CN113078066A - 一种分离栅功率mosfet器件的制造方法 - Google Patents

一种分离栅功率mosfet器件的制造方法 Download PDF

Info

Publication number
CN113078066A
CN113078066A CN202110342787.XA CN202110342787A CN113078066A CN 113078066 A CN113078066 A CN 113078066A CN 202110342787 A CN202110342787 A CN 202110342787A CN 113078066 A CN113078066 A CN 113078066A
Authority
CN
China
Prior art keywords
etching
groove
oxide layer
silicon nitride
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110342787.XA
Other languages
English (en)
Other versions
CN113078066B (zh
Inventor
乔明
马涛
王正康
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110342787.XA priority Critical patent/CN113078066B/zh
Publication of CN113078066A publication Critical patent/CN113078066A/zh
Application granted granted Critical
Publication of CN113078066B publication Critical patent/CN113078066B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种分离栅功率MOSFET器件的制造方法,制备过程包括:控制栅与分离栅之间的介质层形成后,淀积或热生长一层牺牲氧化层,淀积氮化硅填充整个槽结构,其中氮化硅与MESA区硅层通过上述牺牲氧隔离开;刻蚀氮化硅后使槽内保留的氮化硅作为接下来氧化层刻蚀的屏蔽层;刻蚀氧化层至其界面高于阶梯状分离栅的上界面,随后刻蚀掉剩余的氮化硅;淀积多晶硅并回刻后形成控制栅电极。本发明制备的器件结构,控制栅下半部分较窄,可使栅源电容Cgs极大降低,同时控制栅上半部分增大了栅极电流流动的横截面积,保证栅源电容Cgs以及栅电荷Qg不退化的前提下,降低栅电阻,实现高开关速度与低开关损耗的目标。

Description

一种分离栅功率MOSFET器件的制造方法
技术领域
本发明属于半导体技术领域,更具体地,涉及一种分离栅功率MOSFET器件的制造方法。
背景技术
随着电子信息产业新领域的不断发展,功率半导体器件也迎来新一轮发展高峰,同时对功率MOSFET的性能提出更高的要求,更低的开关损耗和更高的工作效率成为功率器件的发展趋势。具有高频率和低功耗的功率VDMOS的优势逐渐体现出来,尤其在电源管理等领域得以广泛应用。而基于Trench MOSFET器件发展而来的分离栅功率MOSFET器件结构,利用分离栅电极屏蔽控制栅电极与外延层之间的电容耦合作用来减小栅漏寄生电容Cgd。同时,分离栅电极作为体内场板,对漂移区载流子辅助耗尽,可以显著提升器件漂移区掺杂浓度并降低比导通电阻。然而,分离栅功率MOSFET器件引入与分离栅电极相关的寄生电容:漏极与分离栅电极之间的电容Cds和栅极与分离栅电极之间的电容Cgs,增加的寄生电容在一定程度上抵消了分离栅MOSFET器件降低栅漏电容Cgd的优势。较高的输入输出电容会对***的工作效率产生不利影响,现如今为了满足更高工作频率的要求,减小漏极和栅极到分离栅电极的电容也变得越来越重要。
因此,针对以上问题,有必要降低传统分离栅MOSFET器件中与分离栅电极相关的寄生电容,本发明所述的分离栅功率MOSFET器件的制造方法就是在这种背景下提出的。
发明内容
本发明提供的一种分离栅功率MOSFET器件的制造方法,其中控制栅电极的制备过程包括,控制栅与分离栅之间的介质层形成后,淀积或热生长一层牺牲氧化层,淀积氮化硅填充整个槽结构,上述牺牲氧化层作为氮化硅与MESA区的硅层之间的隔离层;刻蚀氮化硅使得槽内保留的氮化硅作为接下来氧化层刻蚀的屏蔽层;刻蚀一定厚度的氧化层,随后刻蚀掉剩余的氮化硅,淀积多晶硅并回刻后形成控制栅电极。此制造方法相较于传统分离栅功率MOSFET器件的制备,易于实施且并不需要增加掩模光刻过程,在保证不增加制造成本的同时得到的器件结构明显降低了传统分离栅MOSFET器件中控制栅与分离栅电极之间的寄生电容Cgs以及栅电荷Qg。相比于乔明、王正康、张波等人的中国发明专利201910191166.9以及美国发明专利US16/536333中提出的具有分离栅增强结构的功率MOSFET器件,本结构控制栅电极的下半部分较窄,可使器件栅源电容Cgs极大降低,有利于器件开关速度的提高和开关损耗的降低,同时控制栅电极的上半部分还可以在一定程度上增大栅极电流流动的横截面积,从而保证在栅源电容Cgs以及栅电荷Qg不退化的前提下,降低栅极电阻值,实现高开关速度与低开关损耗的目标。采用阶梯状的分离栅电极结构,还可以使器件漂移区的电场分布更均匀,实现击穿电压BV和比导通电阻Ron的改善。
为实现上述发明目的,本发明的技术方案如下:
一种分离栅功率MOSFET器件的制造方法,包括如下步骤:
1)在外延层上形成一系列的槽结构,在槽结构的内壁形成第一介质层;
2)在槽结构内淀积多晶硅,使多晶硅填满整个槽;
3)刻蚀步骤2)所淀积的多晶硅,在有源区的控制栅槽内形成阶梯状分离栅电极的下半部分;
4)湿法刻蚀第一介质层,随后在槽结构内淀积多晶硅,使多晶硅填满整个槽;
5)刻蚀步骤4)所淀积的多晶硅,在有源区的控制栅槽内形成阶梯状分离栅电极的上半部分;
6)在有源区的槽内、阶梯状分离栅的上部淀积并回刻形成第二介质层;
7)热生长或淀积氧化层,随后在槽结构内淀积氮化硅填满有源区的整个槽;
8)湿法刻蚀步骤7)中所淀积的氮化硅,使其上界面低于平台区MESA区硅层的上表面,槽内保留的氮化硅作为接下来氧化层刻蚀的屏蔽层;
9)先湿法刻蚀氧化层,再干法刻蚀氧化层,使其刻蚀后的界面高于阶梯状分离栅的上界面;随后湿法刻蚀掉槽内剩余的氮化硅;
10)在有源区中控制栅槽的上半部分,热生长形成覆盖侧壁的栅介质;随后在有源区中淀积多晶硅填满整个槽;
11)刻蚀步骤9)所淀积的多晶硅,在有源区的控制栅槽内的上半部分形成控制栅电极;
12)在外延层上表面形成第二导电类型阱区,在第二导电类型阱区中形成第一导电类型源区;
13)淀积介质层,并在源区与分离栅引出区刻蚀源极接触孔,注入金属并引出电位。
作为优选方式,所述制造方法中的步骤1)中形成的第一介质层采用k小于3.9的低k材料。
作为优选方式,所述制造方法中的步骤6)中形成的第二介质层采用k小于3.9的低k材料。
作为优选方式,所述制造方法中的步骤7)通过控制热生长或淀积的氧化层厚度,最终得到满足要求的控制栅电极垂直部分的宽度。
作为优选方式,所述制造方法中的步骤9)中湿法刻蚀氧化层后,控制氧化层界面低于槽内保留的氮化硅的上界面,且高于氮化硅的下界面,之后再选择干法刻蚀氧化层。
作为优选方式,所述制造方法中的步骤9)采取如下实现方式:
9)干法刻蚀氧化层,控制使其刻蚀后的界面与阶梯状分离栅的上界面保持距离;随后湿法刻蚀掉槽内剩余的氮化硅。
作为优选方式,所述制造方法中的步骤7)至步骤9)采用多晶硅代替氮化硅:
7)热生长或淀积氧化层,随后在槽结构内淀积多晶硅填满有源区的整个槽;
8)刻蚀步骤7)中所淀积的多晶硅,使其上界面低于平台区MESA区硅层的上表面,槽内保留的多晶硅作为接下来氧化层刻蚀的屏蔽层;
9)先湿法刻蚀氧化层,再选择干法刻蚀氧化层,使其刻蚀后的界面高于阶梯状分离栅的上界面;随后刻蚀掉槽内剩余的多晶硅。
本发明的有益效果为:在控制栅电极的制备过程中,步骤7)至步骤9)中以氮化硅或多晶硅作为刻蚀屏蔽层,刻蚀氧化层后淀积多晶硅并回刻,形成的控制栅电极下半部分较窄,与阶梯状分离栅电极的交叠面积更小,可使栅源电容Cgs极大降低。同时控制栅电极的上半部分明显更宽,这在一定程度上增加了栅极电流流动的横截面积,有效降低栅电阻。本发明所述制造方法,易于实施且并不需要增加额外的掩模光刻过程,同时得到的器件结构既具有低栅电荷特性,又具有低栅电阻特性,实现了高开关速度与低开关损耗的目标。
附图说明
图1为传统的分离栅功率MOSFET器件结构示意图。
图2为本发明采用实施例1所提出的制造方法,得到的一种分离栅功率MOSFET器件结构示意图。
图3为本发明实施例1所提出的一种分离栅功率MOSFET器件的制造方法流程图,顺序为从左至右,从上至下。
图4为本发明实施例2所提出的制造方法的部分步骤图,用来替代图3中的(j)-(k)过程;与本发明实施例1所述制造方法的区别为:步骤9)的实现方式选择直接干法刻蚀氧化层。
图5为本发明采用实施例3所提出的制造方法,得到的一种分离栅功率MOSFET器件结构示意图。
图6为本发明采用实施例4所提出的制造方法,得到的一种分离栅功率MOSFET器件结构示意图。
10为第一导电类型衬底,11为第一导电类型外延层,12为槽结构,131为第一介质层,132为第二介质层,133为栅介质层,134为第三介质层,14为牺牲氧化层,15为屏蔽层(氮化硅或多晶硅),16为分离栅电极,17为控制栅电极,18为第二导电类型阱区,19为第二导电类型重掺杂区,20为第一导电类型重掺杂源区,21为金属。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
如图3所示,一种分离栅功率MOSFET器件的制造方法包括如下步骤:
1)在外延层上形成一系列的槽结构,在槽结构的内壁形成第一介质层;
2)在槽结构内淀积多晶硅,使多晶硅填满整个槽;
3)刻蚀步骤2)所淀积的多晶硅,在有源区的控制栅槽内形成阶梯状分离栅电极的下半部分;
4)湿法刻蚀第一介质层,随后在槽结构内淀积多晶硅,使多晶硅填满整个槽;
5)刻蚀步骤4)所淀积的多晶硅,在有源区的控制栅槽内形成阶梯状分离栅电极的上半部分;
6)在有源区的槽内、阶梯状分离栅的上部淀积并回刻形成第二介质层;
7)热生长或淀积氧化层,随后在槽结构内淀积氮化硅填满有源区的整个槽;
8)湿法刻蚀步骤7)中所淀积的氮化硅,使其上界面低于平台区MESA区硅层的上表面,槽内保留的氮化硅作为接下来氧化层刻蚀的屏蔽层;
9)先湿法刻蚀氧化层,再干法刻蚀氧化层,使其刻蚀后的界面高于阶梯状分离栅的上界面;随后湿法刻蚀掉槽内剩余的氮化硅;
10)在有源区中控制栅槽的上半部分,热生长形成覆盖侧壁的栅介质;随后在有源区中淀积多晶硅填满整个槽;
11)刻蚀步骤9)所淀积的多晶硅,在有源区的控制栅槽内的上半部分形成控制栅电极;
12)在外延层上表面形成第二导电类型阱区,在第二导电类型阱区中形成第一导电类型源区;
13)淀积介质层,并在源区与分离栅引出区刻蚀源极接触孔,注入金属并引出电位。
优选的,所述制造方法中的步骤7)可以通过控制热生长或淀积的氧化层厚度,最终得到满足要求的控制栅电极垂直部分的宽度。
优选的,所述制造方法中的步骤9)湿法刻蚀氧化层后,控制氧化层界面应该低于槽内保留的氮化硅的上界面,且高于氮化硅的下界面,之后再选择干法刻蚀一定厚度的氧化层。
优选的,所述制造方法中的步骤7)至步骤9)采用多晶硅代替氮化硅:
7)热生长或淀积氧化层,随后在槽结构内淀积多晶硅填满有源区的整个槽;
8)刻蚀步骤7)中所淀积的多晶硅,使其上界面低于平台区MESA区硅层的上表面,槽内保留的多晶硅作为接下来氧化层刻蚀的屏蔽层;
9)先湿法刻蚀氧化层,再选择干法刻蚀氧化层,使其刻蚀后的界面高于阶梯状分离栅的上界面;随后刻蚀掉槽内剩余的多晶硅。
实施例2
如图4所示,本实施例提供一种分离栅功率MOSFET器件的制造方法的部分步骤,用来代替图3中的(j)-(k)过程,本实施例与实施例1所述制造方法的区别为,步骤9)可采取如下实现方式:
9)干法刻蚀氧化层,控制使其刻蚀后的界面与阶梯状分离栅的上界面保持一定距离;随后湿法刻蚀掉槽内剩余的氮化硅;
实施例3
如图5所示,本实施例与实施例1所述制造方法的不同之处在于:步骤1)形成的包围分离栅电极的第一介质层采用k小于3.9的低k材料代替二氧化硅,可以进一步降低源漏电容。
实施例4
如图6所示,本实施例与实施例1所述制造方法的不同之处在于:步骤6)形成的第二介质层采用k小于3.9的低k材料代替二氧化硅,可以进一步降低栅源电容。
以上结合附图对本发明的实施例进行了详细阐述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,不脱离本发明宗旨和权利要求所保护范围的情况下还可以做出很多变形,这些均属于本发明的保护。

Claims (7)

1.一种分离栅功率MOSFET器件的制造方法,其特征在于包括如下步骤:
1)在外延层上形成一系列的槽结构,在槽结构的内壁形成第一介质层;
2)在槽结构内淀积多晶硅,使多晶硅填满整个槽;
3)刻蚀步骤2)所淀积的多晶硅,在有源区的控制栅槽内形成阶梯状分离栅电极的下半部分;
4)湿法刻蚀第一介质层,随后在槽结构内淀积多晶硅,使多晶硅填满整个槽;
5)刻蚀步骤4)所淀积的多晶硅,在有源区的控制栅槽内形成阶梯状分离栅电极的上半部分;
6)在有源区的槽内、阶梯状分离栅的上部淀积并回刻形成第二介质层;
7)热生长或淀积氧化层,随后在槽结构内淀积氮化硅填满有源区的整个槽;
8)湿法刻蚀步骤7)中所淀积的氮化硅,使其上界面低于平台区MESA区硅层的上表面,槽内保留的氮化硅作为接下来氧化层刻蚀的屏蔽层;
9)先湿法刻蚀氧化层,再干法刻蚀氧化层,使其刻蚀后的界面高于阶梯状分离栅的上界面;随后湿法刻蚀掉槽内剩余的氮化硅;
10)在有源区中控制栅槽的上半部分,热生长形成覆盖侧壁的栅介质;随后在有源区中淀积多晶硅填满整个槽;
11)刻蚀步骤9)所淀积的多晶硅,在有源区的控制栅槽内的上半部分形成控制栅电极;
12)在外延层上表面形成第二导电类型阱区,在第二导电类型阱区中形成第一导电类型源区;
13)淀积介质层,并在源区与分离栅引出区刻蚀源极接触孔,注入金属并引出电位。
2.根据权利要求1所述的一种分离栅功率MOSFET器件的制造方法,其特征在于:步骤1)中形成的第一介质层采用k小于3.9的低k材料。
3.根据权利要求1所述的一种分离栅功率MOSFET器件的制造方法,其特征在于:步骤6)中形成的第二介质层采用k小于3.9的低k材料。
4.根据权利要求1所述的一种分离栅功率MOSFET器件的制造方法,其特征在于:步骤7)中通过控制热生长或淀积的氧化层厚度,最终得到满足要求的控制栅电极垂直部分的宽度。
5.根据权利要求1所述的一种分离栅功率MOSFET器件的制造方法,其特征在于:步骤9)中湿法刻蚀氧化层后,控制氧化层界面低于槽内保留的氮化硅的上界面,且高于氮化硅的下界面,之后再选择干法刻蚀氧化层。
6.根据权利要求1所述的一种分离栅功率MOSFET器件的制造方法,其特征在于步骤9)采取如下实现方式:
9)干法刻蚀氧化层,控制使其刻蚀后的界面与阶梯状分离栅的上界面保持距离;随后湿法刻蚀掉槽内剩余的氮化硅。
7.根据权利要求1所述的一种分离栅功率MOSFET器件的制造方法,其特征在于步骤7)至步骤9)中采用多晶硅代替氮化硅:
7)热生长或淀积氧化层,随后在槽结构内淀积多晶硅填满有源区的整个槽;
8)刻蚀步骤7)中所淀积的多晶硅,使其上界面低于平台区MESA区硅层的上表面,槽内保留的多晶硅作为接下来氧化层刻蚀的屏蔽层;
9)先湿法刻蚀氧化层,再选择干法刻蚀氧化层,使其刻蚀后的界面高于阶梯状分离栅的上界面;随后刻蚀掉槽内剩余的多晶硅。
CN202110342787.XA 2021-03-30 2021-03-30 一种分离栅功率mosfet器件的制造方法 Active CN113078066B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110342787.XA CN113078066B (zh) 2021-03-30 2021-03-30 一种分离栅功率mosfet器件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110342787.XA CN113078066B (zh) 2021-03-30 2021-03-30 一种分离栅功率mosfet器件的制造方法

Publications (2)

Publication Number Publication Date
CN113078066A true CN113078066A (zh) 2021-07-06
CN113078066B CN113078066B (zh) 2023-05-26

Family

ID=76611870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110342787.XA Active CN113078066B (zh) 2021-03-30 2021-03-30 一种分离栅功率mosfet器件的制造方法

Country Status (1)

Country Link
CN (1) CN113078066B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113539833A (zh) * 2021-07-23 2021-10-22 电子科技大学 一种分离栅功率mosfet器件的制造方法
CN114023647A (zh) * 2021-10-12 2022-02-08 上海华虹宏力半导体制造有限公司 一种屏蔽栅沟槽mosfet及其制作方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406987B1 (en) * 1998-09-08 2002-06-18 Taiwan Semiconductor Manufacturing Company Method for making borderless contacts to active device regions and overlaying shallow trench isolation regions
JP2004172488A (ja) * 2002-11-21 2004-06-17 Toshiba Corp 半導体装置及びその製造方法
US20080035987A1 (en) * 2006-08-08 2008-02-14 Francois Hebert Inverted-trench grounded-source fet structure using conductive substrates, with highly doped substrates
CN101719516A (zh) * 2009-11-20 2010-06-02 苏州硅能半导体科技股份有限公司 一种低栅极电荷深沟槽功率mos器件及其制造方法
US20140015041A1 (en) * 2012-07-13 2014-01-16 Ubiq Semiconductor Corp. Trench gate mosfet
CN105957895A (zh) * 2016-06-23 2016-09-21 无锡新洁能股份有限公司 沟槽型功率mosfet器件及其制造方法
US20170062586A1 (en) * 2015-04-17 2017-03-02 Su Zhou Oriental Semiconductor Co., Ltd. Method for manufacturing split-gate power device
CN108598165A (zh) * 2018-04-19 2018-09-28 张帅 屏蔽栅场效应晶体管及其制造方法(柱形)
CN110223919A (zh) * 2018-03-02 2019-09-10 福建晋润半导体技术有限公司 一种降低导通电阻的屏蔽栅沟槽功率mosfet结构及其制备方法
CN110504310A (zh) * 2019-08-29 2019-11-26 电子科技大学 一种具有自偏置pmos的ret igbt及其制作方法
US10720524B1 (en) * 2019-03-12 2020-07-21 University Of Electronic Science And Technology Of China Split-gate enhanced power MOS device
CN111524976A (zh) * 2020-04-28 2020-08-11 电子科技大学 一种低栅电荷的功率mos器件及其制造方法
CN111883583A (zh) * 2020-07-31 2020-11-03 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽功率器件及其制造方法
CN112382658A (zh) * 2020-08-28 2021-02-19 电子科技大学 具有阶梯分立屏蔽槽的低栅电荷器件及其制造方法
CN112420844A (zh) * 2020-11-19 2021-02-26 电子科技大学 具有分离栅增强结构的低栅电阻功率mosfet器件及方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406987B1 (en) * 1998-09-08 2002-06-18 Taiwan Semiconductor Manufacturing Company Method for making borderless contacts to active device regions and overlaying shallow trench isolation regions
JP2004172488A (ja) * 2002-11-21 2004-06-17 Toshiba Corp 半導体装置及びその製造方法
US20080035987A1 (en) * 2006-08-08 2008-02-14 Francois Hebert Inverted-trench grounded-source fet structure using conductive substrates, with highly doped substrates
CN101719516A (zh) * 2009-11-20 2010-06-02 苏州硅能半导体科技股份有限公司 一种低栅极电荷深沟槽功率mos器件及其制造方法
US20140015041A1 (en) * 2012-07-13 2014-01-16 Ubiq Semiconductor Corp. Trench gate mosfet
US20170062586A1 (en) * 2015-04-17 2017-03-02 Su Zhou Oriental Semiconductor Co., Ltd. Method for manufacturing split-gate power device
CN105957895A (zh) * 2016-06-23 2016-09-21 无锡新洁能股份有限公司 沟槽型功率mosfet器件及其制造方法
CN110223919A (zh) * 2018-03-02 2019-09-10 福建晋润半导体技术有限公司 一种降低导通电阻的屏蔽栅沟槽功率mosfet结构及其制备方法
CN108598165A (zh) * 2018-04-19 2018-09-28 张帅 屏蔽栅场效应晶体管及其制造方法(柱形)
US10720524B1 (en) * 2019-03-12 2020-07-21 University Of Electronic Science And Technology Of China Split-gate enhanced power MOS device
CN110504310A (zh) * 2019-08-29 2019-11-26 电子科技大学 一种具有自偏置pmos的ret igbt及其制作方法
CN111524976A (zh) * 2020-04-28 2020-08-11 电子科技大学 一种低栅电荷的功率mos器件及其制造方法
CN111883583A (zh) * 2020-07-31 2020-11-03 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽功率器件及其制造方法
CN112382658A (zh) * 2020-08-28 2021-02-19 电子科技大学 具有阶梯分立屏蔽槽的低栅电荷器件及其制造方法
CN112420844A (zh) * 2020-11-19 2021-02-26 电子科技大学 具有分离栅增强结构的低栅电阻功率mosfet器件及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113539833A (zh) * 2021-07-23 2021-10-22 电子科技大学 一种分离栅功率mosfet器件的制造方法
CN113539833B (zh) * 2021-07-23 2023-04-25 电子科技大学 一种分离栅功率mosfet器件的制造方法
CN114023647A (zh) * 2021-10-12 2022-02-08 上海华虹宏力半导体制造有限公司 一种屏蔽栅沟槽mosfet及其制作方法

Also Published As

Publication number Publication date
CN113078066B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
US7033889B2 (en) Trenched semiconductor devices and their manufacture
US6833583B2 (en) Edge termination in a trench-gate MOSFET
US8659076B2 (en) Semiconductor device structures and related processes
CN111524976B (zh) 一种低栅电荷的功率mos器件及其制造方法
EP1170803A2 (en) Trench gate MOSFET and method of making the same
US20190027596A1 (en) Sgt mosfet with adjustable crss and ciss
CN110010692B (zh) 一种功率半导体器件及其制造方法
US6620669B2 (en) Manufacture of trench-gate semiconductor devices
CN104103694A (zh) 一种沟槽型绝缘栅场效应晶体管及其制造方法
US8604541B2 (en) Structure and fabrication process of super junction MOSFET
CN111244185B (zh) 一种鳍式横向双扩散功率器件
CN113078066B (zh) 一种分离栅功率mosfet器件的制造方法
US8357971B2 (en) Trench gate MOSFET and method of manufacturing the same
CN112420844A (zh) 具有分离栅增强结构的低栅电阻功率mosfet器件及方法
CN108511527A (zh) 具有电荷补偿块的垂直双扩散金属氧化物半导体场效应管及其制作方法
CN114975126B (zh) 一种降低栅电荷的屏蔽栅沟槽型mosfet制造方法
CN108091695B (zh) 垂直双扩散场效应晶体管及其制作方法
CN113539833B (zh) 一种分离栅功率mosfet器件的制造方法
EP4261894A1 (en) Trench-gate semiconductor device and method for manufacturing the same
US20230253468A1 (en) Shielded gate trench power mosfet with high-k shield dielectric
CN116632066A (zh) 一种横向功率半导体器件
CN116995093A (zh) 一种电荷自平衡的双极型功率半导体器件及其制造方法
CN118156291A (zh) 半导体结构及其形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant