CN113095677A - 一种基于加工质量逆向推导的加工过程定量控制方法 - Google Patents

一种基于加工质量逆向推导的加工过程定量控制方法 Download PDF

Info

Publication number
CN113095677A
CN113095677A CN202110391774.1A CN202110391774A CN113095677A CN 113095677 A CN113095677 A CN 113095677A CN 202110391774 A CN202110391774 A CN 202110391774A CN 113095677 A CN113095677 A CN 113095677A
Authority
CN
China
Prior art keywords
processing
quality
machining
parameters
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110391774.1A
Other languages
English (en)
Inventor
潘日
常广胜
任行飞
范晋伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110391774.1A priority Critical patent/CN113095677A/zh
Publication of CN113095677A publication Critical patent/CN113095677A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Strategic Management (AREA)
  • Biophysics (AREA)
  • Economics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Marketing (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physiology (AREA)
  • Computer Hardware Design (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Primary Health Care (AREA)
  • Genetics & Genomics (AREA)
  • Geometry (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Game Theory and Decision Science (AREA)

Abstract

本发明公开了一种基于加工质量逆向推导的加工过程定量控制方法,该方法包括如下步骤:S1、设计并开展单因素实验确定对加工质量影响较大的加工参数及其最佳取值范围;S2、基于S1的结果,设计并开展基于响应曲面法的加工参数正交实验,获取实验结果;S3、将加工质量与加工参数之间的正向模型与遗传算法结合,开发基于加工质量逆向推导加工参数的算法并实现对加工过程的定量控制;S4、开展工艺实验,验证并修正上述算法。本发明提出的基于加工质量逆向推导的加工过程定量控制方法,用以解决了需要多次重复加工才可达到要求加工质量的问题,提升了加工效率和可控性,降低了加工和时间成本。

Description

一种基于加工质量逆向推导的加工过程定量控制方法
技术领域
本发明涉及精密超精密加工领域,尤其是涉及精密超精密加工领域的加工过程定量控制方法。
背景技术
随着科学技术的发展,航空航天、天文设备和大型激光设备等高端行业对零件的加工精度和加工效率要求越来越高,因此也对零件加工过程的可预测性和可控性提出了更高要求。为提高加工过程的可预测性和可控性,许多学者针对不同加工方法研究并建立了零件加工质量和加工参数之间的数学关系模型,用于对零件加工后的质量进行预测。如Zhang Z Z(Zhang Z Z,Yao P,Wang J,et al.Nanomechanical characterization of RB-SiC ceramics based on nanoindentation and modelling ofthe ground surfaceroughness.CERAM.INT.46(2020)6243-6253.)建立并验证了预测超精密磨削过程中加工表面粗糙度的理论模型。Wu J(Wu J,Cheng J,Gao C C,et al.Research on predictingmodel of surface roughness in small-scale grinding of brittle materialsconsidering grinding tool topography.INT J MECH SCI.166(2020)DOI:10.1016/j.ijmecsci.2019.105263.)提出了一种磨削后表面粗糙度的预测模型。Qi J(Qi J,ZhangD,Li S,et al.Modeling and prediction of surface roughness in belt polishingbased on artificial neural network.P I MECH ENG B-J ENG.232(2018)2154-2163.)提出了一种缎带抛光中工件抛光后的表面粗糙度预测模型。
现有的多数研究主要关注加工质量和加工参数之间的正向模型,即根据给定的加工参数来预测加工质量。如公式所示:T=f(x1,x2,……,xn)。其中T代表与加工质量相关的参数(一般为表面粗糙度),xi(i=1,2,…n)代表加工参数。
但上述模型在应用中存在一定缺陷,原因在于:对于实际加工过程,多数情况是需要根据需求的加工质量值来求解出对应的加工参数值,此过程无法通过上述模型直接实现,而只能通过不断更换不同的加工参数组合进行预测,而后选取其中最接近需求加工质量的加工参数组合,一定程度上影响了加工过程的定量控制。
针对此,本发明提出基于加工质量逆向推导加工参数的方法,用于根据需求的加工质量来反求加工参数值,实现对加工过程的定量控制。
发明内容
本发明要解决的技术问题是现有的加工质量与加工参数间的数学关系模型无法根据给定的加工质量,直接定量推导出加工参数值,需要重复试验,影响了加工过程的定量控制。本发明提供了解决上述问题的基于加工质量逆向推导的加工过程定量控制方法。
本发明通过下述步骤实现:
基于加工质量逆向推导的加工过程定量控制方法,该方法包括如下步骤:
S1、设计并开展单因素实验确定对加工质量影响较大的加工参数及其最佳取值范围;
S2、基于S1的结果,设计并开展基于响应曲面法的加工参数正交实验,获得实验结果,并将其用于构建加工质量和加工参数之间的正向模型,并对正向模型进行方差分析;
S3、将加工质量和加工参数之间的正向模型与遗传算法结合,开发基于加工质量逆向推导加工参数的算法,实现对加工过程的定量控制;
S4、开展工艺试验,验证并修正上述算法。
其中,所述步骤S2具体包括:
从S1中确定关键加工参数及其最佳取值范围后,在Design-Expert软件中设计关键加工参数的正交实验组。开展相应的实验后,利用实验数据拟合出加工质量与加工参数间的正向模型方程的形式:
Figure BDA0003017007040000021
T为加工质量对应的参数,x1,x2…xn为加工参数,βi为常系数。
所述步骤S4,本文所开发的基于加工质量逆向推导加工参数的算法具体步骤如下:
①设置遗传算法的参数,包括种群大小、遗传代数、交叉概率和突变概率等。在关键加工参数最佳取值范围内随机生成n组加工参数组合,将其定义为第一代人口;
②基于S2中得到的加工质量与加工参数间的正向模型建立适应度函数。随后分别评估上述n组加工参数的适应度;
③根据适应度值对上述n组加工参数进行排序,并将适应度最好的前a%组的关键加工参数组保留,并对其他(1-a)%组的关键加工参数进行选择,交叉和变异,以获得新的组合,被保留下来的加工参数组和变异后的加工参数组形成新一代种群,记录此时的遗传数为(t+1),t从0开始计数;
④比较遗传数与①中设置的遗传代数。若遗传数<遗传代数,返回②。否则,输出适应度最高的关键加工参数组合。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为验证本发明所提方法的实验装置及加工原理
图2为本发明中加工质量与加工参数的正向模型的建立过程
图3为验证本发明所提方法的实验结果数据
图4为验证本发明所提方法的步骤2中所建立的加工质量与加工参数的正向模型的实验结果
图5为本发明所开发的基于加工质量逆向推导加工参数的算法流程
图6为验证本发明所提方法的实验结果
具体实施方式
以下将以黄铜材料的复合磁流体抛光过程为例,结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅仅用于解释本发明,并不作为对本发明的限定。在本例中表征加工质量的参数为聚碳酸酯材料抛光后的表面粗糙度,加工参数为抛光工艺参数,包括主轴转速、抛光间隙和抛光时间。
本实施例中所采用的实验装置模型如图1,主要由磁体夹具1,永磁体2,磁流体3,工件4,抛光盘5组成。永磁体2以偏心距r固定在磁体夹具1下方,永磁体2随磁体夹具1旋转。磁体夹具1沿图示方向可以上下调节抛光间距。抛光盘5固定。工件4在磁流体3下方,运动路径为往复直线运动。
根据上述章节,利用本发明实现对黄铜的复合磁流体抛光过程的定量控制方法包含以下步骤:
S1、根据之前对黄铜材料的抛光工艺参数的研究,进行单因素实验法可得抛光效果主要受主轴转速n,抛光间隙h和抛光时间t的影响。将以上参数设置为关键加工参数,并得到其最佳取值范围分别为200~1000rpm,1~2mm和30~120min。
S2、图2所示为本发明中加工质量与加工参数的正向模型的建立过程。具体包括:基于S1的结果,采用Design-Expert软件设计并开展了61组正交设计实验,实验结果如图3,将上述结果导入Design-Expert软件中建立加工质量Q与加工参数n、h、t间的正向模型,即:
Q=(160703+97714.3h+55.6943n-1610.61t+3.91987h*n-104.625h*t+0.0812614n*t+47414h2-0.0500214n2+8.02352t2)×10-6
在Design-Expert软件中对拟合的方程进行方差分析证明该模型的理论精度。
对正向模型进行试验验证,随机生成10组加工参数组合,对零件进行抛光加工并记录抛光后的加工质量,实验值与根据上述正向模型计算的模拟值的比较结果如图4所示。
S3、将加工质量和加工参数之间的正向模型与遗传算法结合,开发基于加工质量逆向推导加工参数的算法,算法的具体步骤为:
①设置遗传算法的参数:种群大小为100,遗传代数为50,交叉概率为0.7,突变概率为0.01。在加工参数最佳取值范围内随机生成100组加工参数组合,将其定义为第一代人口。
②构建适应度函数。先设定变量G1为需求的表面粗糙度值Y与利用正向模型预测的表面粗糙度值T的差值。
G1=Y-T
设定变量G2为向量P和C之间距离,向量P(ht,nt,tt)为加工参数的目标值,向量C(hi,ni,ti)是关键加工参数的初始值,其值为(1.560075)。N是标准化因子,是关键加工参数最大值与最小值差的倒数,其值为(1 1/800 1/900)。
Figure BDA0003017007040000041
适应度函数R定义为
R=W1G1+W2G2
其中,经过多次尝试权重系数W1和W2分别设置为100和1。
③随机给定3个表面粗糙度目标值,通过本发明所提的逆推算法得到对应的3组关键加工参数。使用3组参数对工件进行抛光加工,记录对应表面粗糙度的实际值并计算与目标值的相对误差,平均相对误差为7.64%,如图6。证明了逆向模型的准确性。
如上所述,使用本发明所提的方法,可以直接根据所需的加工质量值反推与之对应的加工参数值,实现对加工过程的定量控制,对精密和超精密加工过程具有重要意义和使用价值。

Claims (2)

1.一种基于加工质量逆向推导加工过程定量控制方法,其特征在于,该方法包括以下步骤:
S1、设计并开展单因素实验确定对加工质量影响较大的加工参数及其最佳取值范围;
S2、基于S1的结果,设计并开展基于响应曲面法的加工参数正交实验,获取实验结果;
S3、将加工质量与加工参数之间的正向模型与遗传算法结合,开发基于加工质量逆向推导加工参数算法并实现对加工过程的定量控制;
S4、开展工艺实验,验证并修正基于加工质量逆向推导加工参数算法。
2.根据权利1所要求的一种基于加工质量逆向推导加工过程定量控制方法,其特征在于:基于加工质量逆向推导加工参数算法包含如下步骤:
①设置遗传算法的参数,包括种群大小、遗传代数、交叉概率和突变概率等;在关键加工参数最佳取值范围内随机生成n组加工参数组合,将其定义为第一代人口;
②基于S2中得到的加工质量与加工参数间的正向模型建立适应度函数;随后分别评估上述n组加工参数的适应度;
③根据适应度值对上述n组加工参数进行排序,并将适应度最好的前a%组的关键加工参数组保留,并对其他(1-a)%组的关键加工参数进行选择,交叉和变异,以获得新的组合,被保留下来的加工参数组和变异后的加工参数组形成新一代种群,记录此时的遗传数为(t+1),t从0开始计数;
④比较遗传数与①中设置的遗传代数;若遗传数<遗传代数,返回②;否则,输出适应度最高的关键加工参数组合。
CN202110391774.1A 2021-04-13 2021-04-13 一种基于加工质量逆向推导的加工过程定量控制方法 Withdrawn CN113095677A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110391774.1A CN113095677A (zh) 2021-04-13 2021-04-13 一种基于加工质量逆向推导的加工过程定量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110391774.1A CN113095677A (zh) 2021-04-13 2021-04-13 一种基于加工质量逆向推导的加工过程定量控制方法

Publications (1)

Publication Number Publication Date
CN113095677A true CN113095677A (zh) 2021-07-09

Family

ID=76676384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110391774.1A Withdrawn CN113095677A (zh) 2021-04-13 2021-04-13 一种基于加工质量逆向推导的加工过程定量控制方法

Country Status (1)

Country Link
CN (1) CN113095677A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106844924A (zh) * 2017-01-12 2017-06-13 桂林电子科技大学 基于响应曲面法和遗传算法优化pcb微带线结构的方法
CN109828532A (zh) * 2019-01-29 2019-05-31 贵州大学 一种基于ga-gbrt的表面粗糙度预测方法及工艺参数优化方法
US20200184131A1 (en) * 2018-06-27 2020-06-11 Dalian University Of Technology A method for prediction of key performance parameter of an aero-engine transition state acceleration process based on space reconstruction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106844924A (zh) * 2017-01-12 2017-06-13 桂林电子科技大学 基于响应曲面法和遗传算法优化pcb微带线结构的方法
US20200184131A1 (en) * 2018-06-27 2020-06-11 Dalian University Of Technology A method for prediction of key performance parameter of an aero-engine transition state acceleration process based on space reconstruction
CN109828532A (zh) * 2019-01-29 2019-05-31 贵州大学 一种基于ga-gbrt的表面粗糙度预测方法及工艺参数优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RI PAN 等: ""Forward and Inverse Relational Models between Machined Surface Roughness and Key Parameters of Machining Process"", 《HTTPS://ASSETS.RESEARCHSQUARE.COM/FILES/RS-300729/V1_COVERED.PDF?C=1631859363》 *

Similar Documents

Publication Publication Date Title
JP7015041B2 (ja) 切削シミュレーション方法および装置
Singh et al. A novel hybridization of artificial neural network and moth-flame optimization (ANN–MFO) for multi-objective optimization in magnetic abrasive finishing of aluminium 6060
Zou et al. Study on surface quality improvement of the plane magnetic abrasive finishing process
Sun et al. Micro/nano-machining through mechanical cutting
CN113919101B (zh) 一种基于响应曲面法和粒子种群优化算法的球头砂轮磨削工艺参数优化方法
CN114047210A (zh) 一种考虑表面完整性的疲劳裂纹萌生预测方法
Bhardwaj et al. Development of hybrid forms of abrasive flow machining process: a review
Cao et al. Model-based self-optimization method for form correction in the computer controlled bonnet polishing of optical freeform surfaces
CN113095677A (zh) 一种基于加工质量逆向推导的加工过程定量控制方法
Geng et al. Prediction of surface profile evolution of workpiece and lapping plate in lapping process
Nguyen et al. Multi-objective optimization of improved magnetic abrasive finishing of multi-curved surfaces made of SUS202 material
Anandita et al. Stochastic analysis of microgrinding tool topography and its role in surface generation
Bai et al. A hybrid physics-data-driven surface roughness prediction model for ultra-precision machining
Yin A partitioning grinding method for complex-shaped stone based on surface machining complexity
Vakili Sohrforozani et al. Effects of abrasive media on surface roughness in barrel finishing process
Bouchilloux et al. Combined finite element analysis-genetic algorithm method for the design of ultrasonic motors
Pan et al. Forward and Inverse Relational Models between Machined Surface Roughness and Key Parameters of Machining Process
Gong et al. Dynamic performance of a long-stroke fast tool servo system
Gu et al. Design, analysis, and testing of a flexure-based vibration-assisted polishing device
Glänzel et al. Parameterization of environmental influences by automated characteristic diagrams for the decoupled fluid and structural-mechanical simulations
Mishima et al. Robustness evaluation of a miniaturized machine tool
Ohlert et al. Influence of relative velocity and contact force between abrasive media and workpiece on material removal in gyro finishing
CN110347117B (zh) 一种用于快速刀具伺服***的刀架设计方法、***及介质
Van et al. Optimization of Rough Self-Propelled Rotary Turning Parameters in terms of Total Energy Consumption and Surface Roughness
Robertson et al. An evolutionary approach to fitting constrained degenerate second order surfaces

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210709

WW01 Invention patent application withdrawn after publication