CN113156473A - 信息融合定位***卫星信号环境的自适应判别方法 - Google Patents

信息融合定位***卫星信号环境的自适应判别方法 Download PDF

Info

Publication number
CN113156473A
CN113156473A CN202110238535.2A CN202110238535A CN113156473A CN 113156473 A CN113156473 A CN 113156473A CN 202110238535 A CN202110238535 A CN 202110238535A CN 113156473 A CN113156473 A CN 113156473A
Authority
CN
China
Prior art keywords
model
data
satellite signal
input
adaptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110238535.2A
Other languages
English (en)
Other versions
CN113156473B (zh
Inventor
李靖宇
康晓
海丹
靳璐
靳保
吴越
苏波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China North Vehicle Research Institute
Original Assignee
China North Vehicle Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China North Vehicle Research Institute filed Critical China North Vehicle Research Institute
Priority to CN202110238535.2A priority Critical patent/CN113156473B/zh
Publication of CN113156473A publication Critical patent/CN113156473A/zh
Application granted granted Critical
Publication of CN113156473B publication Critical patent/CN113156473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明属于导航定位或机器人技术领域,具体涉及一种信息融合定位***卫星信号环境的自适应判别方法。该方法包括:选取训练样本以及标签;对采集到的样本数据进行初步权重计算和批标准化处理;批处理操作之后的数据正向传播及误差反向传播;对上述训练好的模型利用测试集进行评价;该方法采用基于RNN的多源信息融合定位***卫星信号环境的自适应判别方法,能够有效对智能***运行环境的导航卫星信号状态进行特征抽取,根据连续时间段内的卫星信号状态特征输出当前时刻卫星信号状态判别值,实现智能无人***的信息融合定位***对卫星信号环境的自适应判别。

Description

信息融合定位***卫星信号环境的自适应判别方法
技术领域
本发明属于导航定位或机器人技术领域,具体涉及一种信息融合定位***卫星信号环境的自适应判别方法。
背景技术
智能无人***自主定位***通过导航卫星信号、自身传感器信息、地图先验信息等获取其在工作环境当中的位置和姿态信息。在复杂环境中,当导航卫星***受到建筑物遮蔽、电磁干扰等环境影响时,智能无人***可能只能够获取有限的导航卫星信号。在这种情况下,智能无人***需要将定位方法切换至不完全依赖导航卫星信号的自主定位方法。
由于导航卫星信号跳变、导航卫星信号定位误差大、导航卫星信号断续消失、导航卫星信号定位信息无效等情况的存在,通过选取若干导航卫星信号进行简单定位算法切换时机逻辑判断,其准确率低下。而采用特征工程方法通过在单一时刻内抽取导航卫星信号特征并利用全连接神经网络或支持向量机对其进行处理,将输出作为是否切换定位算法的判断依据,则容易产生定位算法频繁切换,占用大量计算资源的现象。因此,设计一种受信号跳变现象影响小和切换时机判断准确的定位***自适应判别方法对实现智能无人***在复杂环境中的自主定位以及降低对导航卫星信号的依赖等方面具有重大的意义。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:如何提出一种基于循环神经网络 (RecurrentNeural Network,RNN)的针对多源信息融合位姿状态定位***的自适应切换方法,实现智能***在复杂环境中自主定位方法的准确切换。
(二)技术方案
为解决上述技术问题,本发明提供一种信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述方法以RNN网络单元为基本结构单元;由于模型中间层存在循环权重,RNN在处理时间序列数据时,能够将前一时刻数据的特征信息传递至下一时刻;本方法实施过程中,在由5个RNN单元组成的自适应判别模型实施的情况下,模型的输入为I,对于5个RNN单元而言,其各自的输入为 It-4至It,中间层数据为S,对于5个RNN单元而言,其各自的中间层数据为St-4至St,单组数据的最终输出为O,对于5个RNN单元而言,其各自的最终输出为Ot-4至Ot
Ik,Sk和Ok,k=t-4,t-3,t-2,t-1,t分别是维度为p,q,r的一维向量;模型参数包括U,V以及W;其中,U为RNN网络单元的输入权重,是一个p×q的矩阵,V是RNN网络单元的输出权重,是q×r的矩阵,W是RNN网络单元接受上一时刻中间层输入的权重,是一个q ×q的矩阵;自适应判别模型将5个时间帧的输入It-4至It作为一组数据输入模型,并得到当前标志当前卫星信号环境是否良好的标志位 Ot
该自适应判别模型在对卫星信号环境状态进行推理之前需要对 U,V以及W进行训练;
由此,所述自适应判别方法的训练以及推理包括以下步骤:
步骤1:选取训练样本以及标签;
本步骤选取GPS信息中的时间状态、接受状态、***状态、信号质量、卫星健康标识、用户测距精度以及组合导航数据中的跟踪位置、速度、航向角作为自适应判别模型***的输入,对应于所述Ik, k∈(t-4,t-3,t-2,t-1,t);
在完成上述训练样本选择后,对模型输出Ok对应的标签值进行构造;取k时刻导航卫星信号位置坐标与k-1时刻位置坐标的差Δd作为k时刻的标志值并设定一个阈值δ,当Δd小于阈值δ时,将k时刻的准标签值设置为1,表征多源信息融合定位***该时刻获取的导航卫星信号是可信的;否则设置为0,表征***该时刻导航卫星信号不可信;
按照上述方式,利用无人***在测试环境中对上述输入量以及导航卫星信号坐标进行数据采集;将5帧连续样本准标签值为1的卫星信号样本片段提取出来,并将其标签值设置为1,表征原型***能够获取导航卫星信号;对所有准标签值为0的样本同样截取连续5帧的片段进行分析,当其临近的固定帧数样本均为0时,将该片段提取出来,并将该片段的标签值设置为0,表示定位***无法获取导航卫星信号或获取到的卫星信号不可使用;由于训练样本与标签值要求严格的时间一致性,故上述所有信息的采集必须经过同步处理;
步骤2:对采集到的样本数据进行初步权重计算和批标准化处理;
自适应判别模型中的U,V,W均为权重矩阵,自适应判别模型首先将样本数据利用U进行初步权重计算并进行BN操作;BN操作是指在模型训练步骤中,一次性将多个不同的中间输入进行一定处理后再进行后续计算,这样的操作可以在后续的训练过程中利用矩阵并行计算,加速其训练过程并提高模型判别精度;
具体来讲,设I为自适应判别模型的输入,并令X=UI,则X表示经历过输入层权重处理,但未进行BN处理的单批数据;
Figure RE-GDA0003097066350000031
为BN处理之前的单批数据X在类别维度上的平均值;
其中,xi表示X中的单个类别输入,包括时间状态、接受状态、跟踪位置;m表示同批次输入样本数;
Figure RE-GDA0003097066350000032
为BN处理之前的单批数据方差,则可对输入做如下变换:
Figure RE-GDA0003097066350000041
并有:
Figure RE-GDA0003097066350000042
式中,是微小常数,避免出现除零情况的发生,
Figure RE-GDA0003097066350000043
为经过过标准化处理的输入数据,yi是经过变换后的输入数据,BNγ,β(xi)代表 BN操作,γ和β是权重参数,这两个参数是在后续反向传播过程中加以确定;
步骤3:批处理操作之后的数据正向传播及误差反向传播;
首先明确自适应判别模型的重要参数;在步骤1中,已经将自适应判别模型的RNN网络单元数目设置为5,单个RNN网络单元的输入I维度设置为30;输出O表征当前时刻的卫星环境状态是否可信,故用O=1表示可信,O=0表示不可信,将O的维度设置为1;
模型训练首先进行输入数据的前项传播,设t时刻神经单元的隐藏层数据为St,则该模型的正向传播过程表示为:
St=sigmoid(UYt+WSt-1) (3)
Ot=tanh(VSt) (4)
式中,St和Ot分别为t时刻的隐藏层数据以及输出数据,Yt为步骤1中yi的向量表示形式;Sigmoid和tanh分别表示Sigmoid函数和 tanh函数;通过上述公式可以看到,Ot实际上包含了整个五个输入帧的输入特征;
之后通过反向传播对自适应判别模型权重U,W和V进行更新;在反向传播过程中,定义损失函数:
Figure RE-GDA0003097066350000051
其中,
Figure RE-GDA0003097066350000052
表示t-4至t时刻的总损失,
Figure RE-GDA0003097066350000053
表示代表 t-4至t任意值的单一k时刻的输出值与标签值之间的损失,如无特殊说明,E即代指
Figure RE-GDA0003097066350000054
Ot为自适应判别模型的输出,
Figure RE-GDA0003097066350000055
为样本标签值,Ok,
Figure RE-GDA0003097066350000056
分别代表k时刻模型的暂时输出与准标签值;
由于参数矩阵V与Ot具有更为直接的关系,故先对参数矩阵V 进行误差反向传播并进行更新;
Figure RE-GDA0003097066350000057
其中,
Figure RE-GDA0003097066350000058
该处
Figure RE-GDA0003097066350000059
为Sk的转置,×表示矩阵运算,*表示Hadamard积,下同;
所以,参数矩阵V的更新方式即为:
Figure RE-GDA00030970663500000510
其中,a为学习率;
由于自适应判别模型采用RNN网络单元,故其误差在反向传播的过程中涉及到时间以及空间两个维度上的误差积累,为了对参数矩阵U以及W进行更新,首先对自适应判别模型在反向传播过程中的一些中间变量先进行求解;
为方便表示,令
Figure RE-GDA0003097066350000061
有如下等式:
Figure RE-GDA0003097066350000062
Figure RE-GDA0003097066350000063
通过上述中间变量,求解U以及W的梯度变化,有如下等式:
Figure RE-GDA0003097066350000064
Figure RE-GDA0003097066350000065
所以U和W的更新可以用如下方式表达:
Figure RE-GDA0003097066350000066
Figure RE-GDA0003097066350000067
其中b和c分别是学习率;
至此,自适应判别模型的三个权重矩阵即完成了更新;
除此之外,还需对BN操作中的γ和β进行更新;
Figure RE-GDA0003097066350000068
Figure RE-GDA0003097066350000069
Figure RE-GDA0003097066350000071
Figure RE-GDA0003097066350000072
式(17),(18)中,p和q同样是学习率;
整个自适应判别模型的权重更新规则如上所述;在实际操作中,将足量的导航卫星信号训练数据制作为满足上述输入输出要求的数据集;并将数据集按8:1:1的比例分割为训练集,验证集以及测试集;选取合适的单批数据量m,依次将训练集各个批次的数据输入自适应判别模型;每次将m组数据输入自适应判别模型后,计算模型输出与标签值的误差,并进行反向传播过程,更新权重矩阵和批处理化参数;设定模型对整个训练集遍历一遍为一个epoch,每次训练完成一个epoch,使用验证集对模型效果进行验证,观察模型准确率变化,防止过拟合现象的发生;
步骤4:对上述训练好的模型利用测试集进行评价,将满足测试集准确度要求的多源信息融合定位***卫星信号环境的自适应判别方法模型进行保存;在利用自适应模型进行卫星信号环境的判别过程中,将输入数据的单批次输入量m设置为1以保证模型输入维度与真实信息输入维度相匹配;由于m=1,在批处理化的正向传播中,均值μB和方差
Figure RE-GDA0003097066350000075
不再具有参考性,此时假设实际环境与训练集的数据独立同分布,将推理过程中的μB
Figure RE-GDA0003097066350000073
设置为整个训练集中输入数据的μB
Figure RE-GDA0003097066350000074
即可;对于模型的输出Ot,其取值范围应在0到1之间,若其值大于0.5,认为当前导航卫星信号环境良好,卫星数据可信,否则认为卫星信号环境质量较差,卫星数据存在较大噪音。
其中,所述步骤2中,所述m的数值根据计算***内存决定。
其中,所述步骤2中,所述m的数值取64。
其中,所述步骤2中,所述m的数值取128。
其中,所述步骤2中,所述m的数值取256。
其中,所述步骤3中,a取0.01至0.05之间的数值。
其中,所述步骤3中,b取0.01到0.05之间的数值。
其中,所述步骤3中,c取0.01到0.05之间的数值。
其中,所述步骤3中,p取0.05至0.1之间的数值。
其中,所述步骤3中,q取0.05至0.1之间的数值。
(三)有益效果
本发明技术方案采用基于RNN的自学习状态判别方法进行有限导航卫星信号环境与完全无导航卫星信号环境的自适应判别。RNN 是一种能够同时抽取时间与空间特征的神经网络,通过堆叠相同的神经单元,RNN可以接受持续时间内的信息输入。每个时刻RNN单个神经单元的输入信息分为两部分,一部分是当前时刻外部信息输入,另一组是上一时刻RNN神经单元隐藏层的输出。相较于不含循环结构的全连接神经网络,RNN可以更好的提取时间序列特征。利用该网络构建的定位方式自适应切换算法可以消除极短时间内因跳变定位信号导致的不必要的定位算法切换,也可以一定程度上避免特定情况下不稳定定位信号引发的定位算法频繁切换情况。为使该定位方式自适应切换方法满足较高的准确率要求,需要利用样本数据对自适应切换算法模型进行训练,验证以及测试。将预先准备好的导航卫星信号样本数据分割为训练集,验证集以及测试集,利用训练集更新算法模型的权重参数,利用验证集判断训练过程中算法模型性能是否有提升趋势,最后利用测试集对算法模型的判断准确率进行测试,满足准确率要求可投入使用。
综上,与现有技术相比较,该方法采用基于RNN的多源信息融合定位***卫星信号环境的自适应判别方法,能够有效对智能***运行环境的导航卫星信号状态进行特征抽取,根据连续时间段内的卫星信号状态特征输出当前时刻卫星信号状态判别值,实现智能无人***的信息融合定位***对卫星信号环境的自适应判别。
附图说明
图1是RNN基本结构示意图。
图2是自适应判别模型示意图。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
为解决上述技术问题,本发明提供一种信息融合定位***卫星信号环境的自适应判别方法,所述方法以RNN(Recurrent Neural Network,循环神经网络)网络单元为基本结构单元;所述RNN的结构如图1所示,由于模型中间层存在循环权重,RNN在处理时间序列数据时,能够将前一时刻数据的特征信息传递至下一时刻;本方法搭建自适应判别模型如图2所示,实施过程中,在由5个RNN单元组成的自适应判别模型实施的情况下,模型的输入为I,对于5个RNN 单元而言,其各自的输入为It-4至It,中间层数据为S,对于5个RNN 单元而言,其各自的中间层数据为St-4至St,单组数据的最终输出为 O,对于5个RNN单元而言,其各自的最终输出为Ot-4至Ot
Ik,Sk和Ok,k=t-4,t-3,t-2,t-1,t分别是维度为p,q,r的一维向量;模型参数包括U,V以及W;其中,U为RNN网络单元的输入权重,是一个p×q的矩阵,V是RNN网络单元的输出权重,是q×r的矩阵,W是RNN网络单元接受上一时刻中间层输入的权重,是一个q ×q的矩阵;自适应判别模型将5个时间帧的输入It-4至It作为一组数据输入模型,并得到当前标志当前卫星信号环境是否良好的标志位 Ot
该自适应判别模型在对卫星信号环境状态进行推理之前需要对 U,V以及W进行训练;
由此,所述自适应判别方法的训练以及推理包括以下步骤:
步骤1:选取训练样本以及标签;
本步骤选取GPS信息中的时间状态、接受状态、***状态、信号质量、卫星健康标识、用户测距精度以及组合导航数据中的跟踪位置、速度、航向角等不同类型的30个状态量作为自适应判别模型***的输入,具体来说对应于所述Ik,k∈(t-4,t-3,t-2,t-1,t);
在完成上述训练样本选择后,对模型输出Ok对应的标签值进行构造;取k时刻导航卫星信号位置坐标与k-1时刻位置坐标的差Δd作为k时刻的标志值并设定一个阈值δ,当Δd小于阈值δ时,将k时刻的准标签值设置为1,表征多源信息融合定位***该时刻获取的导航卫星信号是可信的;否则设置为0,表征***该时刻导航卫星信号不可信;
按照上述方式,利用无人***在测试环境中对上述输入量以及导航卫星信号坐标进行数据采集;将5帧连续样本准标签值为1的卫星信号样本片段提取出来,并将其标签值设置为1,表征原型***能够获取导航卫星信号;对所有准标签值为0的样本同样截取连续5帧的片段进行分析,当其临近的固定帧数样本均为0时,将该片段提取出来,并将该片段的标签值设置为0,表示定位***无法获取导航卫星信号或获取到的卫星信号不可使用;由于训练样本与标签值要求严格的时间一致性,故上述所有信息的采集必须经过同步处理;
步骤2:对采集到的样本数据进行初步权重计算和批标准化处理;
如图2所示,自适应判别模型中的U,V,W均为权重矩阵,自适应判别模型首先将样本数据利用U进行初步权重计算并进行BN (Batch Normalization,批标准化处理)操作;BN操作是指在模型训练步骤中,一次性将多个不同的中间输入进行一定处理后再进行后续计算,这样的操作可以在后续的训练过程中利用矩阵并行计算,加速其训练过程并提高模型判别精度;
具体来讲,设I为自适应判别模型的输入,并令X=UI,则X表示经历过输入层权重处理,但未进行BN处理的单批数据;
Figure RE-GDA0003097066350000111
为BN处理之前的单批数据X在类别维度上的平均值;
其中,xi表示X中的单个类别输入,包括时间状态、接受状态、跟踪位置;m表示同批次输入样本数,其数值根据计算***内存决定,可取64、128或256;
Figure RE-GDA0003097066350000112
为BN处理之前的单批数据方差,则可对输入做如下变换:
Figure RE-GDA0003097066350000113
并有:
Figure RE-GDA0003097066350000114
式中,ε是微小常数,避免出现除零情况的发生,
Figure RE-GDA0003097066350000115
为经过过标准化处理的输入数据,yi是经过变换后的输入数据,BNγ,β(xi)代表 BN操作,γ和β是权重参数,这两个参数是在后续反向传播过程中加以确定;
步骤3:批处理操作之后的数据正向传播及误差反向传播;
首先明确自适应判别模型的重要参数;在步骤1中,已经将自适应判别模型的RNN网络单元数目设置为5,单个RNN网络单元的输入I维度设置为30;输出O表征当前时刻的卫星环境状态是否可信,故用O=1表示可信,O=0表示不可信,将O的维度设置为1;
模型训练首先进行输入数据的前项传播,设t时刻神经单元的隐藏层数据为St,则该模型的正向传播过程表示为:
St=sigmoid(UYt+WSt-1) (3)
Ot=tanh(VSt) (4)
式中,St和Ot分别为t时刻的隐藏层数据以及输出数据,Yt为步骤1中yi的向量表示形式;Sigmoid和tanh分别表示Sigmoid函数和 tanh函数;通过上述公式以及图2的算法模型结构可以看到,Ot实际上包含了整个五个输入帧的输入特征;
之后通过反向传播对自适应判别模型权重U,W和V进行更新。在反向传播过程中,定义损失函数:
Figure RE-GDA0003097066350000121
其中,
Figure RE-GDA0003097066350000122
表示t-4至t时刻的总损失,
Figure RE-GDA0003097066350000123
表示代表 t-4至t任意值的单一k时刻的输出值与标签值之间的损失,如无特殊说明,E即代指
Figure RE-GDA0003097066350000124
Ot为自适应判别模型的输出,
Figure RE-GDA0003097066350000125
为样本标签值,Ok,
Figure RE-GDA0003097066350000126
分别代表k时刻模型的暂时输出与准标签值;
由于参数矩阵V与Ot具有更为直接的关系,故先对参数矩阵V 进行误差反向传播并进行更新;
Figure RE-GDA0003097066350000127
其中,
Figure RE-GDA0003097066350000131
该处
Figure RE-GDA0003097066350000132
为Sk的转置,×表示矩阵运算,*表示Hadamard积,下同;
所以,参数矩阵V的更新方式即为:
Figure RE-GDA0003097066350000133
其中,a为学习率,取0.01至0.05之间的数值;
由于自适应判别模型采用RNN网络单元,故其误差在反向传播的过程中涉及到时间以及空间两个维度上的误差积累,为了对参数矩阵U以及W进行更新,首先对自适应判别模型在反向传播过程中的一些中间变量先进行求解;
为方便表示,令
Figure RE-GDA0003097066350000134
有如下等式:
Figure RE-GDA0003097066350000135
Figure RE-GDA0003097066350000136
通过上述中间变量,求解U以及W的梯度变化,有如下等式:
Figure RE-GDA0003097066350000141
Figure RE-GDA0003097066350000142
所以U和W的更新可以用如下方式表达:
Figure RE-GDA0003097066350000143
Figure RE-GDA0003097066350000144
其中b和c分别是学习率,同a一样,取0.01到0.05之间的数值;
至此,自适应判别模型的三个权重矩阵即完成了更新;
除此之外,还需对BN操作中的γ和β进行更新;
Figure RE-GDA0003097066350000145
Figure RE-GDA0003097066350000146
Figure RE-GDA0003097066350000147
Figure RE-GDA0003097066350000148
式(17),(18)中,p和q同样是学习率,取0.05至0.1之间的数值;
整个自适应判别模型的权重更新规则如上所述;在实际操作中,将足量的导航卫星信号训练数据制作为满足上述输入输出要求的数据集;并将数据集按8:1:1的比例分割为训练集,验证集以及测试集;选取合适的单批数据量m,依次将训练集各个批次的数据输入自适应判别模型;每次将m组数据输入自适应判别模型后,计算模型输出与标签值的误差,并进行反向传播过程,更新权重矩阵和批处理化参数;设定模型对整个训练集遍历一遍为一个epoch,每次训练完成一个epoch,使用验证集对模型效果进行验证,观察模型准确率变化,防止过拟合现象的发生;
步骤4:对上述训练好的模型利用测试集进行评价,将满足测试集准确度要求的多源信息融合定位***卫星信号环境的自适应判别方法模型进行保存;在利用自适应模型进行卫星信号环境的判别过程中,将输入数据的单批次输入量m设置为1以保证模型输入维度与真实信息输入维度相匹配;由于m=1,在批处理化的正向传播中,均值μB和方差
Figure RE-GDA0003097066350000151
不再具有参考性,此时假设实际环境与训练集的数据独立同分布,将推理过程中的μB
Figure RE-GDA0003097066350000152
设置为整个训练集中输入数据的μB
Figure RE-GDA0003097066350000153
即可;对于模型的输出Ot,其取值范围应在0到1之间,若其值大于0.5,认为当前导航卫星信号环境良好,卫星数据可信,否则认为卫星信号环境质量较差,卫星数据存在较大噪音。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述方法以RNN网络单元为基本结构单元;由于模型中间层存在循环权重,RNN在处理时间序列数据时,能够将前一时刻数据的特征信息传递至下一时刻;本方法实施过程中,在由5个RNN单元组成的自适应判别模型实施的情况下,模型的输入为I,对于5个RNN单元而言,其各自的输入为It-4至It,中间层数据为S,对于5个RNN单元而言,其各自的中间层数据为St-4至St,单组数据的最终输出为O,对于5个RNN单元而言,其各自的最终输出为Ot-4至Ot
Ik,Sk和Ok,k=t-4,t-3,t-2,t-1,t分别是维度为p,q,r的一维向量;模型参数包括U,V以及W;其中,U为RNN网络单元的输入权重,是一个p×q的矩阵,V是RNN网络单元的输出权重,是q×r的矩阵,W是RNN网络单元接受上一时刻中间层输入的权重,是一个q×q的矩阵;自适应判别模型将5个时间帧的输入It-4至It作为一组数据输入模型,并得到当前标志当前卫星信号环境是否良好的标志位Ot
该自适应判别模型在对卫星信号环境状态进行推理之前需要对U,V以及W进行训练;
由此,所述自适应判别方法的训练以及推理包括以下步骤:
步骤1:选取训练样本以及标签;
本步骤选取GPS信息中的时间状态、接受状态、***状态、信号质量、卫星健康标识、用户测距精度以及组合导航数据中的跟踪位置、速度、航向角作为自适应判别模型***的输入,对应于所述Ik,k∈(t-4,t-3,t-2,t-1,t);
在完成上述训练样本选择后,对模型输出Ok对应的标签值进行构造;取k时刻导航卫星信号位置坐标与k-1时刻位置坐标的差Δd作为k时刻的标志值并设定一个阈值δ,当Δd小于阈值δ时,将k时刻的准标签值设置为1,表征多源信息融合定位***该时刻获取的导航卫星信号是可信的;否则设置为0,表征***该时刻导航卫星信号不可信;
按照上述方式,利用无人***在测试环境中对上述输入量以及导航卫星信号坐标进行数据采集;将5帧连续样本准标签值为1的卫星信号样本片段提取出来,并将其标签值设置为1,表征原型***能够获取导航卫星信号;对所有准标签值为0的样本同样截取连续5帧的片段进行分析,当其临近的固定帧数样本均为0时,将该片段提取出来,并将该片段的标签值设置为0,表示定位***无法获取导航卫星信号或获取到的卫星信号不可使用;由于训练样本与标签值要求严格的时间一致性,故上述所有信息的采集必须经过同步处理;
步骤2:对采集到的样本数据进行初步权重计算和批标准化处理;
自适应判别模型中的U,V,W均为权重矩阵,自适应判别模型首先将样本数据利用U进行初步权重计算并进行BN操作;BN操作是指在模型训练步骤中,一次性将多个不同的中间输入进行一定处理后再进行后续计算,这样的操作可以在后续的训练过程中利用矩阵并行计算,加速其训练过程并提高模型判别精度;
具体来讲,设I为自适应判别模型的输入,并令X=UI,则X表示经历过输入层权重处理,但未进行BN处理的单批数据;
Figure RE-FDA0003097066340000021
为BN处理之前的单批数据X在类别维度上的平均值;
其中,xi表示X中的单个类别输入,包括时间状态、接受状态、跟踪位置;m表示同批次输入样本数;
Figure RE-FDA0003097066340000022
为BN处理之前的单批数据方差,则可对输入做如下变换:
Figure RE-FDA0003097066340000031
并有:
Figure RE-FDA0003097066340000032
式中,ε是微小常数,避免出现除零情况的发生,
Figure RE-FDA0003097066340000033
为经过过标准化处理的输入数据,yi是经过变换后的输入数据,BNγ,β(xi)代表BN操作,γ和β是权重参数,这两个参数是在后续反向传播过程中加以确定;
步骤3:批处理操作之后的数据正向传播及误差反向传播;
首先明确自适应判别模型的重要参数;在步骤1中,已经将自适应判别模型的RNN网络单元数目设置为5,单个RNN网络单元的输入I维度设置为30;输出O表征当前时刻的卫星环境状态是否可信,故用O=1表示可信,O=0表示不可信,将O的维度设置为1;
模型训练首先进行输入数据的前项传播,设t时刻神经单元的隐藏层数据为St,则该模型的正向传播过程表示为:
St=sigmoid(UYt+WSt-1) (3)
Ot=tanh(VSt) (4)
式中,St和Ot分别为t时刻的隐藏层数据以及输出数据,Yt为步骤1中yi的向量表示形式;Sigmoid和tanh分别表示Sigmoid函数和tanh函数;通过上述公式可以看到,Ot实际上包含了整个五个输入帧的输入特征;
之后通过反向传播对自适应判别模型权重U,W和V进行更新;在反向传播过程中,定义损失函数:
Figure RE-FDA0003097066340000041
其中,
Figure RE-FDA0003097066340000042
表示t-4至t时刻的总损失,
Figure RE-FDA0003097066340000043
表示代表t-4至t任意值的单一k时刻的输出值与标签值之间的损失,如无特殊说明,E即代指
Figure RE-FDA0003097066340000044
Ot为自适应判别模型的输出,
Figure RE-FDA0003097066340000045
为样本标签值,Ok,
Figure RE-FDA0003097066340000046
分别代表k时刻模型的暂时输出与准标签值;
由于参数矩阵V与Ot具有更为直接的关系,故先对参数矩阵V进行误差反向传播并进行更新;
Figure RE-FDA0003097066340000047
其中,
Figure RE-FDA0003097066340000048
该处
Figure RE-FDA0003097066340000049
为Sk的转置,×表示矩阵运算,*表示Hadamard积,下同;
所以,参数矩阵V的更新方式即为:
Figure RE-FDA00030970663400000410
其中,a为学习率;
由于自适应判别模型采用RNN网络单元,故其误差在反向传播的过程中涉及到时间以及空间两个维度上的误差积累,为了对参数矩阵U以及W进行更新,首先对自适应判别模型在反向传播过程中的一些中间变量先进行求解;
为方便表示,令
Figure RE-FDA0003097066340000051
有如下等式:
Figure RE-FDA0003097066340000052
Figure RE-FDA0003097066340000053
通过上述中间变量,求解U以及W的梯度变化,有如下等式:
Figure RE-FDA0003097066340000054
Figure RE-FDA0003097066340000055
所以U和W的更新可以用如下方式表达:
Figure RE-FDA0003097066340000056
Figure RE-FDA0003097066340000057
其中b和c分别是学习率;
至此,自适应判别模型的三个权重矩阵即完成了更新;
除此之外,还需对BN操作中的γ和β进行更新;
Figure RE-FDA0003097066340000058
Figure RE-FDA0003097066340000059
Figure RE-FDA0003097066340000061
Figure RE-FDA0003097066340000062
式(17),(18)中,p和q同样是学习率;
整个自适应判别模型的权重更新规则如上所述;在实际操作中,将足量的导航卫星信号训练数据制作为满足上述输入输出要求的数据集;并将数据集按8:1:1的比例分割为训练集,验证集以及测试集;选取合适的单批数据量m,依次将训练集各个批次的数据输入自适应判别模型;每次将m组数据输入自适应判别模型后,计算模型输出与标签值的误差,并进行反向传播过程,更新权重矩阵和批处理化参数;设定模型对整个训练集遍历一遍为一个epoch,每次训练完成一个epoch,使用验证集对模型效果进行验证,观察模型准确率变化,防止过拟合现象的发生;
步骤4:对上述训练好的模型利用测试集进行评价,将满足测试集准确度要求的多源信息融合定位***卫星信号环境的自适应判别方法模型进行保存;在利用自适应模型进行卫星信号环境的判别过程中,将输入数据的单批次输入量m设置为1以保证模型输入维度与真实信息输入维度相匹配;由于m=1,在批处理化的正向传播中,均值μB和方差
Figure RE-FDA0003097066340000063
不再具有参考性,此时假设实际环境与训练集的数据独立同分布,将推理过程中的μB
Figure RE-FDA0003097066340000064
设置为整个训练集中输入数据的μB
Figure RE-FDA0003097066340000065
即可;对于模型的输出Ot,其取值范围应在0到1之间,若其值大于0.5,认为当前导航卫星信号环境良好,卫星数据可信,否则认为卫星信号环境质量较差,卫星数据存在较大噪音。
2.如权利要求1所述的信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述步骤2中,所述m的数值根据计算***内存决定。
3.如权利要求2所述的信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述步骤2中,所述m的数值取64。
4.如权利要求2所述的信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述步骤2中,所述m的数值取128。
5.如权利要求2所述的信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述步骤2中,所述m的数值取256。
6.如权利要求1所述的信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述步骤3中,a取0.01至0.05之间的数值。
7.如权利要求1所述的信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述步骤3中,b取0.01到0.05之间的数值。
8.如权利要求1所述的信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述步骤3中,c取0.01到0.05之间的数值。
9.如权利要求1所述的信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述步骤3中,p取0.05至0.1之间的数值。
10.如权利要求1所述的信息融合定位***卫星信号环境的自适应判别方法,其特征在于,所述步骤3中,q取0.05至0.1之间的数值。
CN202110238535.2A 2021-03-04 2021-03-04 信息融合定位***卫星信号环境的自适应判别方法 Active CN113156473B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110238535.2A CN113156473B (zh) 2021-03-04 2021-03-04 信息融合定位***卫星信号环境的自适应判别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110238535.2A CN113156473B (zh) 2021-03-04 2021-03-04 信息融合定位***卫星信号环境的自适应判别方法

Publications (2)

Publication Number Publication Date
CN113156473A true CN113156473A (zh) 2021-07-23
CN113156473B CN113156473B (zh) 2023-05-02

Family

ID=76884281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110238535.2A Active CN113156473B (zh) 2021-03-04 2021-03-04 信息融合定位***卫星信号环境的自适应判别方法

Country Status (1)

Country Link
CN (1) CN113156473B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703025A (zh) * 2021-08-23 2021-11-26 东南大学 一种面向gnss多种失效状态的车辆定位误差智能预测方法
CN114900897A (zh) * 2022-05-17 2022-08-12 中国人民解放军国防科技大学 多波束卫星资源分配方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109948117A (zh) * 2019-03-13 2019-06-28 南京航空航天大学 一种对抗网络自编码器的卫星异常检测方法
CN110751199A (zh) * 2019-10-15 2020-02-04 南京航空航天大学 一种基于贝叶斯神经网络的卫星异常检测方法
CN111783558A (zh) * 2020-06-11 2020-10-16 上海交通大学 一种卫星导航干扰信号类型智能识别方法及***
US10809388B1 (en) * 2019-05-01 2020-10-20 Swift Navigation, Inc. Systems and methods for high-integrity satellite positioning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109948117A (zh) * 2019-03-13 2019-06-28 南京航空航天大学 一种对抗网络自编码器的卫星异常检测方法
US10809388B1 (en) * 2019-05-01 2020-10-20 Swift Navigation, Inc. Systems and methods for high-integrity satellite positioning
CN110751199A (zh) * 2019-10-15 2020-02-04 南京航空航天大学 一种基于贝叶斯神经网络的卫星异常检测方法
CN111783558A (zh) * 2020-06-11 2020-10-16 上海交通大学 一种卫星导航干扰信号类型智能识别方法及***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
晏南: "超高层复杂环境下BDS/GPS数据质量评估", 《现代测绘》 *
李靖宇: "组合导航***完好性技术研究", 《中国优秀硕士学位论文全文数据库基础科学辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703025A (zh) * 2021-08-23 2021-11-26 东南大学 一种面向gnss多种失效状态的车辆定位误差智能预测方法
CN113703025B (zh) * 2021-08-23 2023-11-07 东南大学 一种面向gnss多种失效状态的车辆定位误差智能预测方法
CN114900897A (zh) * 2022-05-17 2022-08-12 中国人民解放军国防科技大学 多波束卫星资源分配方法及***
CN114900897B (zh) * 2022-05-17 2023-04-07 中国人民解放军国防科技大学 多波束卫星资源分配方法及***

Also Published As

Publication number Publication date
CN113156473B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
Gao et al. Long short-term memory-based deep recurrent neural networks for target tracking
CN108596327B (zh) 一种基于深度学习的地震速度谱人工智能拾取方法
JP4970408B2 (ja) 物体特性のロバストな推定を用いる適応型運転者支援システム
CN108027972A (zh) 用于对象跟踪的***和方法
CN114332578A (zh) 图像异常检测模型训练方法、图像异常检测方法和装置
CN113156473A (zh) 信息融合定位***卫星信号环境的自适应判别方法
CN109598220A (zh) 一种基于多元输入多尺度卷积的人数统计方法
CN113554156B (zh) 基于注意力机制与可变形卷积的多任务图像处理方法
CN115511012B (zh) 一种最大熵约束的类别软标签识别训练方法
CN114626307B (zh) 一种基于变分贝叶斯的分布式一致性目标状态估计方法
CN115600051A (zh) 基于短弧天基光学观测的轨道机动智能检测方法和装置
CN108759846B (zh) 自适应扩展卡尔曼滤波噪声模型建立方法
CN114358250A (zh) 数据处理方法、装置、计算机设备、介质及程序产品
CN113821724A (zh) 一种基于时间间隔增强的图神经网络推荐方法
Artemov et al. Subsystem for simple dynamic gesture recognition using 3DCNNLSTM
CN112036291A (zh) 基于运动大数据和深度学习的运动学数据模型构建方法
CN107247996A (zh) 一种应用于异分布数据环境的主动学习方法
CN116310991A (zh) 一种基于强化学习的篮板落点预测方法及***
Xu et al. Probabilistic human motion prediction via a Bayesian neural network
CN114255616A (zh) 一种无动力船舶轨迹预测方法、装置、设备及存储介质
CN114061592A (zh) 基于多模型的自适应鲁棒auv导航方法
Wu et al. RangingNet: A convolutional deep neural network based ranging model for wireless sensor networks (WSN)
Li et al. Covid-19 Epidemic Trend Prediction Based on CNN-StackBiLSTM
Bobrowski et al. A neural network implementing optimal state estimation based on dynamic spike train decoding
CN117197193B (zh) 游泳速度估计方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant