CN113097315B - 利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备方法 - Google Patents

利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备方法 Download PDF

Info

Publication number
CN113097315B
CN113097315B CN202110340205.4A CN202110340205A CN113097315B CN 113097315 B CN113097315 B CN 113097315B CN 202110340205 A CN202110340205 A CN 202110340205A CN 113097315 B CN113097315 B CN 113097315B
Authority
CN
China
Prior art keywords
gan
mxene
quantum well
msm
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110340205.4A
Other languages
English (en)
Other versions
CN113097315A (zh
Inventor
巫江
罗凌志
黄一轩
程科铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110340205.4A priority Critical patent/CN113097315B/zh
Publication of CN113097315A publication Critical patent/CN113097315A/zh
Application granted granted Critical
Publication of CN113097315B publication Critical patent/CN113097315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种利用MXene‑GaN肖特基结的MSM多量子阱光电探测器及其制备方法,属于光电探测器技术领域,解决了现有技术中的MSM型光电探测器暗电流大、响应度低的问题,本发明的光电探测器包括生长基底,所述生长基底为图形化蓝宝石衬底结构,所述生长基底表面上由下至上连接有GaN薄膜层、n型GaN薄膜层、GaN‑InGaN组合层和MXene材料层。本发明将MXene材料与图形化蓝宝石衬底相结合降低了暗电流、提高了响应度,可用于水下光学检测和水下通信等领域。

Description

利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备 方法
技术领域
本发明属于光电探测器技术领域,具体涉及一种利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备方法。
背景技术
光电探测器是一类广泛用于传感与探测领域的重要器件,目前,光电探测器的典型器件结构包括肖特基型,金属-半导体-金属(MSM)型,p-i-n(PIN)型和雪崩型(APD)。MSM光电探测器由两个背对背的肖特基触点组成,以其高响应速度而受到研究人员的关注。此外,由于场效应晶体管(FET)技术可以共享FET栅极的相同肖特基触点,并且不需要双极掺杂,因此易于制造并且可以与场效应晶体管(FET)技术集成在一起。但是,此类探测器仍有许多挑战有待解决。首先便是暗电流较大的问题,由于金属的沉积在金属-半导体表面引起化学无序和较多的缺陷状态,导致大量的反向隧穿电流。其次便是MSM光电探测器的响应度较低,原因在于不透明金属电极的叉指型设计导致了垂直入射光部分被反射,以及透明金属电极的高成本和脆性,这些原因综合导致了探测器的响应度偏低。因此,如何有效的减少界面缺陷减低暗电流以及提升探测器响应率成为MSM型光电探测器亟待解决的问题。
MXene材料是一种新型的二维(2D)材料,这种独特的2D材料具有许多的特性,例如金属导电性,机械柔韧性,亲水性,良好的透射率和化学稳定性。另外,不同的表面终止官能团将影响MXene的静电势和电子结构,使得其功函数可以在1.6eV到6.2eV之间变化,广泛可调的功函数使MXene成为与不同器件所需的各种半导体材料形成欧姆或肖特基接触的理想选择,或可解决MSM型探测器所面临的高暗电流和低响应度的问题。
发明内容
本发明的目的在于:
为解决现有技术中的MSM型光电探测器暗电流大、响应度低的问题,提供一种利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备方法,使该光电探测器可应用于水下光学检测和水下通信等领域。
本发明采用的技术方案如下:
一种利用MXene-GaN肖特基结的MSM多量子阱光电探测器,包括生长基底,所述生长基底为图形化蓝宝石衬底结构,所述生长基底表面上由下至上连接有GaN薄膜层、n型GaN薄膜层、GaN-InGaN组合层和MXene材料层。
进一步地,所述GaN-InGaN组合层设置有多层,每层GaN-InGaN组合层均由位于上方的GaN层和位于下方的InGaN层相互连接组成。
进一步地,所述GaN薄膜层由未掺杂GaN组成,GaN薄膜层的厚度为2.2μm~2.6μm。
进一步地,所述n型GaN薄膜层的厚度为1.4μm~1.6μm。
一种利用MXene-GaN肖特基结的MSM多量子阱光电探测器制备方法,其特征在于,包括如下步骤:
a.将图形化蓝宝石衬底结构作为探测器生长基底;
b.在步骤a的生长基底上生长GaN薄膜;
c.在步骤b的GaN薄膜上生长n型GaN薄膜;
d.在步骤c的n型GaN薄膜上生长多层的GaN-InGaN组合层;
e.制备MXene材料,在步骤d的多层GaN-InGaN组合层表面上覆盖Ti3C2TxMXene薄膜。
进一步地,所述步骤d中GaN-InGaN组合层结构的生长方法为:通过金属有机化合物气相沉积在图形化的蓝宝石衬底上异质外延生长GaN-InGaN多量子阱,包括如下步骤:
①生长铟含量约为25%、厚度为3nm的InGaN量子阱层;
②在步骤①的条件下,在60秒内使温度升高100℃,以此生长10nm高温GaN势垒;
③以生长的材料作为基础,重复步骤①、②,最终形成多个周期的GaN-InGaN多量子阱结构。
进一步地,所述步骤e中MXene材料的制备方法包括如下步骤:
S1、制备Ti3C2TxMXene水溶液;
S2、制备Ti3C2TxMXene薄膜层。
进一步地,所述步骤S1制备Ti3C2TxMXene水溶液包括如下步骤:
(1)在5分钟的时间内,将0.67g的LiF溶于6mol/L的10mL HCl溶液中,并持续搅拌;
(2)将1g的Ti3AlC2 MAX粉末添加到蚀刻剂中,然后在室温下磁力搅拌24h;
(3)在步骤(2)的条件下,将所获得的酸性混合物转移至离心管并以3500rpm的转速离心;
(4)将获得的悬浮液用去离子水反复洗涤,并离心直至达到中性pH;
(5)在步骤(4)的条件下,收集沉淀物,使其在去离子水中重新分散,并在氩气气氛下超声处理3小时;
(6)将溶液以3500rpm的转速离心1h,得到的上清液即所需的Ti3C2TxMXene水溶液;
进一步地,所述步骤S2制备Ti3C2TxMXene薄膜层包括如下步骤:
1)用去离子水洗涤晶片;
2)当晶片仍然潮湿时,在其上粘贴带有电极形孔的聚氯乙烯静电膜;
3)待去离子水干燥后,将步骤S1中制备好的Ti3C2Tx MXene溶液滴在掩模上以覆盖孔,等待MXene溶液自然干燥;
4)在孔中形成Ti3C2Tx MXene膜后,除去PVC静电膜,将探测器器件放进氩气氛中,于300℃进行退火,得到Ti3C2TxMXene薄膜。
MQW即为多量子阱multiple quantum well,是指多个量子阱组合在一起的***。
PSS即图形化蓝宝石衬底Patterned sapphiresubstrate,在蓝宝石衬底上生长干法刻蚀用掩膜,用标准的光刻工艺将掩膜刻出图形,利用ICP刻蚀技术刻蚀蓝宝石,并去掉掩膜,再在其上生长GaN材料,可使GaN材料的纵向外延变为横向外延。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明在传统探测器的基础上进行了大量改进:以MXene材料作为电极,通过形成MXene-GaN范德瓦尔斯金属-半导体结以此减少材料界面出可能出现的缺陷和化学无序等问题,显著降低了探测器的噪声,达到了暗电流被抑制的目的。
2、本发明与传统的Cr/Au-GaN-Cr/Au的MSM型探测器相比,MX-GaN-MX MQW探测器的暗电流在前者的基础上降低了三个数量级。
3、本发明在图形化的蓝宝石衬底上生长的GaN材料提供了局部光子提取和光电流收集,同时MXene材料具有一定的透光性,基板纳米图案通过将法向入射光散射到不同方向上来局部地提高了响应度,且有利于后续开发。
附图说明
图1为本发明的光电探测器以及探测器量子阱结构图;
图2为本发明的光电探测器实物的俯视图;
图3为图形化蓝宝石衬底的显微放大图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种利用MXene-GaN肖特基结的MSM多量子阱光电探测器,包括生长基底,所述生长基底为图形化蓝宝石衬底结构,所述生长基底表面上由下至上连接有GaN薄膜层、n型GaN薄膜层、GaN-InGaN组合层和MXene材料层。
进一步地,所述GaN-InGaN组合层设置有多层,优选为八层,每层GaN-InGaN组合层均由位于上方的GaN层和位于下方的InGaN层相互连接组成。
优选地,所述GaN薄膜层由未掺杂GaN组成,GaN薄膜层的厚度为2.4μm。
优选地,所述n型GaN薄膜层的厚度为1.5μm。
实施例2
一种利用MXene-GaN肖特基结的MSM多量子阱光电探测器制备方法,包括如下步骤:
a.将图形化蓝宝石衬底结构作为探测器生长基底;
b.在步骤a的生长基底上生长GaN薄膜;
c.在步骤b的GaN薄膜上生长n型GaN薄膜;
d.在步骤c的n型GaN薄膜上生长多层的GaN-InGaN组合层;
e.制备MXene材料,在步骤d的多层GaN-InGaN组合层表面上覆盖Ti3C2TxMXene薄膜。
进一步地,所述步骤d中GaN-InGaN组合层结构的生长方法为:通过常压金属有机化学气相沉积在图形化的蓝宝石衬底上异质外延生长GaN-InGaN多量子阱,包括如下步骤:
①生长铟含量约为25%、3nm的InGaN量子阱层;
②在步骤①的条件下,在60秒内使温度升高100℃,以此生长10nm高温GaN势垒;
③以生长的材料作为基础,重复步骤①、②,最终形成多个周期的GaN-InGaN多量子阱结构。优选地,形成八个周期的GaN-InGaN多量子阱结构。
进一步地,所述步骤e中MXene材料的制备方法包括如下步骤:
S1、制备Ti3C2TxMXene水溶液;
S2、制备Ti3C2TxMXene薄膜层。
进一步地,所述步骤S1制备Ti3C2TxMXene水溶液包括如下步骤:
(1)在5分钟的时间内,将0.67g的LiF溶于6mol/L的10mL HCl溶液中,并持续搅拌;
(2)将1g的Ti3AlC2 MAX粉末添加到蚀刻剂中,然后在室温下磁力搅拌24h;
(3)在步骤(2)的条件下,将所获得的酸性混合物转移至离心管并以3500rpm的转速离心;
(4)将获得的悬浮液用去离子水反复洗涤,并离心直至达到中性pH;
(5)在步骤(4)的条件下,收集沉淀物,使其在去离子水中重新分散,并在氩气气氛下超声处理3小时;
(6)将溶液以3500rpm的转速离心1h,得到的上清液即所需的Ti3C2TxMXene水溶液;
进一步地,所述步骤S2制备Ti3C2TxMXene薄膜层包括如下步骤:
1)用去离子水洗涤晶片;
2)当晶片仍然潮湿时,在其上粘贴带有电极形孔的聚氯乙烯静电膜;
3)待去离子水干燥后,将步骤S1中制备好的Ti3C2Tx MXene溶液滴在掩模上以覆盖孔,等待MXene溶液自然干燥;
4)在孔中形成Ti3C2Tx MXene膜后,除去PVC静电膜,将探测器器件放进氩气氛中,于300℃进行退火,得到Ti3C2TxMXene薄膜。
本发明的工作原理为:将探测器封装在芯片或者特定装置中,分别接电极在左右两边的MXene材料上;然后将入射光从探测器正上方射入,入射光进入探测器后,直接入射到图形化蓝宝石表面,经由反射形成不同出射方向角的反射光,使大于全反射角的反射光在探测器内多次反射,增强量子阱结构的光吸收,从而提高探测器的响应度,与此同时,Mxene与GaN形成的肖特基结能显著降低噪声与暗电流。
经测试数据显示,在波长为405nm的光照下,本发明探测器的响应度和外部量子效率分别达到64.6A/W和19783.6%,反应了本发明在水下光学检测和通信方面的巨大潜力和优势。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种利用MXene-GaN肖特基结的MSM多量子阱光电探测器,其特征在于,包括生长基底,所述生长基底为图形化蓝宝石衬底结构,所述生长基底表面上由下至上连接有GaN薄膜层、n型GaN薄膜层、GaN-InGaN组合层和MXene材料层。
2.根据权利要求1所述的利用MXene-GaN肖特基结的MSM多量子阱光电探测器,其特征在于,所述GaN-InGaN组合层设置有多层,每层GaN-InGaN组合层均由位于上方的GaN层和位于下方的InGaN层相互连接组成。
3.根据权利要求1所述的利用MXene-GaN肖特基结的MSM多量子阱光电探测器,其特征在于,所述GaN薄膜层由未掺杂GaN组成,GaN薄膜层的厚度为2.2μm~2.6μm。
4.根据权利要求1所述的利用MXene-GaN肖特基结的MSM多量子阱光电探测器,其特征在于,所述n型GaN薄膜层的厚度为1.4μm~1.6μm。
5.一种利用MXene-GaN肖特基结的MSM多量子阱光电探测器制备方法,其特征在于,包括如下步骤:
a.将图形化蓝宝石衬底结构作为探测器生长基底;
b.在步骤a的生长基底上生长GaN薄膜;
c.在步骤b的GaN薄膜上生长n型GaN薄膜;
d.在步骤c的n型GaN薄膜上生长多层的GaN-InGaN组合层;
e.制备MXene材料,在步骤d的多层GaN-InGaN组合层表面上覆盖Ti3C2TxMXene薄膜。
6.根据权利要求5所述的利用MXene-GaN肖特基结的MSM多量子阱光电探测器制备方法,其特征在于,所述步骤d中GaN-InGaN组合层结构的生长方法为:通过金属有机化合物气相沉积在图形化的蓝宝石衬底上异质外延生长GaN-InGaN多量子阱,包括如下步骤:
①生长铟含量约为25%、厚度为3nm的InGaN量子阱层;
②在步骤①的条件下,在60秒内使温度升高100℃,以此生长10nm高温GaN势垒;
③以生长的材料作为基础,重复步骤①、②,最终形成多个周期的GaN-InGaN多量子阱结构。
7.根据权利要求5所述的利用MXene-GaN肖特基结的MSM多量子阱光电探测器制备方法,其特征在于,所述步骤e中MXene材料的制备方法包括如下步骤:
S1、制备Ti3C2TxMXene水溶液;
S2、制备Ti3C2TxMXene薄膜层。
8.根据权利要求7所述的利用MXene-GaN肖特基结的MSM多量子阱光电探测器制备方法,其特征在于,所述步骤S1制备Ti3C2TxMXene水溶液包括如下步骤:
(1)在5分钟的时间内,将0.67g的LiF溶于6mol/L的10mL HCl溶液中,并持续搅拌;
(2)将1g的Ti3AlC2 MAX粉末添加到蚀刻剂中,然后在室温下磁力搅拌24h;
(3)在所述步骤(2)的条件下,将所获得的酸性混合物转移至离心管并以3500rpm的转速离心;
(4)将获得的悬浮液用去离子水反复洗涤,并离心直至达到中性pH;
(5)在所述步骤(4)的条件下,收集沉淀物,使其在去离子水中重新分散,并在氩气气氛下超声处理3小时;
(6)将溶液以3500rpm的转速离心1h,得到的上清液即所需的Ti3C2TxMXene水溶液。
9.根据权利要求7所述的利用MXene-GaN肖特基结的MSM多量子阱光电探测器制备方法,其特征在于,所述步骤S2制备Ti3C2TxMXene薄膜层包括如下步骤:
1)用去离子水洗涤晶片;
2)当晶片仍然潮湿时,在其上粘贴带有电极形孔的聚氯乙烯静电膜;
3)待去离子水干燥后,将步骤S1中制备好的Ti3C2Tx MXene溶液滴在掩模上以覆盖孔,等待MXene溶液自然干燥;
4)在孔中形成Ti3C2Tx MXene膜后,除去PVC静电膜,将探测器器件放进氩气氛中,于300℃进行退火,得到Ti3C2TxMXene薄膜。
CN202110340205.4A 2021-03-30 2021-03-30 利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备方法 Active CN113097315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110340205.4A CN113097315B (zh) 2021-03-30 2021-03-30 利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110340205.4A CN113097315B (zh) 2021-03-30 2021-03-30 利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113097315A CN113097315A (zh) 2021-07-09
CN113097315B true CN113097315B (zh) 2022-10-11

Family

ID=76670790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110340205.4A Active CN113097315B (zh) 2021-03-30 2021-03-30 利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113097315B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005895B (zh) * 2021-10-26 2024-04-09 中国科学院苏州纳米技术与纳米仿生研究所 光电探测器及其制作方法
CN114242800B (zh) * 2021-11-24 2023-08-22 华南理工大学 日盲AlGaN紫外光电探测器及其制备方法
CN114486814B (zh) * 2022-01-13 2023-10-27 电子科技大学 一种基于光电探测器的浊度测试***的构建方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119495A (zh) * 2018-08-22 2019-01-01 西南交通大学 一种柔性光电探测器及其制备方法
CN210092101U (zh) * 2019-06-17 2020-02-18 南京紫科光电科技有限公司 一种MQW结构InGaN蓝光探测器
CN210628323U (zh) * 2019-12-12 2020-05-26 电子科技大学 一种近红外光电探测器
WO2020161685A1 (en) * 2019-02-10 2020-08-13 King Abdullah University Of Science And Technology Dislocation free semiconductor nanostructures grown by pulse laser deposition with no seeding or catalyst
CN112151629A (zh) * 2020-09-22 2020-12-29 北京邮电大学 一种微管式三维异质结器件结构及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573768B2 (en) * 2014-09-25 2020-02-25 Drexel University Physical forms of MXene materials exhibiting novel electrical and optical characteristics
CN107046071A (zh) * 2017-04-06 2017-08-15 中国科学院半导体研究所 基于多孔DBR的InGaN基谐振腔增强型探测器芯片
US11695093B2 (en) * 2018-11-21 2023-07-04 Analog Devices, Inc. Superlattice photodetector/light emitting diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119495A (zh) * 2018-08-22 2019-01-01 西南交通大学 一种柔性光电探测器及其制备方法
WO2020161685A1 (en) * 2019-02-10 2020-08-13 King Abdullah University Of Science And Technology Dislocation free semiconductor nanostructures grown by pulse laser deposition with no seeding or catalyst
CN210092101U (zh) * 2019-06-17 2020-02-18 南京紫科光电科技有限公司 一种MQW结构InGaN蓝光探测器
CN210628323U (zh) * 2019-12-12 2020-05-26 电子科技大学 一种近红外光电探测器
CN112151629A (zh) * 2020-09-22 2020-12-29 北京邮电大学 一种微管式三维异质结器件结构及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于纳米结构的GaN基光电器件的制备及性能研究;魏斌;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20210215(第2021/02期);文献号:B020-1418 *

Also Published As

Publication number Publication date
CN113097315A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN113097315B (zh) 利用MXene-GaN肖特基结的MSM多量子阱光电探测器及其制备方法
CN105470320A (zh) 一种二硫化钼/半导体异质结光电探测器及其制造方法
CN106571405B (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN106169516A (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
CN107146830B (zh) 一种制备柔性透明的石墨烯/硅金属-半导体-金属光电探测器的方法
Chao et al. GaAs nanowire/poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) hybrid solar cells
CN104300027B (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN110911568A (zh) 一种银铋硫薄膜光电探测器及其制备方法
Saleem et al. Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors
CN109004057A (zh) 基于非晶氮化物薄膜的宽谱光电探测器件及其制备方法
CN112164732B (zh) 一种紫外光电二极管及其制备方法
CN109545883A (zh) 一种低暗电流台面型雪崩单光子探测器及制备方法
CN102832289B (zh) 基于光子频率上转换的太赫兹成像器件、转换方法
CN217426770U (zh) 一种纳米线-薄膜结构紫外探测器
Popoola et al. Self-Driven, Quadridirectional Carrier Transport, Bifacial MAPbI3–Perovskites Photodiodes Fabricated via Laterally Aligned Interconnected Sandwiched Type Architecture
CN109449291A (zh) 可在钙钛矿薄膜上溶液法加工的SnO2薄膜的制备方法
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
TW200950109A (en) UV inspector for zinc oxide nano-pillar
CN112420397B (zh) 基于氮化镓的极性翻转型波长可分辨光探测器及制备方法
CN112909109B (zh) 一种基于横向桥接pn结的自供电纳米紫外探测器
CN209675319U (zh) 一种氧化镓mis结构紫外探测器
CN110611005A (zh) 一种ZrS2/III-V族半导体纳米线阵列异质结、制备方法及应用
CN106356416B (zh) 高速光电探测器芯片的制作方法
CN219040493U (zh) 一种2D Ga2S3/GaN II型异质结自驱动紫外光探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant