CN113198510B - 一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法及应用 - Google Patents

一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法及应用 Download PDF

Info

Publication number
CN113198510B
CN113198510B CN202110493731.4A CN202110493731A CN113198510B CN 113198510 B CN113198510 B CN 113198510B CN 202110493731 A CN202110493731 A CN 202110493731A CN 113198510 B CN113198510 B CN 113198510B
Authority
CN
China
Prior art keywords
nickel
carbon nitride
phase carbon
heterojunction
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110493731.4A
Other languages
English (en)
Other versions
CN113198510A (zh
Inventor
于岩
刘海兵
陈俊斌
王炫威
陈飞飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110493731.4A priority Critical patent/CN113198510B/zh
Publication of CN113198510A publication Critical patent/CN113198510A/zh
Application granted granted Critical
Publication of CN113198510B publication Critical patent/CN113198510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法及应用,将三聚氰胺作为氮源,经水解‑水热和煅烧形成石墨相氮化碳微米管;将包含六水合氯化锌、六水合氯化钴、乌洛托品和石墨相氮化碳微米管的混合反应体系经油浴反应后进行煅烧,制得石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结。本发明制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结能有效促进光生电子‑空穴对的分离,制备过程简便、高效,表现出优异的光催化CO2还原性能,具有优异的环境效益。

Description

一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空 异质结的制备方法及应用
技术领域
本发明属于光催化CO2还原技术领域,利用低温油浴-空气煅烧两步法构筑的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结,并测量其光催化CO2还原性能。
背景技术
近年来,利用取之不尽、用之不竭的太阳能将CO2光催化还原为增值化学品已成为众多研究的焦点,光催化还原CO2被认为是缓解全球变暖和能源危机最有前景的途径之一。通常,光催化还原CO2的主要过程是适当的光子激发电子-空穴对,光生电子传输到表面活性中心,还原吸附的CO2分子。显然,电子向活性中心的传递是光催化CO2还原过程中的关键步骤之一。具有多个氧化还原态的过渡金属离子(如钴离子、镍离子)是建立CO2还原电子传递链的有利成分,可以有效地避免不需要的高能中间体的产生,促进多电子CO2还原,特别是当反应与质子结合时。尽管如此,由于光催化过程中电子-空穴对的快速复合和活性中心的不足,光催化还原CO2的效率仍然远远不足以实现实际应用。这大大降低了光生电子的利用率。因此,为了获得更好的光催化还原CO2性能,迫切需要开发合适的方法来促进光生电子的利用。
石墨相氮化碳是一种无金属半导体,原料丰富、易制备、结构稳定、可见光响应、高导带位置还原能力强但比表面积低、表面活性位点少、带隙宽、光生载流子快速复合不利于光催化CO2还原,因此,提高石墨相氮化碳基光催化剂的光催化还原CO2性能是研究重点。本发明采用层状双金属氧化物(LDO)改性石墨相氮化碳,开发一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结,具有良好可见光催化活性和环境效益,具有特别重要的意义。
发明内容
本发明的目的在于针对现有不足,提供一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法。本发明通过低温油浴-空气煅烧两步法构筑了石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结,具有良好可见光催化活性和环境效益。
为实现上述目的,本发明采用如下技术方案:
一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法,包括以下步骤:
(1)称取适量的氮源溶解于去离子水中,油浴加热搅拌至溶液澄清,得到溶液A;
(2)将步骤(1)得到的溶液A倒入反应釜中,在180℃下水热反应24h,之后随炉冷却至室温,经过离心、洗涤、干燥得到白色粉末B;
(3)取适量步骤(2)得到的白色粉末B在氮气气氛下煅烧,得到淡黄色粉末C(石墨相氮化碳微米管);
(4)取适量步骤(3)得到的淡黄色粉末C加入圆底烧瓶中,溶解在去离子水中超声分散,然后磁力搅拌形成溶液D;
(5)称取适量的六水合氯化镍,六水合氯化钴先后加入步骤(4)得到的溶液D中,在室温下搅拌30 min,然后再加入适量的乌洛托品,继续搅拌60min,得到溶液E;
(6)将步骤(5)得到的溶液E置于油浴锅上低温油浴并磁力搅拌,经过离心、洗涤、干燥得到绿色粉末F;
(7)将步骤(6)得到的绿色粉末F置于马弗炉以均匀升温速率煅烧,得到褐色的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结粉末。
进一步的,步骤(1)所述的氮源为三聚氰胺,用量为1-4g,加热温度为90℃,去离子水用量为60-240 ml。
进一步的,步骤(2)中反应釜容量为100ml。
进一步的,步骤(3)中煅烧参数具体为:升温速率为2 ℃/min,煅烧温度为520 ℃,保温时间为4 h。
进一步的,步骤(4)中去离子水体积为60 ml,搅拌速度为300 rpm,搅拌时间为30min。
进一步的,步骤(5)中六水合氯化镍、六水合氯化钴、乌洛托品三者摩尔比为1:1:8.75。
进一步的,步骤(6)中油浴参数具体为:油浴温度95 ℃,加热时间5 h。
进一步的,步骤(6)中搅拌速度为300 rpm,洗涤顺序为水和乙醇各洗涤三遍,然后真空干燥。
进一步的,步骤(7)中煅烧参数具体为:升温速率为2 ℃/min,煅烧温度为350 ℃,保温时间为2 h。
应用:石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结在光催化CO2还原上的应用。
本发明的有益效果在于:
(1)本发明采用低温油浴-空气煅烧两步法,构筑了石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结,该微米管中空异质结相对于传统方法制得的纳米管来说,具有更大的比表面积,从而获得更多的光催化反应活性位点,提高其光生电子利用率。为石墨相氮化碳微米管/过渡金属基复合材料的制备与功能化提供了新思路。
(2)本发明制备的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结,优化了石墨相氮化碳基光催化剂的光学性质和表面结构,降低了电荷转移的电阻;中空异质结构具有较高的比表面积和丰富的催化活性位点,促进反应物的吸附和表面依赖的催化反应,且该结构的薄透壳缩短了电荷的扩散路径,便于光生电子空穴对的分离和转移,由于光在腔内的反射和散射,中空结构的光吸收将得到加强,异质结界面由于内置电场的作用,能够加速光激发电荷的分离和定向运动,同时改善了复合光催化剂的光稳定性;当光照在该种材料上时,价带电子被激发跃迁到导带,分别在价带及导带形成光生空穴及光生电子,由于中空异质结界面电势作用,石墨相氮化碳微米管导带上的电子转移到镍钴层状双金属氧化物上,促使 g-C3N4的光生电子和空穴有效的分离,从而抑制了光生电子-空穴对的复合;光生载流子转移路径遵循 p-n 型机制,保留了层状双金属氧化物导带上的强还原性和石墨相氮化碳微米管价带上的强氧化性,具有良好的导电性,可以吸收更多的可见光和更多的CO2,从而提高了催化剂的光催化活性,为解决半导体应用于光催化还原CO2的关键瓶颈问题提供新思路。
(3)本发明的制备方法所需要的设备和材料易于获取,工艺操作简单,工艺条件简洁;制备的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结具有良好的可见光催化活性和环境效益。
附图说明
图1是实施例1中得到石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的XRD图;
图2是实施例1中石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的SEM图;
图3是实施例1中石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的SEM的mapping图;
图4是本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结、石墨相氮化碳微米管和镍钴层状双金属氧化物的阻抗谱、光电流对比图;
图5是本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结、石墨相氮化碳微米管和镍钴层状双金属氧化物的CO2吸附对比图;
图6是本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结、石墨相氮化碳微米管和镍钴层状双金属氧化物性能对比图;
图7是本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的循环性能图;
图8是本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结反应前后的XRD图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以结合。
实施例1
(1)将4 g三聚氰胺溶解在240 ml去离子水中,油浴加热到90 ℃搅拌至溶解得到澄清溶液A;
(2)取60 ml上述溶液A于100 ml反应釜中,在180 ℃下保温24 h,之后随炉冷却至室温,经过离心洗涤干燥得到白色粉末B;
(3)将上述的白色粉末B在氮气气氛下煅烧,煅烧参数为升温速率:2 ℃/min,煅烧温度:520 ℃,保温时间:4 h,得到淡黄色粉末C;
(4)将上述的淡黄色粉末C称取40 mg,置于100ml圆底烧瓶中,加入去离子水60ml,随后超声分散25 min,磁力搅拌30min得到溶液D,搅拌速度为300rpm;
(5)先称取1.0 mmol六水合氯化镍、1.0 mmol六水合氯化钴置于上述溶液D中,在300 rpm下搅拌30 min,随后加入8.75 mmol乌洛托品继续搅拌60 min,得到溶液E;
(6)将上述的溶液E置于95 ℃油浴锅上搅拌5 h,搅拌速度300 rpm,待冷却至室温后,经过离心、洗涤(水和乙醇各洗涤三遍)、真空干燥得到绿色的粉末F;
(7)将上述的绿色粉末F在空气中煅烧,煅烧参数为升温速率:2 ℃/min,煅烧温度:350 ℃,保温时间:2 h,得到褐色的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结。
对比例1
(1)将4 g三聚氰胺溶解在240 ml去离子水中,油浴加热到90 ℃搅拌至溶解得到澄清溶液A;
(2)取60 ml上述溶液A于100 ml反应釜中,在180 ℃下保温24 h,之后随炉冷却至室温,经过离心洗涤干燥得到白色粉末B;
(3)将上述的白色粉末B在氮气气氛下煅烧,煅烧参数为升温速率:2 ℃/min,煅烧温度:520 ℃,保温时间:4 h,得到淡黄色的石墨相氮化碳微米管。
对比例2
(1)先称取1.0 mmol六水合氯化镍、1.0 mmol六水合氯化钴置于100 ml圆底烧瓶中,加入去离子水60 ml,在300 rpm下搅拌30 min,随后加入8.75 mmol乌洛托品继续搅拌60 min,得到溶液A;
(2)将上述的溶液A置于95 ℃油浴锅上保温5 h,待冷却至室温后,离心、洗涤(水和乙醇各洗涤三遍)、干燥得到黑色的镍钴层状双金属氧化物。
光催化CO2还原实验
应用实施例1
将实施例1中得到的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结用于光催化二氧化碳还原,具体步骤如下:
(1)取2 mg石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结;8 mg氯化三(2’2-联吡啶)钌(Ⅱ)为助催化剂;1 mL三乙醇胺为电子给体;2 mL去离子水、3 mL乙腈为溶剂,加入到25 mL的石英玻璃反应器中;
(2)将反应器密封,用真空泵抽出反应器中的空气,再通入CO2气体,抽气-通气重复三次,确保反应器充满CO2气体;
(3)将反应器置于带420 nm截至滤光片的300 W的泊菲莱氙灯下进行光照,并且保持恒温搅拌,温度控制在30℃;
(4)每隔1 h,用取样针抽取500 uL反应器的气体,用气相色谱(Agilent 7890BGC)定量分析。
应用对比例1
(1)取2 mg对比例1制备的石墨相氮化碳微米管;8 mg 氯化三(2’2-联吡啶)钌(Ⅱ)为助催化剂;1 mL三乙醇胺为电子给体;2 mL去离子水、3 mL乙腈为溶剂,加入到25 mL的石英玻璃反应器中;
(2)将反应器密封,用真空泵抽出反应器中的空气,再通入CO2气体,抽气-通气重复三次,确保反应器充满CO2气体;
(3)将反应器置于带420 nm截至滤光片的300 W的泊菲莱氙灯下进行光照,并且保持恒温搅拌,温度控制在30℃;
(4)每隔1 h,用取样针抽取500 uL反应器的气体,用气相色谱(Agilent 7890BGC)定量分析。
应用对比例2
(1)取2 mg对比例2制备的镍钴层状双金属氧化物;8 mg 氯化三(2’2-联吡啶)钌(Ⅱ)为助催化剂;1 mL三乙醇胺为电子给体;2 mL去离子水、3 mL乙腈为溶剂,加入到25 mL的石英玻璃反应器中;
(2)将反应器密封,用真空泵抽出反应器中的空气,再通入CO2气体,抽气-通气重复三次,确保反应器充满CO2气体;
(3)将反应器置于带420 nm截至滤光片的300 W的泊菲莱氙灯下进行光照,并且保持恒温搅拌,温度控制在30℃;
(4)每隔1 h,用取样针抽取500 uL反应器的气体,用气相色谱(Agilent 7890BGC)定量分析。
结果分析
图1是本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的X射线衍射图,可以看到石墨相氮化碳微米管负载镍钴层状双金属氧化物后的XRD变为镍钴层状双金属氧化物的物相,说明镍钴层状双金属氧化物紧紧包裹在石墨相氮化碳的表面。图2是本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的SEM图,可以看到石墨相氮化碳的中空六方管上长满了镍钴层状双金属氧化物纳米片。图3是发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物中空异质结的SEM的mapping图,其进一步说明石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的成功合成。图4为本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的阻抗图谱以及光电流谱,可看出该中空异质结的阻抗光谱半径最小,即阻抗最低,且其光电流最高,证明在光照条件下石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结可以产生更多的可用电子,说明石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的存在加快了电子-空穴分离效率。图5是本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结、石墨相氮化碳微米管和镍钴层状双金属氧化物的CO2吸附对比图,T-CN、LDO和T-CN/LDO的CO2吸附量分别为2.11、 3.82 和4.32cm3 g-1,T-CN/LDO表现出最大的CO2吸附量,证明了石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结对CO2的高效吸附。图6是石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结、石墨相氮化碳微米管和镍钴层状双金属氧化物的光催化性能对比图,原始 T-CN的CO和H2的产率为695和457.5μmol g-1 h-1,原始LDO的CO 和H2 的产率为1635 和 225 μmol g-1 h-1,T-CN/LDO 分级中空异质结的CO 和 H2的产率为3645 和 942.5 μmol g-1 h-1, CO 活性相对于T-CN 提高 5 倍多,是 LDO 的 2 倍有余。图7是本发明实施例1制得的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的循环性能图,在4次循环实验后,活性的略微降低可能是由于多次的离心洗涤使得催化剂用量的损失导致,其光催化性能没有出现明显的下降,证明了石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的光催化稳定性。图8是反应前后的XRD图,进一步表明反应前后石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的物相没有发生变化。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进,均应包含在本发明的保护范围之内。

Claims (1)

1.一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的应用,其特征在于:所述石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结在光催化CO2还原制备CO上的应用;
所述石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法,包括以下步骤:
(1)将4 g三聚氰胺溶解在240 ml去离子水中,油浴加热到90 ℃搅拌至溶解得到澄清溶液A;
(2)取60 ml上述溶液A于100 ml反应釜中,在180 ℃下保温24 h,之后随炉冷却至室温,经过离心洗涤干燥得到白色粉末B;
(3)将上述的白色粉末B在氮气气氛下煅烧,煅烧参数为升温速率:2 ℃/min,煅烧温度:520 ℃,保温时间:4 h,得到淡黄色粉末C;
(4)将上述的淡黄色粉末C称取40 mg,置于100ml圆底烧瓶中,加入去离子水60 ml,随后超声分散25 min,磁力搅拌30min得到溶液D,搅拌速度为300rpm;
(5)先称取1.0 mmol六水合氯化镍、1.0 mmol六水合氯化钴置于上述溶液D中,在300rpm下搅拌30 min,随后加入8.75 mmol乌洛托品继续搅拌60 min,得到溶液E;
(6)将上述的溶液E置于95 ℃油浴锅上搅拌5 h,搅拌速度300 rpm,待冷却至室温后,经过离心、水和乙醇各洗涤三遍、真空干燥得到绿色的粉末F;
(7)将上述的绿色粉末F在空气中煅烧,煅烧参数为升温速率:2 ℃/min,煅烧温度:350℃,保温时间:2 h,得到褐色的石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结。
CN202110493731.4A 2021-05-07 2021-05-07 一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法及应用 Active CN113198510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110493731.4A CN113198510B (zh) 2021-05-07 2021-05-07 一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110493731.4A CN113198510B (zh) 2021-05-07 2021-05-07 一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113198510A CN113198510A (zh) 2021-08-03
CN113198510B true CN113198510B (zh) 2023-02-21

Family

ID=77029293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110493731.4A Active CN113198510B (zh) 2021-05-07 2021-05-07 一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113198510B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112138702A (zh) * 2020-10-20 2020-12-29 苏州大学 三维/二维Ni-Co双金属氧化物/g-C3N4纳米复合材料及其制备方法与应用
CN112221532A (zh) * 2020-11-16 2021-01-15 福州大学 一种硫铟锌/石墨相氮化碳分级中空异质结的制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112138702A (zh) * 2020-10-20 2020-12-29 苏州大学 三维/二维Ni-Co双金属氧化物/g-C3N4纳米复合材料及其制备方法与应用
CN112221532A (zh) * 2020-11-16 2021-01-15 福州大学 一种硫铟锌/石墨相氮化碳分级中空异质结的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《NiCo2O4 nanosheets as a novel oxygen-evolution reaction cocatalyst in situ bonded on the g-C3N4 photocatalyst for excellent overall water splitting》;Cheng Cheng et al;《Journal of Materials Chemistry A》;20210430;第9卷(第20期);第12299页摘要第2-6行,第12300页左栏第2.1.2节第1-14行 *

Also Published As

Publication number Publication date
CN113198510A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
Mei et al. Step-scheme porous g-C3N4/Zn0. 2Cd0. 8S-DETA composites for efficient and stable photocatalytic H2 production
CN107456991B (zh) 一种g-C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
CN108927178B (zh) 一种金属有机框架材料原位硫化法制备NiS/CdS复合催化剂的方法及应用
WO2021232751A1 (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
CN110841661A (zh) 1t-2h二硫化钼@硫化镉复合纳米材料的制备方法及其应用
CN111774058B (zh) 一种异质结复合光催化剂及其制备方法和应用
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
Li et al. Effect of visible light irradiation on hydrogen production by CoNi2S4/CdWO4 controllable flower spherical photocatalyst
CN110624550A (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
Liang et al. ZIF-L-derived C-doped ZnO via a two-step calcination for enhanced photocatalytic hydrogen evolution
CN110280276A (zh) 负载型光催化剂NiSe2/CdS的制备方法及其应用
CN112221532A (zh) 一种硫铟锌/石墨相氮化碳分级中空异质结的制备方法及应用
CN112495421A (zh) 一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法
He et al. In-situ nanoarchitectonics of noble-metal-free g-C3N4@ C-Ni/Ni2P cocatalyst with core-shell structure for efficient photocatalytic H2 evolution
CN112844412A (zh) 一种硫铟锌-MXene量子点复合光催化剂及其制备方法和应用
CN113680366A (zh) 一种石墨相氮化碳基复合光催化剂及其制备方法和应用
Li et al. Synergistic effect of MoS2 over WP photocatalyst for promoting hydrogen production
CN113198510B (zh) 一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法及应用
CN116673057A (zh) 一种原位光沉积负载的钴多硫化钼/氮化碳复合催化剂
CN112121857A (zh) 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用
CN108620133B (zh) 一种二维横向聚合物异质结可见光响应催化产氢材料的制备方法及其应用
CN115069270B (zh) 一种CuSAP/CdS光解水制氢催化剂及其制备方法
CN114606527B (zh) 一维缺陷型氧化铁纳米棒可见光阳极及其制备方法与应用
CN113101946B (zh) 一种NiMoO4基Z-型异质结光催化剂及制备与应用
CN110252349B (zh) 一种原位光沉积制备CdS@MoS2复合光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant