CN113097337A - 二维Te纳米片柔性透明近红外光电探测器及制备方法 - Google Patents

二维Te纳米片柔性透明近红外光电探测器及制备方法 Download PDF

Info

Publication number
CN113097337A
CN113097337A CN202110353075.8A CN202110353075A CN113097337A CN 113097337 A CN113097337 A CN 113097337A CN 202110353075 A CN202110353075 A CN 202110353075A CN 113097337 A CN113097337 A CN 113097337A
Authority
CN
China
Prior art keywords
dimensional
transparent
electrode
flexible
nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110353075.8A
Other languages
English (en)
Inventor
沈国震
胡楚乔
李腊
刘伟佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN202110353075.8A priority Critical patent/CN113097337A/zh
Publication of CN113097337A publication Critical patent/CN113097337A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本公开提供了一种二维Te纳米片柔性透明近红外光电探测器及制备方法,其二维Te纳米片柔性透明近红外光电探测器包括:柔性衬底、透明电极和二维Te纳米片;透明电极位于柔性衬底之上,其中透明电极的材料为MXene‑Ti3C2Tx;二维Te纳米片搭设在所述透明电极的正极和负极上,且连通所述透明电极的正极和负极。本公开具有电极由二维材料构成,可与二维活性材料更好的接触,使器件具有更低的暗电流,在整个测试过程中电流随时间变化也更加稳定。

Description

二维Te纳米片柔性透明近红外光电探测器及制备方法
技术领域
本公开涉及柔性电子器件领域,尤其涉及一种二维Te纳米片柔性透明近红外光电探测器及制备方法。
背景技术
随着科技的进步和时代的发展,人们对常规电子器件的要求越来越高,为了更加适应人们的需求及扩展电子器件的应用范围,柔性电子器件便成为了人们关注的热点。如今,信息化、网络化已经成为全球发展的主题,光通信技术作为光电子和微电子的基础,具有高保密性、较强的环境适应性等优势,而光电探测器是实现光通讯最基本的器件之一,在军事及民用等众多领域都具有广阔的应用前景。
在众多光电探测器中,柔性透明近红外光电探测器以其响应速度快、响应率高的特点,在除光通信外的其他领域中同样具有重要的意义,如图像识别、人工智能等。此外,固有的透明性可以使光电探测器在更多新的领域有所应用,如可安装在车辆的挡风玻璃上,在无需多余组件的情况下实现自动驾驶,使挡风玻璃成为显示面板,制造智能和多功能设计的窗户等系列目标。
目前对于光电探测器透明电极的制备方法及半导体材料的选择都存在一定的难题,因此有必要开发一种具有高度透明电极结构且活性材料不易团聚的柔性透明近红外光电探测器,以进一步扩展其应用范围,满足人们的实际需要。
发明内容
(一)要解决的技术问题
本公开提供了一种二维Te纳米片柔性透明近红外光电探测器及制备方法,以解决以上所提出的技术问题。
(二)技术方案
根据本公开的一个方面,提供了一种二维Te纳米片柔性透明近红外光电探测器,包括:
柔性衬底;
透明电极,位于所述柔性衬底之上;所述透明电极的材料为MXene-Ti3C2Tx
二维Te纳米片,所述二维Te纳米片搭设在所述透明电极的正极和负极上,所述二维Te纳米片连通所述透明电极的正极和负极。
在本公开的一些实施例中,所述透明电极为叉指电极,所述叉指电极的沟道宽度为5-30μm。
在本公开的一些实施例中,所述二维Te纳米片横向尺寸为20-30μm,纵向尺寸为100-150μm;所述柔性衬底的尺寸为3×3cm至5×5cm。
在本公开的一些实施例中,所述透明电极的透明度大于等于60%。
在本公开的一些实施例中,所述柔性衬底材料为聚对苯二甲酸乙二醇酯。
在本公开的一些实施例中,所述透明电极的厚度为50nm-100nm。
在本公开的一些实施例中,所述二维Te纳米片柔性透明近红外光电探测器的波段范围为900nm-1350nm。
根据本公开的一个方面,还提供了一种二维Te纳米片柔性透明近红外光电探测器的制备方法,包括:
依次用丙酮、乙醇超声清洗柔性衬底5-20min;
在清洗后的柔性衬底上涂覆光刻胶,通过光刻胶显影,得到刻蚀出电极图形的柔性衬底;
将具有MXene-Ti3C2Tx材料的溶液,转移到刻蚀出电极图形的柔性衬底,干燥处理后,在丙酮溶液中进行剥离,得到柔性的透明MXene-Ti3C2Tx电极;
制备二维Te纳米片;
将所述二维Te纳米片转移到柔性的所述透明MXene-Ti3C2Tx电极上,真空干燥后,所述二维Te纳米片搭设在所述透明MXene-Ti3C2Tx电极的正极和负极上,且所述二维Te纳米片连通所述透明MXene-Ti3C2Tx电极的正极和负极。
在本公开的一些实施例中,所述制备二维Te纳米片包括:
将亚碲酸钠与聚乙烯吡咯烷酮在磁力搅拌的情况下加入到去离子水中形成均匀溶液;
再将氨水与水合肼依次缓慢加入到所述均匀溶液中,轻轻晃动使其充分混合至透明,得到透明溶液;
将所述透明溶液倒入聚四氟乙烯内衬的不锈钢高压釜中,在170-200℃下真空反应30-40小时后,使高压釜自然冷却至室温;
通过3000-5000转/分钟的速度离心5-10分钟后,得到固体产物沉淀;
再用去离子水清洗所述固体产物沉淀中其余的杂质离子直到所述固体产物沉淀变为银灰色并出现亮片,制得二维Te纳米片。
在本公开的一些实施例中,所述制备柔性的透明电极中采用的干燥处理为通过真空干燥箱进行干燥。
(三)有益效果
从上述技术方案可以看出,本公开二维Te纳米片柔性透明近红外光电探测器及制备方法至少具有以下有益效果其中之一或其中一部分:
(1)本公开采用二维层状Te纳米片结构,使电极表面更加平整,能够与具有近红外光响应的活性材料接触得更紧密,本公开具有更低的暗电流,测试过程中,电流随时间的变化也更加稳定。
(2)本公开采用柔性衬底,在上千次的弯曲循环后,依旧可以保持相对稳定,具有良好的机械性能。
(3)本公开中二维Te纳米片具有带隙窄和可形成异质结构的特点,使得其对近红外激光具有出色的光响应。
(4)本公开中二维Te纳米片作为二维材料,因其载流子迁移和热量扩散都被限制在二维平面内,使其具有高的载流子迁移率、良好的机械强度及较宽的光谱响应等优点。
附图说明
图1为本公开实施例二维Te纳米片柔性透明近红外光电探测器的示意图。
图2为本公开实施例二维Te纳米片柔性透明近红外光电探测器的制备方法流程图。
图3(a)为二维Te纳米片表面SEM形貌测试图。
图3(b)为二维Te纳米片XRD测试图。
图4(a)为本公开实施例二维Te纳米片柔性透明近红外光电探测器与金电极二维Te纳米片柔性近红外光电探测器的I-V对比曲线。
图4(b)为本公开实施例二维Te纳米片柔性透明近红外光电探测器与金电极二维Te纳米片柔性近红外光电探测器的I-T对比曲线。
图5为在波长为915nm,不同光功率密度的激光照射下,本公开实施例二维Te纳米片柔性透明近红外光电探测器的I-T测试曲线。
图6(a)为在0.1V偏压下,将本公开实施例二维Te纳米片柔性透明近红外光电探测器弯曲0°、30°、60°、90°、120°及150°后的I-T测试曲线。
图6(b)为本公开实施例二维Te纳米片柔性透明近红外光电探测器经过5000次弯曲循环测试后,其光电流和暗电流变化测试曲线。
【附图中本公开实施例主要元件符号说明】
1-柔性衬底;
2-透明电极;
3-二维Te纳米片。
具体实施方式
为了克服传统刚性金电极0/ID近红外光电探测器的一些如活性材料易团聚、器件机械性能差、光线透过率低、暗电流较大等缺点。本公开提供了一种二维Te纳米片柔性透明近红外光电探测器及制备方法,其二维Te纳米片柔性透明近红外光电探测器包括:柔性衬底、透明电极和二维Te纳米片;透明电极位于柔性衬底之上,其中透明电极的材料为MXene-Ti3C2Tx;二维Te纳米片搭设在所述透明电极的正极和负极上,且连通所述透明电极的正极和负极。本公开透明MXene-Ti3C2Tx电极由二维材料构成,可与二维活性材料更好的接触,使器件具有更低的暗电流,在整个测试过程中电流随时间变化也更加稳定。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
本公开某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本公开的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本公开满足适用的法律要求。
在本公开的第一个示例性实施例中,提供了一种二维Te纳米片柔性透明近红外光电探测器。图1为本公开实施例二维Te纳米片柔性透明近红外光电探测器的示意图。如图1所示,本公开二维Te纳米片柔性透明近红外光电探测器包括:柔性衬底、透明电极和二维Te纳米片。二维Te纳米片柔性透明近红外光电探测器的适用波段范围为900-1350nm。本实施例中透明电极位于柔性衬底之上,二维Te纳米片搭设在所述透明电极的正极和负极上,且连通所述透明电极的正极和负极。其中,透明电极的材料为MXene-Ti3C2Tx。透明电极的横向尺寸大于20μm,一般不大于30μm。透明电极的纵向尺寸大于100μm,一般不大于150μm。
在本公开的一个实施例中,所述透明电极为叉指电极,所述叉指电极的沟道宽度为5-30μm。其他本领域技术人员能够知悉的电极结构,可进行替换这里并不做具体限定。
在本公开的一个实施例中,所述透明电极的透明度大于等于60%。根据所用材料的浓度及制备手法的不同,可获得不同透明度的电极,但大部分电极的透明度都在60%以上,使得在汽车玻璃上制备控制面板及制作多功能窗户提供了可能。
在本公开的一个实施例中,柔性衬底材料为聚对苯二甲酸乙二醇酯,这种材料的柔性衬底在上千次的弯曲循环测试后,器件依旧可以保持相对稳定,具有良好的机械性能。
在本公开的第一个示例性实施例中,还提供了一种二维Te纳米片柔性透明近红外光电探测器的制备方法,具体选择一种与石墨烯结构类似的具有良好的透射率和金属导电性的新型二维材料MXene-Ti3C2Tx作为光电探测器的透明电极材料。还选择具备良好光学及电子性能的窄带隙二维Te纳米片作为活性材料,利用半导体微加工工艺(匀胶、光刻、显影、剥离等),在聚对苯二甲酸乙二醇酯(PET)柔性衬底上制备出透明二维电极结构,并将通过水热法合成的具有近红外光响应的二维片状Te材料与其组合制备成“二维加二维”的柔性近红外光电探测器。
具体包括操作S1~S5,如图2所示。
操作S1:裁剪一片尺寸为3×3cm,材料为聚对苯二甲酸乙二醇酯(PET)的柔性衬底,依次用丙酮、乙醇超声清洗柔性衬底10min。
操作S2:在洗好柔性衬底上涂覆光刻胶,通过光刻显影,得到刻蚀出电极图形的柔性衬底。
操作S3:将具有高电导率的二维MXene-Ti3C2Tx材料的溶液,转移到刻蚀出电极图形的柔性衬底上,干燥后,在丙酮溶液中进行剥离,制备出柔性的透明MXene-Ti3C2Tx电极。
操作S4:通过水热法生长出对近红外光敏感的二维Te纳米片。
操作S5:将其转移到柔性透明MXene-Ti3C2Tx电极上,真空干燥后,确保Te纳米片搭在透明MXene-Ti3C2Tx电极两端并成功将其导通。
如图3a和图3b所示,通过对Te的表征可知,运用如图2所示的制备方法可成功制备出本公开所需要的二维Te纳米片柔性透明近红外光电探测器。其中关于操作S4中二维Te纳米片的制备方法具体包括:操作S41~操作S45
操作S41:将亚碲酸钠(Na2TeO3)与聚乙烯吡咯烷酮(PVP)在磁力搅拌的情况下加入到去离子水中形成均匀溶液。
操作S42:再将氨水与水合肼依次缓慢加入到均匀溶液中,轻轻晃动使其充分混合至透明,得到透明溶液。
操作S43:将所得透明溶液倒入聚四氟乙烯内衬的不锈钢高压釜中,在200℃下真空反应30小时后,使高压釜自然冷却至室温。
操作S44:通过5000转/分钟的速度离心5分钟后,得到固体产物沉淀。
操作S45:再用去离子水清洗固体产物沉淀中其余的杂质离子直到固体产物沉淀变为银灰色并出现亮片,制得二维Te纳米片。
以下进行二维Te纳米片柔性透明近红外光电探测器与金电极二维Te纳米片柔性近红外光电探测器的光电测试对比。
两种不同电极结构的Te纳米片光电探测器在暗电流和915nm红外光照射下的伏安曲线的对比图如图4(a)所示,所用红外激光的光功率密度为57.3mW/cm2。由图可知,在类似的测试环境下,基于透明MXene-Ti3C2Tx电极的二维Te纳米片柔性透明近红外光电探测器会产生更大的光电流,且具有更低且更为稳定的大小在fA级别的器件本身的暗电流。
图4(b)为两种不同电极结构的Te纳米片光电探测器在相同的红外光条件的照射下,光电流相对于各自暗电流的变化程度的I-T图,基于透明MXene-Ti3C2Tx电极的二维Te纳米片柔性透明近红外光电探测器的光电流变化程度是金电极二维Te纳米片柔性近红外光电探测器的13倍左右,因此具有更好的光响应。
以下进行基于透明MXene-Ti3C2Tx电极的二维Te纳米片柔性透明近红外光电探测器在不同光功率密度(20.7mW/cm2,57.3mW/cm2)的激光照射下的光电测试。
如图5所示,不同光功率密度对光电流的影响较小,对暗电流的影响更大一些,光强越强,暗电流越稳定,增大光功率密度,可以大大提高器件的周期性光响应开关比。在给出的10个动态循环测试中,光电流变化都较为稳定,说明发明制备的基于透明MXene-Ti3C2Tx电极的二维Te纳米片柔性透明近红外光电探测器具有良好的循环稳定性并具备可重复性。
为了探究本柔性电子器件的可靠性,以下对器件进行了不同角度的弯曲测试,通过观测在不同弯曲情况下器件的电流变化是否稳定来判别器件的可靠性。从图6(a)可以看出,在弯曲六个不同角度后,基于透明MXene-Ti3C2Tx电极的二维Te纳米片柔性透明近红外光电探测器的光电流及暗电流依然保持稳定且几乎没有差别,这证明了我们所制备的光电探测器具备优异的电稳定性和机械稳定性。此外,另外对所制备的柔性光电探测器进行了弯曲循环测试,若以器件从0°弯曲至60°后再恢复到0°为一个弯曲周期,将器件弯曲循环5,000次,并记录每一次弯曲循环后器件的光电流及暗电流的平均值,如图6(b)所示。二维Te纳米片柔性透明近红外光电探测器经过5,000次弯曲循环测试后,其光电流和暗电流几乎没有明显的变化,仅在极小范围内正常波动。这一结果表明基于透明MXene-Ti3C2Tx电极的二维Te纳米片柔性透明近红外光电探测器在不损坏本身电子性能的基础上,具有弯曲性和优越的耐折性。
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
依据以上描述,本领域技术人员应当对本公开二维Te纳米片柔性透明近红外光电探测器及制备方法有了清楚的认识。
综上所述,本公开提供一种二维Te纳米片柔性透明近红外光电探测器及制备方法,其透明MXene-Ti3C2Tx电极由二维材料构成,可与二维活性材料更好的接触,使器件具有更低的暗电流,在整个测试过程中电流随时间变化也更加稳定。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。
并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本公开的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到“约”的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。
再者,单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

1.一种二维Te纳米片柔性透明近红外光电探测器,包括:
柔性衬底;
透明电极,位于所述柔性衬底之上;所述透明电极的材料为MXene-Ti3C2Tx
二维Te纳米片,所述二维Te纳米片搭设在所述透明电极的正极和负极上,所述二维Te纳米片连通所述透明电极的正极和负极。
2.根据权利要求1所述的二维Te纳米片柔性透明近红外光电探测器,其中,所述透明电极为叉指电极,所述叉指电极的沟道宽度为5-30μm。
3.根据权利要求1所述的二维Te纳米片柔性透明近红外光电探测器,其中,所述二维Te纳米片横向尺寸为20-30μm,纵向尺寸为100-150μm;所述柔性衬底的尺寸为3×3cm至5×5cm。
4.根据权利要求1所述的二维Te纳米片柔性透明近红外光电探测器,其中,所述透明电极的透明度大于等于60%。
5.根据权利要求1所述的二维Te纳米片柔性透明近红外光电探测器,其中,所述柔性衬底材料为聚对苯二甲酸乙二醇酯。
6.根据权利要求1所述的二维Te纳米片柔性透明近红外光电探测器,其中,所述透明电极的厚度为50nm-100nm。
7.根据权利要求1所述的二维Te纳米片柔性透明近红外光电探测器,其中,所述二维Te纳米片柔性透明近红外光电探测器的波段范围为900nm-1350nm。
8.一种如权利要求1至7中任一项所述的二维Te纳米片柔性透明近红外光电探测器的制备方法,包括:
依次用丙酮、乙醇超声清洗柔性衬底5-20min;
在清洗后的柔性衬底上涂覆光刻胶,通过光刻胶显影,得到刻蚀出电极图形的柔性衬底;
将具有MXene-Ti3C2Tx材料的溶液,转移到刻蚀出电极图形的柔性衬底,干燥处理后,在丙酮溶液中进行剥离,得到柔性的透明MXene-Ti3C2Tx电极;
制备二维Te纳米片;
将所述二维Te纳米片转移到柔性的所述透明MXene-Ti3C2Tx电极上,真空干燥后,所述二维Te纳米片搭设在所述透明MXene-Ti3C2Tx电极的正极和负极上,且所述二维Te纳米片连通所述透明MXene-Ti3C2Tx电极的正极和负极。
9.根据权利要求8所述的制备方法,其中,所述制备二维Te纳米片包括:
将亚碲酸钠与聚乙烯吡咯烷酮在磁力搅拌的情况下加入到去离子水中形成均匀溶液;
再将氨水与水合肼依次缓慢加入到所述均匀溶液中,轻轻晃动使其充分混合至透明,得到透明溶液;
将所述透明溶液倒入聚四氟乙烯内衬的不锈钢高压釜中,在170-200℃下真空反应30-40小时后,使高压釜自然冷却至室温;
通过3000-5000转/分钟的速度离心5-10分钟后,得到固体产物沉淀;
再用去离子水清洗所述固体产物沉淀中其余的杂质离子直到所述固体产物沉淀变为银灰色并出现亮片,制得二维Te纳米片。
10.根据权利要求8所述的制备方法,其中,所述制备柔性的透明电极中采用的干燥处理为通过真空干燥箱进行干燥。
CN202110353075.8A 2021-03-31 2021-03-31 二维Te纳米片柔性透明近红外光电探测器及制备方法 Pending CN113097337A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110353075.8A CN113097337A (zh) 2021-03-31 2021-03-31 二维Te纳米片柔性透明近红外光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110353075.8A CN113097337A (zh) 2021-03-31 2021-03-31 二维Te纳米片柔性透明近红外光电探测器及制备方法

Publications (1)

Publication Number Publication Date
CN113097337A true CN113097337A (zh) 2021-07-09

Family

ID=76672218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110353075.8A Pending CN113097337A (zh) 2021-03-31 2021-03-31 二维Te纳米片柔性透明近红外光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN113097337A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597268A (zh) * 2022-03-07 2022-06-07 中国科学院半导体研究所 光电探测器及其制备方法
CN114883433A (zh) * 2022-04-07 2022-08-09 华南理工大学 一种InGaN可见光探测器及其制备方法和应用
CN115295675A (zh) * 2022-08-18 2022-11-04 之江实验室 一种基于二维材料Te/MoS2异质结的光探测器的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204378A1 (ko) * 2015-06-16 2016-12-22 한국원자력연구원 방사선 검출기 및 그 제조 방법
CN107221428A (zh) * 2017-06-13 2017-09-29 苏州大学 一种金属氧化物/MXene二维纳米复合物、其制备方法与应用
CN108313987A (zh) * 2018-02-09 2018-07-24 深圳大学 二维碲纳米片及其制备方法和应用
CN108447691A (zh) * 2018-02-09 2018-08-24 深圳大学 光探测器及其制备方法
CN109103275A (zh) * 2018-07-16 2018-12-28 深圳大学 基于二维碲纳米片的固体光探测器及其制备方法
CN109119495A (zh) * 2018-08-22 2019-01-01 西南交通大学 一种柔性光电探测器及其制备方法
CN110176538A (zh) * 2019-05-28 2019-08-27 湖北大学 一种基于二维Ti3C2-MXene薄膜材料的透明柔性阻变存储器及其制备方法
CN111977619A (zh) * 2020-09-01 2020-11-24 深圳大学 一种二维六边形碲纳米片的制备方法及在医学光电探测器上的应用
CN112204764A (zh) * 2018-12-25 2021-01-08 俄罗斯国立科技大学莫斯科钢铁合金研究所 MXene改进型混合光电转换器
CN112435867A (zh) * 2020-11-24 2021-03-02 西北工业大学 柔性自支撑MXene/CuS超级电容器电极材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204378A1 (ko) * 2015-06-16 2016-12-22 한국원자력연구원 방사선 검출기 및 그 제조 방법
CN107221428A (zh) * 2017-06-13 2017-09-29 苏州大学 一种金属氧化物/MXene二维纳米复合物、其制备方法与应用
CN108313987A (zh) * 2018-02-09 2018-07-24 深圳大学 二维碲纳米片及其制备方法和应用
CN108447691A (zh) * 2018-02-09 2018-08-24 深圳大学 光探测器及其制备方法
CN109103275A (zh) * 2018-07-16 2018-12-28 深圳大学 基于二维碲纳米片的固体光探测器及其制备方法
CN109119495A (zh) * 2018-08-22 2019-01-01 西南交通大学 一种柔性光电探测器及其制备方法
CN112204764A (zh) * 2018-12-25 2021-01-08 俄罗斯国立科技大学莫斯科钢铁合金研究所 MXene改进型混合光电转换器
CN110176538A (zh) * 2019-05-28 2019-08-27 湖北大学 一种基于二维Ti3C2-MXene薄膜材料的透明柔性阻变存储器及其制备方法
CN111977619A (zh) * 2020-09-01 2020-11-24 深圳大学 一种二维六边形碲纳米片的制备方法及在医学光电探测器上的应用
CN112435867A (zh) * 2020-11-24 2021-03-02 西北工业大学 柔性自支撑MXene/CuS超级电容器电极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEI TONG 等: "Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature", 《NATURE COMMUNICATIONS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597268A (zh) * 2022-03-07 2022-06-07 中国科学院半导体研究所 光电探测器及其制备方法
CN114597268B (zh) * 2022-03-07 2023-04-07 中国科学院半导体研究所 光电探测器及其制备方法
CN114883433A (zh) * 2022-04-07 2022-08-09 华南理工大学 一种InGaN可见光探测器及其制备方法和应用
CN115295675A (zh) * 2022-08-18 2022-11-04 之江实验室 一种基于二维材料Te/MoS2异质结的光探测器的制备方法

Similar Documents

Publication Publication Date Title
CN113097337A (zh) 二维Te纳米片柔性透明近红外光电探测器及制备方法
Sadasivuni et al. Flexible, biodegradable and recyclable solar cells: a review
Muto et al. Polythiophene-based mesoporous counter electrodes for plastic dye-sensitized solar cells
Wang et al. A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells
US20090114277A1 (en) Production Process of Photoelectrode for Dye-Sensitized Solar Cell, Photoelectrode for Dye-Sensitized Solar Cell and Dye-Sensitized Solar Cell.
Capasso et al. CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes
Ma et al. A self-powered photoelectrochemical ultraviolet photodetector based on Ti3C2T x/TiO2 in situ formed heterojunctions
CN109439323A (zh) β-氧化亚铅量子点及其制备方法、光电探测器及其制备方法
Yu et al. Etching Exfoliated Ti2CT x Nanosheets for Photoelectrochemical Photodetectors with Enhanced Performance and Alkaline Stability
Zhang et al. Improving the performance of ultra-flexible perovskite photodetectors through cation engineering
JP5569947B2 (ja) 色素増感型太陽電池用対極、太陽電池デバイスおよびその製造方法
Kim et al. Excellent optical and interfacial performance of a PEDOT-b-PEG block copolymer counter electrode for polymer electrolyte-based solid-state dye-sensitized solar cells
Jia et al. Aquatic colloidal graphene gel polymer electrolyte for flexible rechargeable zinc air batteries
Wiranwetchayan et al. Effect of ZnO films immersion duration in N719 dye on energy conversion efficiency of DSSCs
JP3959471B2 (ja) 酸化物半導体電極、およびその製造方法
CN114242466B (zh) 兼具电致变色功能和高能量密度的超级电容器与制备方法
JP4876288B2 (ja) 膨張化炭素繊維およびその製造方法並びに太陽電池
Prakash et al. Functionalized polyurethane composite gel electrolyte with cosensitized photoanode for higher solar cell efficiency using a passivation layer
US20110232742A1 (en) Systems and Methods for Preparing Components of Photovoltaic Cells
Wan et al. Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
CN112563338A (zh) 一种柔性自供电光电探测器及其制备方法和应用
Li et al. Transparent PEDOT counter electrodes for bifacial dye-sensitized solar cells using a cobalt complex mediator
Sadiq et al. Investigations on Structural, Optical Properties, Electrical Properties and Electrochemical Stability Window of the Reduced Graphene Oxides Incorporated Blend Polymer Nanocomposite Films
Jiang et al. An in-plane supercapacitor obtained by facile template method with high performance Mn–Co sulfide-based oxide electrode
CN115472705B (zh) 一种光敏电阻材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210709