CN113167206A - 点火装置 - Google Patents

点火装置 Download PDF

Info

Publication number
CN113167206A
CN113167206A CN201880099952.XA CN201880099952A CN113167206A CN 113167206 A CN113167206 A CN 113167206A CN 201880099952 A CN201880099952 A CN 201880099952A CN 113167206 A CN113167206 A CN 113167206A
Authority
CN
China
Prior art keywords
mode
primary coil
main
sub
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880099952.XA
Other languages
English (en)
Other versions
CN113167206B (zh
Inventor
成濑祐介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN113167206A publication Critical patent/CN113167206A/zh
Application granted granted Critical
Publication of CN113167206B publication Critical patent/CN113167206B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • F02P3/0442Opening or closing the primary coil circuit with electronic switching means with semiconductor devices using digital techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/12Ignition, e.g. for IC engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

一种点火装置,构成为包括:主初级线圈;主IC,其在通电模式与截断模式之间切换主初级线圈模式;副初级线圈;副IC,其在通电模式与截断模式之间切换副初级线圈模式;次级线圈;检测部,其对主初级线圈的状态进行检测;以及控制部,其基于由检测部检测到的主初级线圈的状态,对作为在副初级线圈中流动的副初级电流的电流路径的副初级电流路径的状态是正常还是异常进行判断。

Description

点火装置
技术领域
本发明涉及一种点火装置。
背景技术
以往,作为对内燃机的燃烧室内的混合气体点火的点火装置,提出了一种包括点火线圈的点火装置,所述点火线圈由主初级线圈、副初级线圈和次级线圈构成(例如参照专利文献1)。
专利文献1所记载的点火装置构成为在将从电源向主初级线圈的通电截断之后,从电源向副初级线圈通电,从而将次级电流向次级线圈通电。上述次级电流是将伴随截断向主初级线圈的通电而在次级线圈中产生的电流与伴随向副初级线圈的通电而在次级线圈中产生的电流叠加而成的电流。此外,在专利文献1中记载有对点火装置设置副初级电流检测机构,对在副初级线圈中流动的电流即副初级电流进行检测。
现有技术文献
专利文献
专利文献1:国际公开第2017/183062号
发明内容
发明所要解决的技术问题
在此,在专利文献1所记载的点火装置中,在副初级电流的电流路径即副初级电流路径上设置有上述副初级电流检测机构。因此,为了对副初级线圈的异常进行检测,只要对由副初级电流检测机构检测到的副初级电流进行监视即可。在该点火装置中,为了不仅对副初级线圈的异常进行检测,还对主初级线圈的异常进行检测,不仅需要对副初级电流进行监视,还需要对作为在主初级线圈中流动的电流的主初级电流进行监视。在这种情况下,在该点火装置中,需要在作为主初级电流的电流路径的主初级电流路径上另行设置对主初级电流进行检测的主初级电流检测机构。
这样,在点火装置中,在除了副初级电流检测机构之外还另行设置主初级电流检测机构的情况下,点火装置的电路结构会复杂化,或是点火装置的端子数会增加。因此,在点火装置中,要求即使不在副初级电流路径上设置对副初级线圈的状态、具体为对在副初级线圈中流动的副初级电流进行检测的检测机构,也能检测出副初级线圈的异常的新技术。
本发明为解决上述技术问题而作,其目的在于获得一种点火装置,即使不在副初级电流路径上设置对副初级线圈的状态进行检测的检测机构,也能对副初级电流路径的状态是正常还是异常进行判断。
解决技术问题所采用的技术方案
本发明中的点火装置包括:主初级线圈,所述主初级线圈通过通电而产生通电磁通,通过将通电截断而产生与通电磁通的方向反向的截断磁通;主IC,所述主IC在向主初级线圈通电的通电模式与将向主初级线圈的通电截断的截断模式之间切换作为主初级线圈的模式的主初级线圈模式;副初级线圈,所述副初级线圈通过通电而产生与截断磁通的方向同向的追加磁通;副IC,所述副IC在向副初级线圈通电的通电模式与将向副初级线圈的通电截断的截断模式之间切换作为副初级线圈的模式的副初级线圈模式;次级线圈,所述次级线圈通过与主初级线圈及副初级线圈磁耦合而产生能量;检测部,所述检测部对主初级线圈的状态进行检测;以及控制部,所述控制部基于由检测部检测到的主初级线圈的状态,对作为在副初级线圈中流动的副初级电流的电流路径的副初级电流路径的状态是正常还是异常进行判断。
发明效果
根据本发明,能够获得一种点火装置,即使不在副初级电流路径上设置对副初级线圈的状态进行检测的检测机构,也能对副初级电流路径的状态是正常还是异常进行判断。
附图说明
图1是表示本发明实施方式1中的点火装置的结构图。
图2是表示本发明实施方式1中的点火装置的动作例的时序图。
图3是表示本发明实施方式1中的ECU的结构图。
图4是表示本发明实施方式1中的由阈值电路输出的判断信号的波形图。
图5是表示本发明实施方式2中的点火装置的结构图。
图6是表示本发明实施方式2中的ECU的结构图。
图7是表示本发明实施方式2中的由阈值电路输出的判断信号的第一例和第二例的波形图。
图8是表示本发明实施方式2中的由阈值电路输出的判断信号的第三例的波形图。
图9是表示本发明实施方式2中的由阈值电路输出的判断信号的第四例和第五例的波形图。
图10是表示本发明实施方式2中的由阈值电路输出的判断信号的第六例的波形图。
具体实施方式
以下,使用附图并基于优选实施方式对根据本发明的点火装置进行说明。另外,在附图的说明中,对相同部分或相当部分标注相同符号,并省略重复说明。
实施方式1
图1是表示本发明实施方式1中的点火装置的结构图。图1所示的点火装置包括点火线圈装置1、电源2、ECU(Engine Control Unit:发动机控制单元)3和火花塞4。
点火线圈装置1安装于内燃机,通过对火花塞4供给能量,从而在火花塞4的间隙之间产生火花放电。点火线圈装置1包括主初级线圈11、副初级线圈12、次级线圈13、主IC(Integrated Circuit:集成电路)14、副IC(Integrated Circuit:集成电路)15和检测部16。
主初级线圈11及副初级线圈12各自与同一电源2连接。电源2例如是电池等直流电源。
主初级线圈11及副初级线圈12各自卷绕成在被从电源2通电的情况下产生的磁通的方向彼此反向。即,从电源2来看,主初级线圈11及副初级线圈12各自的极性为彼此相反的极性。
主初级线圈11在被从电源2通电的情况下,其极性为与次级线圈13的极性相反的极性。副初级线圈12在被从电源2通电的情况下,其极性为与次级线圈13的极性相同的极性。
主初级线圈11及副初级线圈12与次级线圈13磁耦合。由此,在主初级线圈11及副初级线圈12与次级线圈13之间引起互感。
主初级线圈11因来自电源2的通电而产生磁通。以下,将主初级线圈11通过来自电源2的通电而产生的磁通称为通电磁通。此外,主初级线圈11因来自电源2的通电被截断而产生与通电磁通的方向反向的磁通。以下,将主初级线圈11因来自电源2的通电被截断而产生的磁通称为截断磁通。
副初级线圈12因来自电源2的通电而产生与通电磁通的方向同向的磁通。以下,将副初级线圈12因来自电源2的通电而产生的磁通称为追加磁通。
次级线圈13的一端与火花塞4连接,另一端与接地部连接。次级线圈13通过与主初级线圈11及副初级线圈12磁耦合而产生能量。由次级线圈13产生的能量被供给至火花塞4。
当向火花塞4供给能量时,在火花塞4的间隙之间产生火花放电。由此,火花塞4对内燃机的燃烧室内的可燃混合气体点火,使该可燃混合气体燃烧。
主IC 14在通电模式与截断模式之间切换主初级线圈11的模式,其中,在所述通电模式下,从电源2向主初级线圈11通电,在所述截断模式下,将从电源2向主初级线圈11的通电截断。以下,将主初级线圈11的模式称为主初级线圈模式。
具体而言,主IC 14构成为包括能在接通与断开之间切换的晶体管141。晶体管141的集电极经由后述的电流检测电阻器161而与主初级线圈11连接。晶体管141的发射极与接地部连接。
晶体管141在接通的情况下使电源2与主初级线圈11之间导通。由此,能从电源2向主初级线圈11通电。另一方面,晶体管141在断开的情况下将电源2与主初级线圈11之间截断。由此,能将从电源2向主初级线圈11的通电截断。
副IC 15在通电模式与截断模式之间切换副初级线圈12的模式,其中,在所述通电模式下,从电源2向副初级线圈12通电,在所述截断模式下,将从电源2向副初级线圈12的通电截断。以下,将副初级线圈12的模式称为副初级线圈模式。
具体而言,副IC 15构成为包括能在接通与断开之间切换的晶体管151。晶体管151的集电极与副初级线圈12连接。晶体管151的发射极与接地部连接。
晶体管151在接通的情况下使电源2与副初级线圈12之间导通。由此,能从电源2向副初级线圈12通电。另一方面,晶体管151在断开的情况下将电源2与副初级线圈12之间截断。由此,能将从电源2向副初级线圈12的通电截断。
检测部16设置于主初级电流路径,对主初级线圈11的状态进行检测。具体而言,检测部16构成为对作为主初级线圈11的状态的、在主初级线圈11中流动的电流即主初级电流进行检测。检测部16设置在主初级线圈11与主IC14之间。
作为具体结构,检测部16构成为包括电流检测电阻器161和电流检测电路162。电流检测电阻器161的一端与主初级线圈11连接,另一端与主IC 14连接。
电流检测电路162与电流检测电阻器161并联连接。电流检测电路162对电流检测电阻器161所产生的电压进行检测,并将检测到的电压转换成电流,从而对在电流检测电阻器161中流动的电流进行检测。在电流检测电阻器161中流动的电流与在主初级线圈11中流动的电流等价。也就是说,电流检测电路162对在主初级线圈11中流动的电流即主初级电流进行检测。电流检测电路162将其检测结果提供给ECU 3。
另外,在实施方式1中例示出在主初级线圈11与主IC 14的晶体管141之间设置有电流检测电阻器161的情况,但并不限定于此。即,电流检测电阻器161只要能对主初级电流进行检测,则也可以设置在晶体管141与接地部之间等任意处。
另外,在实施方式1中,作为对主初级电流进行检测的结构的具体例,例示出使用电流检测电阻器161的形式,但并不限定于此。即,作为对主初级电流进行检测的结构,也可以是使用例如拾波线圈这样的其他电流检测机构来替代电流检测电阻器161的形式。
ECU 3是对点火线圈装置1进行控制的控制部的一例。ECU 3获取对与内燃机的运转状态相关的信息进行检测的各种传感器的检测结果,基于获取的各种传感器的检测结果对内燃机的运转状态进行判断,以对点火线圈装置1进行控制。具体而言,ECU 3对点火线圈装置1的主IC 14和副IC 15各自的驱动进行控制。
此外,ECU 3基于由检测部16检测到的主初级线圈1的状态,对在副初级线圈12中流动的电流即副初级电流的电流路径的状态是正常还是异常进行判断。
以下,为了便于说明,将电流从主初级线圈11朝向电流检测电阻器161流动的方向、即图1所示的箭头方向定义为正方向,将电流从电流检测电阻器161朝向主初级线圈11流动的方向定义为负方向。
此外,将电流从次级线圈13朝向火花塞4流动的方向、即图1所示的箭头方向定义为正方向,将电流从火花塞4朝向次级线圈13流动的方向定义为负方向。
接着,参照图2,对实施方式1中的点火装置的动作例进行说明。图2是表示本发明实施方式1中的点火装置的动作例的时序图。在图2中图示出主IC驱动信号、主初级电流、副IC驱动信号、副初级电流、次级电流、主IC集电极电压和副IC集电极电压各自的时间变化。
在此,主IC驱动信号是用于驱动主IC 14的信号。当主IC驱动信号从ECU 3输入主IC 14时,主IC 14驱动,从而主初级线圈模式从截断模式切换为通电模式。主初级电流是主要在由主初级线圈11、检测部16的电流检测电阻器161和主IC 14的晶体管141串联连接而形成的主初级电流路径中流动的电流。
副IC驱动信号是用于驱动副IC 15的信号。当副IC驱动信号从ECU 3输入副IC 15时,副IC 15驱动,从而副初级线圈模式从截断模式切换为通电模式。副初级电流是主要在由副初级线圈12和副IC 15的晶体管151串联连接而形成的副初级电流路径中流动的电流。
次级电流是在次级线圈13中流动的电流。主IC集电极电压是在主IC 14的晶体管141的集电极与发射极之间产生的电压。副IC集电极电压是在副IC15的晶体管151的集电极与发射极之间产生的电压。
在主IC 14的晶体管141和副IC 15的晶体管151各自的集电极与发射极之间,产生与在次级线圈13中流动的次级电流成比例的电压。
如图2所示,在时刻t1,当主IC驱动信号从ECU 3向主IC 14的输入开始时,主IC 14开始驱动。在这种情况下,主初级线圈模式切换为通电模式,正方向的主初级电流在主初级线圈11中流动。
这样,在时刻t1,ECU 3通过使主IC 14驱动,从而将主初级线圈模式从截断模式切换为通电模式。
在时刻t2,当主IC驱动信号从ECU 3向主IC 14的输入停止时,主IC 14的驱动停止。在这种情况下,主初级线圈模式切换为截断模式,主初级电流变为零。
当主初级线圈模式切换为截断模式时,通过互感作用,在次级线圈13中产生电压。因该电压而在火花塞4的间隙之间引发绝缘破坏以产生放电,负方向的次级电流在次级线圈13中流动。
这样,在时刻t2,ECU 3通过使主IC 14的驱动停止,从而将主初级线圈模式从通电模式切换为截断模式。
在时刻t3,当副IC驱动信号从ECU 3向副IC 15的输入开始时,副IC 15开始驱动。在这种情况下,副初级线圈模式切换为通电模式,副初级电流在副初级线圈12中流动。如图2所示,副初级电流迅速蹿升,在该蹿升之后缓缓地增大。
伴随副初级电流在副初级线圈12中流动而在次级线圈13中产生叠加电流。该叠加电流根据副初级线圈12与次级线圈13的匝数比而在次级线圈13中产生。如图2所示,副初级线圈12带来的叠加电流与主初级线圈11带来的次级电流叠加。
这样,在时刻t3,ECU 3通过使副IC 15驱动,从而将副初级线圈模式从截断模式切换为通电模式。
在时刻t4,当副IC驱动信号从ECU 3向副IC 15的输入停止时,副IC 15的驱动停止。在这种情况下,副初级线圈模式切换为截断模式,副初级电流变为零。在这种情况下,副初级线圈12带来的叠加电流也变为零。
这样,在时刻t4,ECU 3通过使副IC 15的驱动停止,从而将副初级线圈模式从通电模式切换为截断模式。
当副初级线圈模式从通电模式切换为截断模式时,如图2所示,负方向的主初级电流在主初级线圈11中流动。
也就是说,如图2所示,在时刻t1,若主初级线圈模式切换为通电模式,则正方向的主初级电流在主初级线圈11中流动。另一方面,在时刻t4,若副初级线圈模式切换为截断模式,则与正方向反向的负方向的主初级电流在主初级线圈11中流动。
在时刻t4以后,主IC 14和副IC 15各自的驱动停止,在次级线圈13中流动的次级电流伴随时间的经过而减小并达到零。
在此,在副初级电流路径中没有产生异常的情况下,即在副初级电流路径正常的情况下,副初级电流在副初级线圈12中正常地流动。在这种情况下,如上所述,若副初级线圈模式切换为截断模式,则负方向的主初级电流在主初级线圈11中流动。
另一方面,在副初级电流路径中产生了异常的情况下,副初级电流在副初级线圈12中没有正常地流动。在这种情况下,即使副初级线圈模式切换为截断模式,如上所述的负方向的主初级电流也不会在主初级线圈11中流动。
因而,ECU 3构成为基于在副初级线圈模式从通电模式切换为截断模式的情况下由检测部16检测到的主初级电流,对副初级电流路径的状态是正常还是异常进行判断。
接着,示出具体的数值例进一步对上述负方向的主初级电流进行说明。如图2所示,在时刻t4,副初级线圈模式切换为截断模式的情况下,副初级线圈12中产生的感应电压例如为20V。例如当副初级线圈12与主初级线圈11的匝数比设定为四时,主初级线圈11中产生的感应电压为80V。
在此,设定成电源2的电源电压为14V,主初级电流路径的电阻为10Ω。此外,设定成在主IC 14的晶体管141的反向耐压为30V且副初级线圈模式切换为截断模式的情况下,在晶体管141的集电极与发射极之间产生与该反向耐压相应的电压、即30V的电压。另外,设定成在副初级线圈模式切换为截断模式的情况下,作为跳变电压,在主初级线圈11中产生16V的电压。
在上述情况下,如下式所示,在主初级电流路径中流动的负方向的主初级电流的大小为2A。
(80V-14V-30V-16V)/10Ω=2A
通过将这样的主初级电流从检测部16提供给ECU 3,ECU 3能对在主初级电流路径中流动的负方向的主初级电流进行感测。ECU 3基于这样的主初级电流,对副初级电流路径的状态是正常还是异常进行判断。
接着,参照图3和图4,对ECU 3的结构例进行说明。图3是表示本发明实施方式1中的ECU 3的结构图。图4是表示本发明实施方式1中的由阈值电路31输出的判断信号的波形图。
图3所示的ECU 3包括阈值电路31和判断电路32。阈值电路31对由检测部16检测到的主初级电流与预先设定的电流阈值Ith进行比较。阈值电路31例如由转换器311构成。
另外,阈值电路31和判断电路32既可以设置在ECU 3的内部,也可以设置在ECU 3的外部、例如点火线圈装置1内。
在此,电流阈值Ith根据副初级电流路径的状态为正常的情况下在主初级电流路径中流动的负方向的主初级电流的值适当设定。
如图4所示,作为上述比较的结果,在由检测部16检测到的主初级电流为电流阈值Ith以下的情况下,阈值电路31将判断信号输出至判断电路32。另一方面,作为上述比较的结果,在该主初级电流大于电流阈值Ith的情况下,阈值电路31不将判断信号输出至判断电路32。
当在副初级线圈模式切换为截断模式的情况下从阈值电路31提供判断信号时,判断电路32判断副初级电流路径的状态为正常。另一方面,若在副初级线圈模式切换为截断模式的情况下未从阈值电路31提供判断信号,则判断电路32判断副初级电流路径的状态为异常。
这样,ECU 3对在副初级线圈模式从通电模式切换为截断模式的情况下由检测部16检测到的主初级电流与预先设定的电流阈值Ith进行比较,基于该比较结果对副初级电流路径的状态是正常还是异常进行判断。
另外,在主初级电流路径中未发生异常的情况下,即在主初级电流路径为正常的情况下,在主初级线圈模式处于通电模式期间,图2所示那样的正方向的主初级电流在主初级线圈11中流动。该期间是图2所示的从时刻t1至时刻t2之间的期间。
另一方面,在主初级电流路径中发生了异常的情况下,在上述期间,图2所示那样的正方向的主初级电流未正常地在主初级线圈11中流动。
因而,ECU 3也可以构成为基于在上述期间中由检测部16检测到的主初级电流,对主初级电流路径的状态是正常还是异常进行判断。由此,通过设置于主初级电流路径的检测部16,不仅能对副初级电流路径的状态进行判断,还能对主初级电流路径的状态进行判断。
以上,根据本实施方式1,点火装置构成为包括控制部,所述控制部基于由设置于主初级电流路径的检测部16检测到的主初级线圈11的状态,对作为在副初级线圈12中流动的副初级电流的电流路径的副初级电流路径的状态是正常还是异常进行判断。另外,在实施方式1中,例示出检测部16构成为对作为主初级线圈11的状态的、在主初级线圈11中流动的主初级电流进行检测的情况。
由此,即使不在副初级电流路径设置对副初级线圈12的状态、具体为在副初级线圈12中流动的副初级电流进行检测的检测机构,也能对副初级电流路径的状态是正常还是异常进行判断。此外,不需要分别设置对主初级线圈的状态进行检测的检测机构和对副初级线圈的状态进行检测的检测机构。因而,能抑制从点火线圈装置1与外部连接的端子数的增加,并且能简化点火线圈装置1的电路结构。
实施方式2
在本发明实施方式2中,对包括检测部16的结构与之前的实施方式1不同的点火线圈装置1的点火装置进行说明。另外,在实施方式2中,省略与之前的实施方式1相同的点的说明,以与之前的实施方式1不同的点为中心进行说明。
图5是表示本发明实施方式2中的点火装置的结构图。图5所示的点火装置包括点火线圈装置1、电源2、ECU 3和火花塞4。
检测部16与之前的实施方式1不同,构成为对作为主初级线圈的状态的、在主初级线圈11中产生的电压即主初级电压进行检测。另外,在实施方式2中,例示出检测部16构成为对视为与主初级线圈11中产生的主初级电压等价的、晶体管141的集电极与发射极之间产生的电压进行检测的情况。晶体管141的集电极与发射极之间产生的电压对应于之前的图2所示的主IC集电极电压。
作为具体结构,检测部16构成为包括电压检测电阻器163和电压检测电阻器164。检测部16将通过电压检测电阻器163和电压检测电阻器164对晶体管141的集电极与发射极之间产生的电压进行分压而获得的分压电压提供至ECU 3。
接着,示出具体的数值例进一步对上述分压电压进行说明。如之前的图2所示,在时刻t3,副初级线圈模式切换为通电模式的情况下,副初级线圈12中产生的感应电压例如为10V。例如当副初级线圈12与主初级线圈11的匝数比设定为四时,主初级线圈11中产生的感应电压为40V。
在此,设定成电压检测电阻器163的电阻值为360kΩ,电压检测电阻器164的电阻值为40kΩ。
在上述情况下,如下式所示,电压检测电阻器164中产生的分压电压的大小为4V。
40V×40kΩ/(360kΩ+40kΩ)=4V
通过将这样的分压电压、即主初级电压从检测部16提供给ECU 3,ECU 3能对在主初级线圈中产生的主初级电压进行感测。ECU 3基于在副初级线圈模式从截断模式切换为通电模式的情况下产生的上述主初级电压,对副初级电流路径的状态是正常还是异常进行判断。
另外,如之前的图2所示,在时刻t4,副初级线圈模式切换为截断模式的情况下,同样也在主初级线圈11中产生感应电压。因此,ECU 3基于在副初级线圈模式从通电模式切换为截断模式的情况下在主初级线圈11中产生的主初级电压,对副初级电流路径的状态是正常还是异常进行判断。
另外,在实施方式2中,例示出检测部16构成为通过电压检测电阻器163和电压检测电阻器164对主IC集电极电压进行分压的情况,但例如也可以如下所述构成。即,检测部16也可以构成为不经由电阻器而直接将主IC集电极电压输出至ECU 3。此外,检测部16也可以构成为经由一个电阻器将主IC集电极电压输出至ECU 3。
另外,在实施方式2中,例示出检测部16构成为对主初级线圈11中产生的主初级电压的电压电平进行检测的情况,但例如也可以如下所述构成。即,检测部16也可以构成为对主初级电压的频率而不是主初级电压的电压电平进行检测。
接着,参照图6,对实施方式2中的ECU 3的结构例进行说明。图6是表示本发明实施方式2中的ECU 3的结构图。图6所示的ECU 3包括阈值电路33和判断电路34。阈值电路33例如由转换器331构成。另外,阈值电路33和判断电路34既可以设置在ECU 3的内部,也可以设置在ECU 3的外部、例如点火线圈装置1内。
以下参照图7,对阈值电路33和判断电路34的第一结构例和第二结构例进行说明。图7是表示本发明实施方式2中的由阈值电路33输出的判断信号的第一例和第二例的波形图。
首先,对阈值电路33和判断电路34的第一结构例进行说明。阈值电路33对在副初级线圈模式切换为通电模式的情况下由检测部16检测到的主IC集电极电压与预先设定的电压阈值Vtha1进行比较。
在此,电压阈值Vtha1是根据在副初级电流路径的状态正常的情况下当副初级线圈模式切换为通电模式时,主IC 14的晶体管141的集电极与发射极之间产生的电压的值来适当设定的。
如图7所示,作为上述比较的结果,在由检测部16检测到的主IC集电极电压为电压阈值Vtha1以上的情况下,阈值电路33将判断信号Sa1输出至判断电路34。另一方面,作为上述比较的结果,在由检测部16检测到的主IC集电极电压小于电压阈值Vtha1的情况下,阈值电路33不将判断信号Sa1输出至判断电路34。
当在副初级线圈模式切换为通电模式的情况下从阈值电路33提供判断信号Sa1时,判断电路34判断副初级电流路径的状态为正常。另一方面,若在副初级线圈模式切换为通电模式的情况下未从阈值电路33提供判断信号Sa1,则判断电路34判断副初级电流路径的状态为异常。
这样,ECU 3对在副初级线圈模式从截断模式切换为通电模式的情况下由检测部16检测到的主初级电压与预先设定的电压阈值进行比较。ECU 3基于该比较结果,对副初级电流路径的状态是正常还是异常进行判断。
接下来,对阈值电路33和判断电路34的第二结构例进行说明。阈值电路33对在副初级线圈模式切换为截断模式的情况下由检测部16检测到的主IC集电极电压与预先设定的电压阈值Vtha2进行比较。
在此,电压阈值Vtha2是根据在副初级电流路径的状态正常的情况下当副初级线圈模式切换为截断模式时,主IC 14的晶体管141的集电极与发射极之间产生的电压来适当设定的。
如图7所示,作为上述比较的结果,在由检测部16检测到的主IC集电极电压为电压阈值Vtha2以上的情况下,阈值电路33将判断信号Sa2输出至判断电路34。另一方面,作为上述比较的结果,在由检测部16检测到的主IC集电极电压大于电压阈值Vtha2的情况下,阈值电路33不将判断信号Sa2输出至判断电路34。
当在副初级线圈模式切换为截断模式的情况下从阈值电路33提供判断信号Sa2时,判断电路34判断副初级电流路径的状态正常。另一方面,若在副初级线圈模式切换为截断模式的情况下未从阈值电路33提供判断信号Sa2,则判断电路34判断副初级电流路径的状态为异常。
这样,ECU 3对在副初级线圈模式从通电模式切换为截断模式的情况下由检测部16检测到的主初级电压与预先设定的电压阈值进行比较。ECU 3基于该比较结果,对副初级电流路径的状态是正常还是异常进行判断。
另外,ECU 3也可以构成为将第一结构例和第二结构例组合以对副初级电流路径的状态进行判断。在这种情况下,若提供判断信号Sa1和判断信号Sa2这两者,则判断电路34判断副初级电流路径的状态为正常。另一方面,若未提供判断信号Sa1和判断信号Sa2这两者,则判断电路34判断副初级电流路径的状态为异常。
接着,参照图8,对阈值电路33和判断电路34的第三结构例进行说明。图8是表示本发明实施方式2中的由阈值电路33输出的判断信号的第三例的波形图。以下,对阈值电路33和判断电路34的第三结构例进行说明。
阈值电路33在副初级线圈模式切换为通电模式的情况下由检测部16检测到的主IC集电极电压达到电压阈值Vtha1的时刻Ta1,开始判断信号Sa3的输出。此外,阈值电路33在副初级线圈模式切换为截断模式的情况下由检测部16检测到的主IC集电极电压达到电压阈值Vtha2的时刻Ta2,停止判断信号Sa3的输出。
判断电路34通过对来自阈值电路33的判断信号Sa3的输出持续的时间、即时刻Ta1与时刻Ta2之间的时间进行感测,从而对副初级电流路径的状态进行判断。具体而言,若能感测该时间,则判断电路34判断副初级电流路径的状态为正常,若不能感测到该时间,则判断电路34判断副初级电流路径的状态为异常。
这样,ECU 3通过对时刻Ta1与时刻Ta2之间的时间进行感测,从而对副初级电流路径的状态是正常还是异常进行判断。
接着,以下参照图9,对阈值电路33和判断电路34的第四结构例和第五结构例进行说明。图9是表示本发明实施方式2中的由阈值电路33输出的判断信号的第四例和第五例的波形图。
首先,对阈值电路33和判断电路34的第四结构例进行说明。阈值电路33对在副初级线圈模式切换为通电模式的情况下由检测部16检测到的主IC集电极电压与预先设定的电压阈值Vthb1进行比较。
在此,电压阈值Vthb1设定为在副初级电流路径的状态为正常的情况下副初级线圈模式刚切换为通电模式的时刻之前,主IC 14的晶体管141的集电极与发射极之间产生的电压。
如图9所示,作为比较的结果,在由检测部16检测到的主IC集电极电压为电压阈值Vthb1以上的情况下,阈值电路33将判断信号Sb1输出至判断电路34。另一方面,作为比较的结果,在由检测部16检测到的主IC集电极电压小于电压阈值Vthb1的情况下,阈值电路33不将判断信号Sb1输出至判断电路34。
当在副初级线圈模式切换为通电模式的情况下从阈值电路33提供判断信号Sb1时,判断电路34判断副初级电流路径的状态为正常。另一方面,若在副初级线圈模式切换为通电模式的情况下未从阈值电路33提供判断信号Sb1,则判断电路34判断副初级电流路径的状态为异常。
这样,ECU 3对在副初级线圈模式从截断模式切换为通电模式的情况下由检测部16检测到的主初级电压与预先设定的电压阈值Vthb1进行比较。ECU 3基于该比较结果,对副初级电流路径的状态是正常还是异常进行判断。
接下来,对阈值电路33和判断电路34的第五结构例进行说明。阈值电路33对在副初级线圈模式切换为截断模式的情况下由检测部16检测到的主IC集电极电压与预先设定的电压阈值Vthb2进行比较。
在此,电压阈值Vthb2设定为在副初级电流路径的状态为正常的情况下副初级线圈模式刚切换为截断模式的时刻之前,主IC 14的晶体管141的集电极与发射极之间产生的电压。
如图9所示,作为比较的结果,在由检测部16检测到的主IC集电极电压为电压阈值Vthb2以下的情况下,阈值电路33将判断信号Sb2输出至判断电路34。另一方面,作为比较的结果,在由检测部16检测到的主IC集电极电压大于电压阈值Vthb2的情况下,阈值电路33不将判断信号Sb2输出至判断电路34。
当在副初级线圈模式切换为截断模式的情况下从阈值电路33提供判断信号Sb2时,判断电路34判断副初级电流路径的状态为正常。另一方面,若在副初级线圈模式切换为截断模式的情况下未从阈值电路33提供判断信号Sb2,则判断电路34判断副初级电流路径的状态为异常。
这样,ECU 3对在副初级线圈模式从通电模式切换为截断模式的情况下由检测部16检测到的主初级电压与预先设定的电压阈值Vthb2进行比较。ECU 3基于该比较结果,对副初级电流路径的状态是正常还是异常进行判断。
另外,ECU 3也可以构成为将第四结构例和第五结构例组合以对副初级电流路径的状态进行判断。在这种情况下,若提供判断信号Sb1和判断信号Sb2这两者,则判断电路34判断副初级电流路径的状态为正常。另一方面,若未提供判断信号Sb1和判断信号Sb2这两者,则判断电路34判断副初级电流路径的状态为异常。
接着,参照图10,对阈值电路33和判断电路34的第六结构例进行说明。图10是表示由本发明实施方式2中的阈值电路33输出的判断信号的第六例的波形图。以下,对阈值电路33和判断电路34的第六结构例进行说明。
阈值电路33在副初级线圈模式切换为通电模式的情况下由检测部16检测到的主IC集电极电压达到电压阈值Vthb1的时刻Tb1,开始判断信号Sb3的输出。此外,阈值电路33在副初级线圈模式切换为截断模式的情况下由检测部16检测到的主IC集电极电压达到电压阈值Vthb2的时刻Tb2,停止判断信号Sb3的输出。
判断电路34通过对来自阈值电路33的判断信号Sb3的输出持续的时间、即时刻Tb1与时刻Tb2之间的时间进行感测,从而对副初级电流路径的状态进行判断。具体而言,若能感测到该时间,则判断电路34判断副初级电流路径的状态为正常,若不能感测到该时间,则判断副初级电流路径的状态为异常。
这样,ECU 3通过对时刻Tb1与时刻Tb2之间的时间进行感测,从而对副初级电流路径的状态是正常还是异常进行判断。
以上,根据本实施方式2,点火装置构成为包括控制部,所述控制部基于由设置于主初级电流路径的检测部16检测到的主初级线圈11的状态,对副初级电流路径的状态是正常还是异常进行判断。另外,在实施方式2中,例示出检测部16构成为对作为主初级线圈11的状态的、在主初级线圈11中产生的主初级电压进行检测的情况。在如上所述构成的情况下,也能获得与之前的实施方式1相同的效果。
另外,在实施方式1、2中,例示了通过ECU 3来实现基于由检测部16检测到的主初级线圈11的状态对副初级电流路径的状态是正常还是异常进行判断的控制部的功能,但并不限定于此。例如,该控制部也可以独立于ECU 3。在这种情况下,该控制部的功能例如通过独立于ECU 3的处理电路来实现。实现该控制部的功能的处理电路既可以是专用的硬件,也可以是执行存储于存储器的程序的处理器。
(符号说明)
1 点火线圈装置;
2 电源;
3 ECU;
4 火花塞;
11 主初级线圈;
12 副初级线圈;
13 次级线圈;
14 主IC;
15 副IC;
16 检测部;
31 阈值电路;
32 判断电路;
33 阈值电路;
34 判断电路;
141 晶体管;
151 晶体管;
161 电流检测电阻器;
162 电流检测电路;
163 电压检测电阻器;
164 电压检测电阻器;
311 转换器;
331 转换器。

Claims (10)

1.一种点火装置,其特征在于,包括:
主初级线圈,所述主初级线圈通过通电而产生通电磁通,通过将所述通电截断而产生与所述通电磁通的方向反向的截断磁通;
主IC,所述主IC在向所述主初级线圈通电的通电模式与将向所述主初级线圈的通电截断的截断模式之间切换作为所述主初级线圈的模式的主初级线圈模式;
副初级线圈,所述副初级线圈通过通电而产生与所述截断磁通的方向同向的追加磁通;
副IC,所述副IC在向所述副初级线圈通电的通电模式与将向所述副初级线圈的通电截断的截断模式之间切换作为所述副初级线圈的模式的副初级线圈模式;
次级线圈,所述次级线圈通过与所述主初级线圈及所述副初级线圈磁耦合而产生能量;
检测部,所述检测部对所述主初级线圈的状态进行检测;以及
控制部,所述控制部基于由所述检测部检测到的所述主初级线圈的状态,对作为在所述副初级线圈中流动的副初级电流的电流路径的副初级电流路径的状态是正常还是异常进行判断。
2.如权利要求1所述的点火装置,其特征在于,
所述检测部构成为对作为所述主初级线圈的状态的、在所述主初级线圈中流动的主初级电流进行检测。
3.如权利要求2所述的点火装置,其特征在于,
所述控制部基于在所述副初级线圈模式从所述通电模式切换为所述截断模式的情况下由所述检测部检测到的所述主初级电流,对所述副初级电流路径的状态是正常还是异常进行判断。
4.如权利要求3所述的点火装置,其特征在于,
所述控制部对在所述副初级线圈模式从所述通电模式切换为所述截断模式的情况下由所述检测部检测到的所述主初级电流与预先设定的电流阈值进行比较,基于比较结果对所述副初级电流路径的状态是正常还是异常进行判断。
5.如权利要求1所述的点火装置,其特征在于,
所述检测部构成为对作为所述主初级线圈的状态的、在所述主初级线圈中产生的主初级电压进行检测。
6.如权利要求5所述的点火装置,其特征在于,
所述控制部基于在所述副初级线圈模式从所述截断模式切换为所述通电模式的情况下由所述检测部检测到的所述主初级电压,对所述副初级电流路径的状态是正常还是异常进行判断。
7.如权利要求6所述的点火装置,其特征在于,
所述控制部对在所述副初级线圈模式从所述截断模式切换为所述通电模式的情况下由所述检测部检测到的所述主初级电压与预先设定的电压阈值进行比较,基于比较结果对所述副初级电流路径的状态是正常还是异常进行判断。
8.如权利要求5所述的点火装置,其特征在于,
所述控制部基于在所述副初级线圈模式从所述通电模式切换为所述截断模式的情况下由所述检测部检测到的所述主初级电压,对所述副初级电流路径的状态是正常还是异常进行判断。
9.如权利要求8所述的点火装置,其特征在于,
所述控制部对在所述副初级线圈模式从所述通电模式切换为所述截断模式的情况下由所述检测部检测到的所述主初级电压与预先设定的电压阈值进行比较,基于比较结果对所述副初级电流路径的状态是正常还是异常进行判断。
10.如权利要求5所述的点火装置,其特征在于,
所述控制部通过对在所述副初级线圈模式从所述截断模式切换为所述通电模式的情况下由所述检测部检测到的所述主初级电压达到预先设定的第一电压阈值的时刻与在所述副初级线圈模式从所述通电模式切换为所述截断模式的情况下由所述检测部检测到的所述主初级电压达到预先设定的第二电压阈值的时刻之间的时间进行感测,从而对所述副初级电流路径的状态是正常还是异常进行判断。
CN201880099952.XA 2018-12-14 2018-12-14 点火装置 Active CN113167206B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046091 WO2020121515A1 (ja) 2018-12-14 2018-12-14 点火装置

Publications (2)

Publication Number Publication Date
CN113167206A true CN113167206A (zh) 2021-07-23
CN113167206B CN113167206B (zh) 2022-09-27

Family

ID=71075437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880099952.XA Active CN113167206B (zh) 2018-12-14 2018-12-14 点火装置

Country Status (5)

Country Link
US (1) US11417459B2 (zh)
JP (1) JP7112512B2 (zh)
CN (1) CN113167206B (zh)
DE (1) DE112018008208T5 (zh)
WO (1) WO2020121515A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142745B1 (ja) * 2021-04-21 2022-09-27 三菱電機株式会社 内燃機関の点火装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793555A (zh) * 2013-11-28 2016-07-20 株式会社电装 点火装置
WO2017060935A1 (ja) * 2015-10-06 2017-04-13 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置および内燃機関用点火装置の点火制御方法
JPWO2016157541A1 (ja) * 2015-03-30 2017-10-19 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置
JPWO2017183062A1 (ja) * 2016-04-22 2018-11-29 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2639446A1 (en) 2012-03-16 2013-09-18 Delphi Automotive Systems Luxembourg SA Ignition system
JP6345172B2 (ja) * 2013-04-03 2018-06-20 マーレエレクトリックドライブズジャパン株式会社 内燃機関用点火装置
US10309366B2 (en) * 2015-07-15 2019-06-04 Hitachi Automotive Systems, Ltd. Engine control device
WO2019102976A1 (ja) * 2017-11-27 2019-05-31 日立オートモティブシステムズ株式会社 内燃機関用点火装置および内燃機関用制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793555A (zh) * 2013-11-28 2016-07-20 株式会社电装 点火装置
JPWO2016157541A1 (ja) * 2015-03-30 2017-10-19 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置
WO2017060935A1 (ja) * 2015-10-06 2017-04-13 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置および内燃機関用点火装置の点火制御方法
JPWO2017183062A1 (ja) * 2016-04-22 2018-11-29 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置

Also Published As

Publication number Publication date
CN113167206B (zh) 2022-09-27
WO2020121515A1 (ja) 2020-06-18
JP7112512B2 (ja) 2022-08-03
US20220028605A1 (en) 2022-01-27
JPWO2020121515A1 (ja) 2021-09-27
DE112018008208T5 (de) 2021-09-02
US11417459B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
US20130152910A1 (en) Internal combustion engine ignition device
JP2015081581A (ja) 高周波放電点火装置
JP2008144657A (ja) 内燃機関用点火制御システムの点火装置
JP4445021B2 (ja) 内燃機関点火装置
CN112368476A (zh) 内燃机的点火控制***
CN113167206B (zh) 点火装置
JP7293736B2 (ja) 半導体集積回路
US11215157B2 (en) Ignition control device for internal combustion engine
JP4188290B2 (ja) 内燃機関点火装置
JP6745938B2 (ja) 点火装置
JP6537662B1 (ja) 点火装置
JP2008011347A (ja) 負荷断線検出回路
CN113167205B (zh) 点火装置
JP5154371B2 (ja) イオン電流検出装置
JP6984028B2 (ja) 車両用点火装置、点火制御装置及び、車両用点火装置の制御方法
WO2021220844A1 (ja) 点火制御装置
JPH09236073A (ja) 内燃機関の燃焼状態検出装置
JP5410214B2 (ja) イオン電流検出装置
JP6902632B2 (ja) 内燃機関の点火装置
JP5358365B2 (ja) 内燃機関用点火装置
JPH0797972A (ja) 内燃機関用点火装置、及び点火装置の故障検出装置
JP5154372B2 (ja) イオン電流検出装置
KR100535107B1 (ko) 엔진의 실화 검출 회로
JP2011038488A (ja) イオン電流検出装置
JPH07208315A (ja) 失火検出装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant