CN113225117A - 一种多用户Massive MIMO***信号发送和接收方法 - Google Patents

一种多用户Massive MIMO***信号发送和接收方法 Download PDF

Info

Publication number
CN113225117A
CN113225117A CN202110459200.3A CN202110459200A CN113225117A CN 113225117 A CN113225117 A CN 113225117A CN 202110459200 A CN202110459200 A CN 202110459200A CN 113225117 A CN113225117 A CN 113225117A
Authority
CN
China
Prior art keywords
user
log
transmitting
receiving
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110459200.3A
Other languages
English (en)
Inventor
苗静怡
方舒
黄润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110459200.3A priority Critical patent/CN113225117A/zh
Publication of CN113225117A publication Critical patent/CN113225117A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明属于无线通信技术领域,具体为一种多用户Massive MIMO***信号发送和接收方法。本发明的方案直接对信道的CSI(Channel State Information)进行波束赋形,通过基于迫零的波束赋形技术对所发信号进行波束赋形或预编码操作。在此架构下,发送端可将所有的信息比特放入一个数据流中进行传输,并且可利用发端和收端所有天线,在发端获得波束赋形增益,在接收端通过所有接收天线联合检测获得接受分集增益。本发明在多用户SM‑MIMO***中既实现了发射机的发射波束赋形增益,又实现了接收机的空间分集增益,可以在单个数据流中注入更多比特,从而实现较高的传输数据速率和良好的性能。

Description

一种多用户Massive MIMO***信号发送和接收方法
技术领域
本发明属于无线通信技术领域,具体为一种多用户Massive MIMO***信号发送和接收方法。
背景技术
多输入多输出(MIMO)技术可以在不增加发射功率和频谱资源的情况下显著提高频谱效率。其中,空间复用和空间分集备受关注,比如垂直分层时空(V-BLAST)和Alamouti空时分组编码(STBC)等。此外,波束赋形技术是一种高效的MIMO传输技术,起源于阵列信号处理技术,通过对不同天线的发射信号进行称重和梳理,形成能量聚焦波束,发射定向的强波束来降低接收机的高传输损耗以提高接收机的信噪比,是空间滤波的一种重要手段,现已成为5G及5G以外移动通信***的关键技术和研究热点。目前移动通信***中最常用的波束形成方法包括最大比传输(Maximum Ratio Transmission,MRT),迫零(Zero Forcing,ZF),最小均方误差(Minimum Mean Square Error,MMSE),块对角化(BlockDiagonalization,BD)和信漏噪比(Signal to Leakage and Noise Ratio,SLNR)。到目前为止,对于不同MIMO场景下波束形成矢量的设计和优化已经有了广泛的研究。同时,空间调制作为一种新的MIMO技术,近年来引起了广泛的讨论,它具有单一的射频特性和独特的开关结构,简化了发射和接收的实现。此外,空间移位键控(SSK)是一种与SM类似但更简化的方法,仅利用天线的索引来调制单个射频的信息,实现更低的实际实现复杂性和成本。利用信道状态信息(CSI)在发送端进行预处理可以进一步提高SM***的性能。
考虑到性能、计算复杂度和实际应用,特别是在大规模MIMO场景下,如何利用波束赋形技术提高SM-MIMO***的频谱效率和性能,同时实现其实际应用仍是一个热点和悬而未决的课题。
发明内容
针对上述问题,本发明基于CSI辅助MIMO***的巨大优势,提出一种用于多用户SM/SSK MIMO***的迫零波束赋形辅助的单层传输技术,本发明中将其定义为MU-SZF-SM/MU-SZF-SSK,本发明的方案直接对信道的CSI(Channel State Information)进行波束赋形,通过基于迫零的波束赋形技术对所发信号进行波束赋形或预编码操作。在此架构下,发送端可将所有的信息比特放入一个数据流中进行传输,并且可利用发端和收端所有天线,在发端获得波束赋形增益,在接收端通过所有接收天线联合检测获得接受分集增益。
本发明的技术方案是:
本发明采用的基本技术方案是采用多输入多输出***二进制数字信号空间调制方法,并假设发射端已知信道状态信息。所述***具有s个用户,每个用户有Nt根发射天线,Nr根接收天线,用于传输每组b1+b2比特的数字信号。其中前b1比特映射为天线序号,即空间调制后要激活的天线,最后b2比特映射为APM符号,对所得信号进行预编码处理后,在接收端进行最大似然检测并译码输出。
在传统基于迫零的多用户MIMO技术(MIMO-ZF)中,其适用于满流传输,即每用户传输流数等于接收天线数,因此其频谱效率即每一流的星座阶数乘上总的流数。而当传统MIMO-ZF每用户传输流数小于接收天线数时,会使得接收端某些天线无法接收信号,造成接收天线无法完全利用的问题。尤其当传统多用户MIMO-ZF进行其单流传输时更无法实现接收分集增益,因为这种情况下只有一个目标天线能够接收信号,因此无法对所有接收信号进行联合检测。本方案的创新之处在于,在传统多用户MIMO-ZF技术中融入空间调制技术,直接对信道的CSI信息进行波束赋形,并且对于每个用户,将所有的信息位放入一个数据流中进行传输,通过迫零的波束赋形技术对所发信号进行预编码操作,并在接收端利用所有天线联合检测。
发送端
在MU-SZF-SM中,比特信息通过分组分别映射成发射天线序号和星座点符号,假设采用M阶调制,此时***的频谱效率B=s*(log2(Nt)+log2(M)),其中s为用户数。前log2(Nt)比特二进制转十进制,其转化后的数值用来选择激活第1个用户的发射天线i1的序号,接下来的log2(M)比特二进制转十进制,其转化后的数值用来选择发送的星座点符号x1j,接着的log2(Nt)比特映射成选择激活第2个用户的发射天线i2的序号,再log2(M)比特二进制转十进制,其转化后的数值映射为用户2选择发送的星座点符号x2j,以此类推,第s个用户的发射天线is被激活,选择发送的星座点符号为xsj,这些传统的调制星座可以是多级相移键控星座(PSK)或正交调幅星座(QAM),于是被激活的发送天线矩阵和选择发送的星座点符号矩阵表示如下:
i=[i1,i2,…,im,…is]T#(1)
Figure BDA00030416350600000311
在多用户MIMO配置下,整个***的信道矩阵H具有Nt根发射天线,(Nr*s)根接收天线,其中每用户配置Nr根接收天线,因此是一个(Nr*s)*Nt维的矩阵,表示如下:
H=[H1,H2,…,Hm,…Hs]T#(3)
Figure BDA0003041635060000031
Figure BDA0003041635060000032
此***在波束赋形前的发射符号表示如下:
x=[x1,x2,…xm,…,xs]T#(6)
Figure BDA0003041635060000033
其中,式中
Figure BDA0003041635060000034
为第m个用户的第im根发射天线到所有接收天线的信道列向量。
Figure BDA0003041635060000035
中的每个元素都服从独立的高斯分布CN(0,1),
Figure BDA0003041635060000036
是第m个用户的APM星座的映射符号,
Figure BDA0003041635060000037
是发射功率。如果
Figure BDA0003041635060000038
那么就是MU-SZF-SSK***,如果
Figure BDA0003041635060000039
是一个传统的APM符号,那么就是一个MU-SZF-SM***。第m个用户在MU-SZF-SM/MU-SZF-SSK MIMO***下的传输信号xm是一个Nr×1的向量,它是由一个含有log2(Nt)以及log2(M)比特的单流信号组成的。值得注意的是,对于每个用户而言,所有信息位都被放在一个数据流
Figure BDA00030416350600000310
上,在这点上与传统多用户MIMO-ZF满流传输不同。具体来说,对于本发明提出的方案,每个用户的发送层不会随着Nr的增加而增加,这与传统多用户MIMO-ZF***有很大的不同,因为传统多用户MIMO-ZF中每个用户的发送层通常与接收天线Nr相关。对于接收天线为Nr的多用户MIMO-ZF***中的每个用户,生成Nr×1维传输矢量,由Nr个不同的APM符号组成,视为Nr流传输,传输的信息量为Nr×log2M比特。但是,本发明提出的MU-SZF-SM/MU-SZF-SSK中每个用户的传输流数并不会随着Nr的变化而变化,因为发射信号的log2(Nt)+log2(M)比特信息只与发射天线数Nt和调制阶数M有关。因此,发送信号x在MU-SZFSM/MU-SZF-SSK MIMO***中是一个矢量,它传递的是s个log2(Nt)+log2(M)比特的单层数据流,这种结构可以避免严重的干扰,从而获得良好的性能。另外,对每个用户来说,发出的信号不仅包括APM符号
Figure BDA0003041635060000041
还包括空间信道
Figure BDA0003041635060000042
发射机将信道信息
Figure BDA0003041635060000043
直接发送到接收机,仍利用空间信道来传递信息。
然后需要对发射符号进行预编码处理,假设采用最简单的迫零(ZF)预编码算法,其预编码矩阵如下:
W=HH(HHH)-1#(8)
因此经历迫零波束赋形后得到每个用户的发射信号可以被表示为
Figure BDA0003041635060000044
其中,W为预编码矩阵,H为整个***的信道矩阵。此外,要对发射符号进行功率归一化,设α为功率归一化因子,则
Figure BDA0003041635060000045
接收端
对每个用户而言,经过信道后接收端得到的信号可以表达为如下形式:
Figure BDA0003041635060000046
其中n为(s*Nr)×1维高斯白噪声向量,元素服从CN(0,1),
Figure BDA0003041635060000047
为发射功率,矩阵
Figure BDA0003041635060000048
是MIMO***下Nr×Nr的功率归一化矩阵,在这里
Figure BDA0003041635060000049
Figure BDA00030416350600000410
被认为是修正后的发射稀疏信号向量。待功率归一化后,接下来对接收端得到的信号进行最大似然法检测:
Figure BDA00030416350600000411
对于MIMO-ZF的传统波束赋形,即使在接收端有多个天线的情况下,也很难实现接收分集增益。这是因为多流传输的多用户MIMO-ZF的预处理是通过预先消除发射机处的干扰来实现的,而不需要接收端多个天线之间进行联合检测。因此,MIMO-ZF采用多流传输,每个接收天线获得事先在发射机处形成的目标APM符号而不受干扰。
本发明的有益效果是:本发明提出的MU-SZF-SM/MU-SZF-SSK是针对单流传输精心设计的,在多用户SM-MIMO***中既实现了发射机的发射波束赋形增益,又实现了接收机的空间分集增益。由于MU-SZF-SM/MU-SZF-SSK具有显著的波束形成增益和接收分集增益,可以在单个数据流中注入更多比特,从而实现较高的传输数据速率和良好的性能。
附图说明
图1为基于本发明的MIMO配置***模型示意图;
图2为32发2用户4收MU-MIMO-ZF与MU-SZF-SSK对比图。
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
如图1所示,简要展示了本发明提出的MU-SZF-SM/MU-SZF-SSK的MIMO配置***模型,该模型大概分为四个模块,预编码模块,CSI构造的空间符号模块,发射端模块,接收端模块。
实施例
本例中***采用SSK调制,发射天线数量Nt=32,用户数目为2,接收天线数数量Nr=4,所以***的总频谱效率为B=s*(log2(Nt)+log2(M))=10bps/Hz,于是被激活的发送天线矩阵和选择发送的星座点符号矩阵表示如下:
i=[i1,i2]T#(12)
Figure BDA0003041635060000051
在MU-MIMO配置下,整个***的信道矩阵H具有32根发射天线,8根接收天线,其中每用户配置4根接收天线,因此是一个8*32维的矩阵。发射端通过反馈链路得知信道状态信息为:
Figure BDA0003041635060000052
H=[H1,H2]T#(15)
若第2个用户待传输的比特数据为b=00101,根据映射规则可知,这5个比特00101为空间比特,映射为空间符号h25=[h1,25 h2,25 … h4,25]T,由于采用SSK调制,所以确定
Figure BDA0003041635060000061
待发射的符号为
Figure BDA0003041635060000062
其中,式中h25为第2个用户的第5根发射天线到所有接收天线的信道列向量。h25中的每个元素都服从独立的高斯分布CN(0,1),
Figure BDA0003041635060000063
是第2个用户的APM星座的映射符号,
Figure BDA0003041635060000064
是发射功率。第2个用户在MU-SZF-SM/MU-SZF-SSK MIMO***下的传输信号x2是一个4×1的向量,它是由一个含有log2(32)=5以及log2(2)=1比特的单流信号组成的。值得注意的是,对于用户2而言,所有信息位都被放在一个数据流
Figure BDA0003041635060000065
上,在这点上与传统多用户MIMO-ZF满流传输不同。具体来说,在以上提出的MU-SZF-SSK例子中,因为发射信号的log2(32)+log2(2)比特信息只与发射天线数和调制阶数有关。因此,发送信号x在MU-SZFSM/MU-SZF-SSKMIMO***中是一个矢量,它传递的是2个log2(32)+log2(2)比特的单层数据流,这种结构可以避免严重的干扰,从而获得良好的性能。另外,对用户2来说,发出的信号不仅包括APM符号
Figure BDA0003041635060000066
还包括空间信道h25,发射机将信道信息h25直接发送到接收机,仍利用空间信道来传递信息。
接下来进行预编码,预编码矩阵为W=HH(HHH)-1,并设α为功率归一化因子,则α=|Wh25|2,所以发射端的最终发射信号形式为:
Figure BDA0003041635060000067
通过以上的步骤实现了***的调制和预编码过程,经过信道之后接收信号在除去功率归一化因子后的形式如下:
Figure BDA0003041635060000068
其中n为8×1维高斯白噪声向量,元素服从CN(0,1),
Figure BDA0003041635060000069
为发射功率,矩阵
Figure BDA00030416350600000610
Figure BDA00030416350600000611
是MIMO***下4×4的功率归一化矩阵,在这里
Figure BDA00030416350600000612
待功率归一化后,接下来对接收端得到的信号进行最大似然法检测:
Figure BDA0003041635060000071
由最后的式子可以看出,此***作为2用户32发4收的MIMO***,通过结合波束赋形技术引入了性能增益,从接收端看来,只有第i2根天线需要被检测。该方案对收发天线数量没有限制,比较灵活,且能够带来较大的性能提升。下面结合仿真结果具体分析本发明发明对误码性能的提升。
图2为本发明所提出方案在发射天线数量为32,用户数为2,接收天线数量为4情况下的误码率对比,采用SSK调制,使得频谱效率为B=s*(log2(Nt)+log2(M))=10bps/Hz,而MU-MIMO-ZF***的在此情况下满流传输,频谱效率为B=s*Nr=8bps/Hz。总体上来看,本发明方案误码率的变化随信噪比改变较为缓慢,在低信噪比(6dB以下)情况下,本方案频谱效率比传统MU-MIMO-ZF高,而且误码率较传统MU-MIMO-ZF更低,其性能更好。

Claims (1)

1.一种多用户Massive MIMO***信号发送和接收方法,***中有s个用户,每个用户有Nt根发射天线,Nr根接收天线,用于传输每组b1+b2比特的数字信号,其中前b1比特映射为天线序号,后b2比特映射为APM符号;其特征在于,包括:
发送端
假设采用M阶调制,则***的频谱效率B=s*(log2(Nt)+log2(M)),前log2(Nt)比特二进制转十进制,其转化后的数值用来选择激活第1个用户的发射天线i1的序号,接下来的log2(M)比特二进制转十进制,其转化后的数值用来选择发送的星座点符号x1j,接着的log2(Nt)比特映射成选择激活第2个用户的发射天线i2的序号,再接着的log2(M)比特二进制转十进制,其转化后的数值映射为用户2选择发送的星座点符号x2j,以此类推,第s个用户的发射天线is被激活,选择发送的星座点符号为xsj,调制星座可为多级相移键控星座或正交调幅星座,被激活的发送天线矩阵和选择发送的星座点符号矩阵表示为:
i=[i1,i2,…,im,…is]T
Figure FDA0003041635050000011
***的信道矩阵H为:
H=[H1,H2,…,Hm,…Hs]T
Figure FDA0003041635050000012
Figure FDA0003041635050000013
在波束赋形前的发射符号为:
x=[x1,x2,…xm,…,xs]T
Figure FDA0003041635050000014
其中,
Figure FDA0003041635050000015
为第m个用户的第im根发射天线到所有接收天线的信道列向量,
Figure FDA0003041635050000016
中的每个元素都服从独立的高斯分布,xjm是第m个用户的APM星座的映射符号,
Figure FDA0003041635050000021
是发射功率;第m个用户的传输信号xm是一个Nr×1的向量,它是由一个含有log2(Nt)以及log2(M)比特的单流信号组成的,对每个用户,所有信息位都被放在一个数据流
Figure FDA0003041635050000022
上;
对发射符号进行预编码处理后得到发射信号
Figure FDA0003041635050000023
Figure FDA0003041635050000024
W=HH(HHH)-1
其中,α为功率归一化因子,
Figure FDA0003041635050000025
接收端
对每个用户,经过信道后接收端得到的信号为:
Figure FDA0003041635050000026
其中,n为(s*Nr)×1维高斯白噪声向量,矩阵
Figure FDA0003041635050000027
是MIMO***下Nr×Nr的功率归一化矩阵,
Figure FDA0003041635050000028
Figure FDA0003041635050000029
是修正后的发射稀疏信号向量;
对接收端得到的信号进行最大似然法检测:
Figure FDA00030416350500000210
CN202110459200.3A 2021-04-27 2021-04-27 一种多用户Massive MIMO***信号发送和接收方法 Pending CN113225117A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110459200.3A CN113225117A (zh) 2021-04-27 2021-04-27 一种多用户Massive MIMO***信号发送和接收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110459200.3A CN113225117A (zh) 2021-04-27 2021-04-27 一种多用户Massive MIMO***信号发送和接收方法

Publications (1)

Publication Number Publication Date
CN113225117A true CN113225117A (zh) 2021-08-06

Family

ID=77089668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110459200.3A Pending CN113225117A (zh) 2021-04-27 2021-04-27 一种多用户Massive MIMO***信号发送和接收方法

Country Status (1)

Country Link
CN (1) CN113225117A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708813A (zh) * 2021-08-25 2021-11-26 东南大学 一种基于波束赋形的多用户空间调制方法
CN114826341A (zh) * 2022-05-05 2022-07-29 电子科技大学 一种多输入多输出***的传输方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090038327A (ko) * 2007-10-15 2009-04-20 고려대학교 산학협력단 다중 송신 다중 수신 안테나를 가진 무선통신시스템에서전송 다이버시티 이득을 얻기 위한 순환적 프리코딩 장치및 그 방법
CN102487314A (zh) * 2010-12-03 2012-06-06 华为技术有限公司 多用户输入输出信号的发送、接收方法和装置
CN102694628A (zh) * 2012-05-07 2012-09-26 西安电子科技大学 基于多用户mimo协同中继***的干扰抑制方法
CN103957086A (zh) * 2014-04-11 2014-07-30 电子科技大学 Mu-mimo预编码实现方法
US20150319739A1 (en) * 2009-09-14 2015-11-05 Lg Electronics Inc. Method and apparatus for transmitting downlink signal in a mimo wireless communication system
CN105827293A (zh) * 2016-04-06 2016-08-03 郑州大学 一种多用户广义空间调制***线性迫零预编码方法
CN111917443A (zh) * 2020-08-10 2020-11-10 电子科技大学 多输入多输出***信号发送和接收方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090038327A (ko) * 2007-10-15 2009-04-20 고려대학교 산학협력단 다중 송신 다중 수신 안테나를 가진 무선통신시스템에서전송 다이버시티 이득을 얻기 위한 순환적 프리코딩 장치및 그 방법
US20150319739A1 (en) * 2009-09-14 2015-11-05 Lg Electronics Inc. Method and apparatus for transmitting downlink signal in a mimo wireless communication system
CN102487314A (zh) * 2010-12-03 2012-06-06 华为技术有限公司 多用户输入输出信号的发送、接收方法和装置
CN102694628A (zh) * 2012-05-07 2012-09-26 西安电子科技大学 基于多用户mimo协同中继***的干扰抑制方法
CN103957086A (zh) * 2014-04-11 2014-07-30 电子科技大学 Mu-mimo预编码实现方法
CN105827293A (zh) * 2016-04-06 2016-08-03 郑州大学 一种多用户广义空间调制***线性迫零预编码方法
CN111917443A (zh) * 2020-08-10 2020-11-10 电子科技大学 多输入多输出***信号发送和接收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏欣: "MU-MIMO***的用户调度和预编码联合优化", 《计算机工程与应用》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708813A (zh) * 2021-08-25 2021-11-26 东南大学 一种基于波束赋形的多用户空间调制方法
CN113708813B (zh) * 2021-08-25 2024-01-30 东南大学 一种基于波束赋形的多用户空间调制方法
CN114826341A (zh) * 2022-05-05 2022-07-29 电子科技大学 一种多输入多输出***的传输方法
CN114826341B (zh) * 2022-05-05 2023-03-28 电子科技大学 一种多输入多输出***的传输方法

Similar Documents

Publication Publication Date Title
Love et al. Limited feedback precoding for spatial multiplexing systems
Rajashekar et al. Quantifying the transmit diversity order of Euclidean distance based antenna selection in spatial modulation
CN110289897B (zh) 一种空间调制***的下行波束赋形方法
CN101848071A (zh) 分层空时***中有限反馈预编码非线性译码方法
CN111917443A (zh) 多输入多输出***信号发送和接收方法
Yu et al. Closed-loop extended orthogonal space-time block codes for three and four transmit antennas
CN113225117A (zh) 一种多用户Massive MIMO***信号发送和接收方法
CN106301496B (zh) 基于天线选择和预编码的空间调制***
KR20070074023A (ko) 다중 안테나 다중 사용자 통신 시스템의 최적 퍼터베이션장치 및 방법
CN108494456A (zh) 一种基于码本导频进行混合预编码方法
CN111901023A (zh) 一种无线通信***中的信号发送和接收方法
CN111147129A (zh) 一种低轨卫星通信***的预编码方法
Elganimi et al. Enhanced transmit antenna selection using OSTBC scheme with SVD-based hybrid precoding for 5G millimeter-wave communications
Bazdresch et al. A family of hybrid space-time codes for MIMO wireless communications
Raja et al. BER performance of SVD-based transmit beamforming with various modulation techniques
WO2006047918A1 (en) Method for improving the performance of multiple input multiple output transmit diversity using feedback
CN111901022B (zh) 一种预编码辅助的信号发送和接收方法
KR101100116B1 (ko) 송신 안테나 개수를 이용하여 프리코딩을 수행하는 개루프 통신 시스템의 송신 장치 및 방법
Garg et al. Order statistics based diagonal precoding for 4× 1 MISO system with real orthogonal space time block codes
CN110365377B (zh) 多天线空分多址和scma非正交多址结合的下行传输方法
Raja et al. Performance analysis of closed-loop MIMO system
Li et al. Golden coded multiple beamforming
Khajehnouri et al. A minimum co-user interference approach for multi-user MIMO downlink precoding
KR101577209B1 (ko) 다중 안테나―공간 다중화 무선 통신 시스템에서 신호 전송 방법 및 이를 위한 장치
Raja et al. SVD-based transmit beamforming for various modulations with convolution encoding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210806

WD01 Invention patent application deemed withdrawn after publication