_PATH_IMAGE024
为钻齿侵入等效宽度,其单位为mm;
Figure 185260DEST_PATH_IMAGE025
为切削深度,其单位为mm。
所述步骤S3中,钻齿垂直压入力学计算方法根据以下公式确定:
Figure 975361DEST_PATH_IMAGE026
式中,
Figure 464111DEST_PATH_IMAGE027
为钻齿的垂直压入力,其单位为N;
Figure 388074DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 442617DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 341303DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N。
更进一步地,所述步骤S4中,钻齿的合力计算方法根据以下公式确定:
Figure 255033DEST_PATH_IMAGE028
其中,
Figure 530156DEST_PATH_IMAGE002
Figure 704786DEST_PATH_IMAGE003
Figure 39952DEST_PATH_IMAGE004
Figure 424666DEST_PATH_IMAGE005
Figure 503480DEST_PATH_IMAGE006
Figure 532616DEST_PATH_IMAGE007
Figure 38684DEST_PATH_IMAGE008
Figure 395847DEST_PATH_IMAGE009
Figure 75090DEST_PATH_IMAGE010
Figure 161995DEST_PATH_IMAGE011
Figure 25914DEST_PATH_IMAGE012
Figure 198270DEST_PATH_IMAGE013
Figure 681204DEST_PATH_IMAGE014
Figure 622615DEST_PATH_IMAGE015
式中,
Figure 408168DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N;
Figure 67820DEST_PATH_IMAGE017
为动态岩石单轴压缩强度,其单位为MPa;
Figure 88865DEST_PATH_IMAGE018
为动态岩石拉伸强度,其单位为MPa;
Figure 150362DEST_PATH_IMAGE019
为动态岩石剪切强度,其单位为MPa;
Figure 90505DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 34190DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad;
Figure 796610DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 650297DEST_PATH_IMAGE023
为岩石内摩擦角,
Figure 839970DEST_PATH_IMAGE024
为钻齿侵入等效宽度,其单位为mm;
Figure 270951DEST_PATH_IMAGE025
为切削深度,其单位为mm;
Figure 571482DEST_PATH_IMAGE029
为钻齿的合力,其单位为N。
岩石参数的岩石静态单轴压缩强度、静态岩石拉伸强度、静态岩石剪切强度、岩石内摩擦角通过现场测井数据或室内岩石力学实验测得;所述岩石参数的动态岩石单轴压缩强度、动态岩石拉伸强度、动态岩石剪切强度根据以下步骤获得:
步骤S11:通过分离式霍普金森压杆岩石力学实验测得动态岩石单轴压缩强度,并建立动态岩石单轴压缩强度、岩石静态单轴压缩强度、载荷动态加载应变率之间的关系,表达形式如下:
Figure 794522DEST_PATH_IMAGE030
步骤S12:通过分离式霍普金森压杆岩石力学实验测得动态岩石拉伸强度,动态岩石拉伸强度为巴西劈裂间接拉伸强度,并建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系,表达形式如下:
Figure 155096DEST_PATH_IMAGE031
步骤S13:通过分离式霍普金森压杆岩石力学实验测得动态岩石剪切强度,并建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系,表达形式如下:
Figure 73374DEST_PATH_IMAGE032
式中,
Figure 177596DEST_PATH_IMAGE033
Figure 5875DEST_PATH_IMAGE034
Figure 537350DEST_PATH_IMAGE035
Figure 677344DEST_PATH_IMAGE036
Figure 506629DEST_PATH_IMAGE037
Figure 251731DEST_PATH_IMAGE038
Figure 16425DEST_PATH_IMAGE039
Figure 846978DEST_PATH_IMAGE040
为拟合系数,无量纲;
Figure 230685DEST_PATH_IMAGE041
为岩石静态单轴压缩强度,其单位为MPa;
Figure 830294DEST_PATH_IMAGE042
为静态岩石拉伸强度,其单位为MPa;
Figure 765889DEST_PATH_IMAGE043
为静态岩石剪切强度,其单位为MPa;
Figure 83738DEST_PATH_IMAGE017
动态岩石单轴压缩强度,其单位为MPa;
Figure 520404DEST_PATH_IMAGE018
为动态岩石拉伸强度,其单位为MPa;
Figure 974519DEST_PATH_IMAGE019
为动态岩石剪切强度,其单位为MPa;
Figure 815436DEST_PATH_IMAGE044
为载荷动态加载应变率,其单位为s-1
Figure 558265DEST_PATH_IMAGE045
为载荷动态加载临界应变率,其单位为s-1
所述钻齿破岩过程载荷动态加载应变率
Figure 346092DEST_PATH_IMAGE044
计算方法表达形式如下:
Figure 982610DEST_PATH_IMAGE046
式中,
Figure 197690DEST_PATH_IMAGE044
为为载荷动态加载应变率,其单位为s-1
Figure 677082DEST_PATH_IMAGE047
为切削齿速度,其单位为mm/s;
Figure 3021DEST_PATH_IMAGE025
为切削深度,其单位为mm;
Figure 494045DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 145607DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad。
钻齿和岩石接触面之间的平均摩擦角与钻齿后倾角关联关系,具体表达式如下:
Figure 331868DEST_PATH_IMAGE048
式中,
Figure 523815DEST_PATH_IMAGE049
Figure 72608DEST_PATH_IMAGE050
为上式拟合公式系数,无量纲;
Figure 816442DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 817896DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad。
钻齿和岩石接触面之间的平均摩擦角与钻齿后倾角关联关系可通过如下步骤确定:
步骤S31:开展n组不同后倾角钻齿破岩实验,获得实验过程的钻齿水平切削力和垂直压入力,通过如下关系求得钻齿和岩石接触面之间的平均摩擦角:
Figure 813534DEST_PATH_IMAGE051
式中,
Figure 216834DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 616722DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 167789DEST_PATH_IMAGE027
为钻齿的垂直压入力,其单位为N;
Figure 639222DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N;
步骤S32:通过拟合方法确定钻齿和岩石接触面之间的平均摩擦角与后倾角关联关系。
成屑-压实过渡角与切削深度的关系,通过n组不同压入深度钻齿破岩实验和回归方法确定,具体表达式如下:
Figure 83979DEST_PATH_IMAGE052
式中,
Figure 248244DEST_PATH_IMAGE053
Figure 286607DEST_PATH_IMAGE054
Figure 296151DEST_PATH_IMAGE055
为上式拟合公式系数,无量纲;
Figure 611726DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad;
Figure 681313DEST_PATH_IMAGE025
为切削深度,其单位为mm,n为压入深度钻齿破岩实验组数。
钻齿侵入等效宽度的计算方法如下:
Figure 206972DEST_PATH_IMAGE056
式中,R为圆柱形钻齿直径,其单位为mm;w为钻齿侵入等效宽度,其单位为mm;
Figure 941579DEST_PATH_IMAGE025
为切削深度,其单位为mm。
本发明公开了考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,该计算方法包括:首先,选定目标钻齿和岩石,确定目标钻齿的类型、钻齿的几何尺寸、岩石类型、岩石参数;然后,通过钻齿水平切削力学计算方法计算钻齿的水平切削力;而后,通过钻齿垂直压入力学计算方法计算钻齿的垂直压入力;最后,通过钻齿的合力计算方法计算钻齿所受到的合力。本发明公开了一种考虑岩石动态强度和混合破碎模式的钻齿力学计算流程,提供了一种能够准确快速的获得不同工况下的钻齿力学的计算方法。
本发明考虑岩石动态强度和混合破碎模式,建立一种钻齿力学计算方法,本发明充分考虑钻石破岩过程的真实力学状态,充分考虑考虑岩石动态强度、混合破碎模式、钻齿运动速度、钻齿形状和岩石应变率,克服了现有钻齿力解析计算方法考虑岩石破坏模式单一,只考虑静态或准静态岩石强度的缺点,为钻头设计与研发、钻井工程参数优化、工具优化或优选,提速降本增效提供重要指导和支撑作用,具有广阔应用前景。
至此,本领域技术人员认识到,虽然本文已详尽展示和描述了本发明的实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导符合本发明原理的许多其他变形或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变形或修改。

Claims (8)

1.考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,其特征在于,所述钻齿力学计算方法包括以下步骤:
步骤S1:选定目标钻齿和岩石,确定目标钻齿的类型、钻齿的几何尺寸、岩石类型、岩石参数;所述目标钻齿的类型包括了圆柱形钻齿、楔形钻齿;钻齿的几何尺寸包括圆柱形钻齿的直径、圆柱形钻齿的高度、楔形钻齿高度、楔形钻齿的楔角;岩石参数包括岩石静态单轴压缩强度、静态岩石拉伸强度、静态岩石剪切强度、岩石内摩擦角、动态岩石单轴压缩强度、动态岩石拉伸强度、动态岩石剪切强度;
步骤S2:通过钻齿水平切削力学计算方法计算钻齿的水平切削力,钻齿水平切削力学计算方法根据以下公式确定:
Figure 916230DEST_PATH_IMAGE001
其中,
Figure 396890DEST_PATH_IMAGE002
Figure 880875DEST_PATH_IMAGE003
Figure 472393DEST_PATH_IMAGE004
Figure 369942DEST_PATH_IMAGE005
Figure 959186DEST_PATH_IMAGE006
Figure 738923DEST_PATH_IMAGE007
Figure 71816DEST_PATH_IMAGE008
Figure 823871DEST_PATH_IMAGE009
Figure 646334DEST_PATH_IMAGE010
Figure 913367DEST_PATH_IMAGE011
Figure 49950DEST_PATH_IMAGE012
Figure 656512DEST_PATH_IMAGE013
Figure 649876DEST_PATH_IMAGE014
Figure 341888DEST_PATH_IMAGE015
式中,
Figure 344479DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N;
Figure 805548DEST_PATH_IMAGE017
为动态岩石单轴压缩强度,其单位为MPa;
Figure 969813DEST_PATH_IMAGE018
为动态岩石拉伸强度,其单位为MPa;
Figure 149121DEST_PATH_IMAGE019
为动态岩石剪切强度,其单位为MPa;
Figure 689824DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 5399DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad;
Figure 606145DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 7170DEST_PATH_IMAGE023
为岩石内摩擦角,
Figure 351564DEST_PATH_IMAGE024
为钻齿侵入等效宽度,其单位为mm;
Figure 521645DEST_PATH_IMAGE025
为切削深度,其单位为mm;
步骤S3:通过钻齿垂直压入力学计算方法计算钻齿的垂直压入力;
步骤S4:通过钻齿的合力计算方法计算钻齿所受到的合力。
2.如权利要求1所述的考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,其特征在于,所述步骤S3中,钻齿垂直压入力学计算方法根据以下公式确定:
Figure 293292DEST_PATH_IMAGE026
式中,
Figure 181614DEST_PATH_IMAGE027
为钻齿的垂直压入力,其单位为N;
Figure 64119DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 354286DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 296834DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N。
3.如权利要求1所述的考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,其特征在于,所述步骤S4中,钻齿的合力计算方法根据以下公式确定:
Figure 734769DEST_PATH_IMAGE028
其中,
Figure 358648DEST_PATH_IMAGE002
Figure 565638DEST_PATH_IMAGE003
Figure 616771DEST_PATH_IMAGE004
Figure 542002DEST_PATH_IMAGE005
Figure 703993DEST_PATH_IMAGE006
Figure 31069DEST_PATH_IMAGE007
Figure 987524DEST_PATH_IMAGE008
Figure 400050DEST_PATH_IMAGE009
Figure 365732DEST_PATH_IMAGE010
Figure 547315DEST_PATH_IMAGE011
Figure 940250DEST_PATH_IMAGE012
Figure 574494DEST_PATH_IMAGE013
Figure 78288DEST_PATH_IMAGE014
Figure 379956DEST_PATH_IMAGE015
式中,
Figure 6109DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N;
Figure 65332DEST_PATH_IMAGE017
为动态岩石单轴压缩强度,其单位为MPa;
Figure 435134DEST_PATH_IMAGE018
为动态岩石拉伸强度,其单位为MPa;
Figure 528992DEST_PATH_IMAGE019
为动态岩石剪切强度,其单位为MPa;
Figure 326046DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 872565DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad;
Figure 780478DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 728843DEST_PATH_IMAGE023
为岩石内摩擦角,
Figure 696799DEST_PATH_IMAGE024
为钻齿侵入等效宽度,其单位为mm;
Figure 730614DEST_PATH_IMAGE025
为切削深度,其单位为mm;
Figure 442218DEST_PATH_IMAGE029
为钻齿的合力,其单位为N。
4.如权利要求1所述的考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,其特征在于,所述岩石参数的岩石静态单轴压缩强度、静态岩石拉伸强度、静态岩石剪切强度、岩石内摩擦角通过现场测井数据或室内岩石力学实验测得;所述岩石参数的动态岩石单轴压缩强度、动态岩石拉伸强度、动态岩石剪切强度根据以下步骤获得:
步骤S11:通过分离式霍普金森压杆岩石力学实验测得动态岩石单轴压缩强度,并建立动态岩石单轴压缩强度、岩石静态单轴压缩强度、载荷动态加载应变率之间的关系,表达形式如下:
Figure 307406DEST_PATH_IMAGE030
步骤S12:通过分离式霍普金森压杆岩石力学实验测得动态岩石拉伸强度,动态岩石拉伸强度为巴西劈裂间接拉伸强度,并建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系,表达形式如下:
Figure 383946DEST_PATH_IMAGE031
步骤S13:通过分离式霍普金森压杆岩石力学实验测得动态岩石剪切强度,并建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系,表达形式如下:
Figure 967374DEST_PATH_IMAGE032
式中,
Figure 420352DEST_PATH_IMAGE033
Figure 140047DEST_PATH_IMAGE034
Figure 387488DEST_PATH_IMAGE035
Figure 458213DEST_PATH_IMAGE036
Figure 386986DEST_PATH_IMAGE037
Figure 226766DEST_PATH_IMAGE038
Figure 656827DEST_PATH_IMAGE039
Figure 214848DEST_PATH_IMAGE040
为拟合系数,无量纲;
Figure 619415DEST_PATH_IMAGE041
为岩石静态单轴压缩强度,其单位为MPa;
Figure 313702DEST_PATH_IMAGE042
为静态岩石拉伸强度,其单位为MPa;
Figure 168525DEST_PATH_IMAGE043
为静态岩石剪切强度,其单位为MPa;
Figure 948263DEST_PATH_IMAGE017
动态岩石单轴压缩强度,其单位为MPa;
Figure 281155DEST_PATH_IMAGE018
为动态岩石拉伸强度,其单位为MPa;
Figure 95527DEST_PATH_IMAGE019
为动态岩石剪切强度,其单位为MPa;
Figure 855673DEST_PATH_IMAGE044
为载荷动态加载应变率,其单位为s-1
Figure 122706DEST_PATH_IMAGE045
为载荷动态加载临界应变率,其单位为s-1
所述钻齿破岩过程载荷动态加载应变率
Figure 259289DEST_PATH_IMAGE044
计算方法表达形式如下:
Figure 928168DEST_PATH_IMAGE046
式中,
Figure 859215DEST_PATH_IMAGE044
为为载荷动态加载应变率,其单位为s-1
Figure 613544DEST_PATH_IMAGE047
为切削齿速度,其单位为mm/s;
Figure 288239DEST_PATH_IMAGE025
为切削深度,其单位为mm;
Figure 811624DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 179152DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad。
5.如权利要求1所述的考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,其特征在于,所述钻齿和岩石接触面之间的平均摩擦角与钻齿后倾角关联关系,具体表达式如下:
Figure 420777DEST_PATH_IMAGE048
式中,
Figure 633584DEST_PATH_IMAGE049
Figure 277055DEST_PATH_IMAGE050
为上式拟合公式系数,无量纲;
Figure 549904DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 278826DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad。
6.如权利要求5所述的考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,其特征在于,所述钻齿和岩石接触面之间的平均摩擦角与钻齿后倾角关联关系可通过如下步骤确定:
步骤S31:开展n组不同后倾角钻齿破岩实验,获得实验过程的钻齿水平切削力和垂直压入力,通过如下关系求得钻齿和岩石接触面之间的平均摩擦角:
Figure 295324DEST_PATH_IMAGE051
式中,
Figure 793301DEST_PATH_IMAGE022
为钻齿和岩石接触面之间的平均摩擦角,其单位为rad;
Figure 502631DEST_PATH_IMAGE020
为钻齿后倾角,其单位为rad;
Figure 453270DEST_PATH_IMAGE027
为钻齿的垂直压入力,其单位为N;
Figure 273458DEST_PATH_IMAGE016
为钻齿水平切削力,其单位为N;
步骤S32:通过拟合方法确定钻齿和岩石接触面之间的平均摩擦角与后倾角关联关系。
7.如权利要求1所述的考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,其特征在于,所述成屑-压实过渡角与切削深度的关系,通过n组不同压入深度钻齿破岩实验和回归方法确定,具体表达式如下:
Figure 625942DEST_PATH_IMAGE052
式中,
Figure 506173DEST_PATH_IMAGE053
Figure 944108DEST_PATH_IMAGE054
Figure 302408DEST_PATH_IMAGE055
为上式拟合公式系数,无量纲;
Figure 774978DEST_PATH_IMAGE021
为成屑-压实过渡角,其单位为rad;
Figure 888427DEST_PATH_IMAGE025
为切削深度,其单位为mm,n为压入深度钻齿破岩实验组数。
8.如权利要求1所述的考虑岩石动态强度和混合破碎模式的钻齿力学计算方法,其特征在于,所述钻齿侵入等效宽度的计算方法如下:
Figure 751341DEST_PATH_IMAGE056
式中,R为圆柱形钻齿直径,其单位为mm;w为钻齿侵入等效宽度,其单位为mm;
Figure 975649DEST_PATH_IMAGE025
为切削深度,其单位为mm。
CN202110797870.6A 2021-07-15 2021-07-15 考虑岩石动态强度和混合破碎模式的钻齿力学计算方法 Active CN113255174B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110797870.6A CN113255174B (zh) 2021-07-15 2021-07-15 考虑岩石动态强度和混合破碎模式的钻齿力学计算方法
US17/866,461 US11657193B2 (en) 2021-07-15 2022-07-15 Mechanics calculation method of drill bit tooth considering rock dynamic strength and mixed crushing mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110797870.6A CN113255174B (zh) 2021-07-15 2021-07-15 考虑岩石动态强度和混合破碎模式的钻齿力学计算方法

Publications (2)

Publication Number Publication Date
CN113255174A CN113255174A (zh) 2021-08-13
CN113255174B true CN113255174B (zh) 2021-09-17

Family

ID=77191277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110797870.6A Active CN113255174B (zh) 2021-07-15 2021-07-15 考虑岩石动态强度和混合破碎模式的钻齿力学计算方法

Country Status (2)

Country Link
US (1) US11657193B2 (zh)
CN (1) CN113255174B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113775295B (zh) * 2021-11-09 2022-01-18 西南石油大学 一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法
CN113821894B (zh) * 2021-11-25 2022-01-21 西南石油大学 一种基于局部变强度破岩原理的钻头设计方法
CN117890477B (zh) * 2024-03-13 2024-05-17 西南交通大学 一种基于tsp数据对岩石抗压强度的推算方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105479605A (zh) * 2014-10-09 2016-04-13 茂迪股份有限公司 晶锭切割装置
CN113049358A (zh) * 2019-12-26 2021-06-29 有研工程技术研究院有限公司 一种金属材料动态断裂性能的表征方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498480B (en) * 2008-12-18 2013-10-09 Smith International Method of designing a bottom hole assembly and a bottom hole assembly
US10954756B2 (en) * 2014-12-29 2021-03-23 Halliburton Energy Services, Inc. Core bit designed to control and reduce the cutting forces acting on a core of rock
CN107067333B (zh) * 2017-01-16 2022-12-20 长沙矿山研究院有限责任公司 一种高寒高海拔高陡边坡稳定性监控方法
CN108733949B (zh) * 2018-05-29 2021-02-09 西南石油大学 一种基于塑性耗能比的钻进参数优选方法
CN111832197A (zh) * 2019-03-26 2020-10-27 中石化石油工程技术服务有限公司 一种钻井分析方法
CN110761779B (zh) * 2019-10-26 2021-03-23 西南石油大学 钻井液固结井壁破碎围岩能力的评价方法
CN111460601B (zh) * 2019-12-06 2020-11-17 西南石油大学 基于岩石物理建模的正交各向异性地层地应力预测方法
CN112730134B (zh) * 2020-12-18 2023-10-13 中铁山河工程装备股份有限公司 一种破岩刀具材料-密实核物质对磨试验方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105479605A (zh) * 2014-10-09 2016-04-13 茂迪股份有限公司 晶锭切割装置
CN113049358A (zh) * 2019-12-26 2021-06-29 有研工程技术研究院有限公司 一种金属材料动态断裂性能的表征方法

Also Published As

Publication number Publication date
US20220374560A1 (en) 2022-11-24
CN113255174A (zh) 2021-08-13
US11657193B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
CN113255174B (zh) 考虑岩石动态强度和混合破碎模式的钻齿力学计算方法
Zhao et al. Effects of jointed rock mass and mixed ground conditions on the cutting efficiency and cutter wear of tunnel boring machine
Ma et al. Study on the influence of confining stress on TBM performance in granite rock by linear cutting test
Cho et al. Optimum spacing of TBM disc cutters: A numerical simulation using the three-dimensional dynamic fracturing method
Copur, H., Bilgin, N., Tuncdemir, H. & Balci A set of indices based on indentation tests for assessment of rock cutting performance and rock properties
CN1966934A (zh) 一种随钻预测钻头底下地层坍塌压力和破裂压力的方法
Chen et al. Modeling of PDC single cutter–Poroelastic effects in rock cutting process
Liu et al. Experimental study of the force response and chip formation in rock cutting
Zhang et al. Numerical and experimental investigation of rock breaking method under free surface by TBM disc cutter
Li et al. A PFC3D-based numerical simulation of cutting load for lunar rock simulant and experimental validation
CN109540769A (zh) 一种基于声发射探测技术的弯曲渗流试验装置及试验方法
CN115979870A (zh) 一种岩体力学参数与工程特性原位评估方法
Che et al. A novel method for analyzing working performance of milling tools based on reverse engineering
Jiang et al. Research on the mechanism and performance of free-surface rock breakage by a disc cutter
Liu et al. Experimental study of the rock cutting mechanism with PDC cutter under confining pressure condition
Deng et al. Investigations on cutting force and temperature field of pick cutter based on single factor and orthogonal test methods
Liu et al. A new approach of rock cutting efficiency evaluation by using plastic energy dissipation ratio
Sabri et al. A Numerical Investigation of the Effect of Disc Cutter Wear on Rock-Cutting Forces in Mechanized Tunnel Boring Machines
Liu et al. Investigation on the tool-rock interaction using an extended grain-based model
Deli et al. Study on key factors influencing the ROP improvement of PDC bits
Da Fontoura et al. Rock mechanics aspects of drill bit rock interaction
Gonze et al. Discrete element modelling of rock-cutting experiments under confining pressure
Wang et al. Study on the optimum penetration depth by two TBM cutters under different cutter spacings
Mafazy et al. Influence of Rock Microstructure on Rock Strength and Drilling Rate of Penetration (ROP)
Jinping et al. Simulation and Experimental Study of the Rock Breaking Mechanism of Personalized Polycrystalline Diamond Compact Bits.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant