CN113019454A - 一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用 - Google Patents

一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用 Download PDF

Info

Publication number
CN113019454A
CN113019454A CN202110235854.8A CN202110235854A CN113019454A CN 113019454 A CN113019454 A CN 113019454A CN 202110235854 A CN202110235854 A CN 202110235854A CN 113019454 A CN113019454 A CN 113019454A
Authority
CN
China
Prior art keywords
mil
nicop
nano photocatalyst
preparation
composite nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110235854.8A
Other languages
English (en)
Other versions
CN113019454B (zh
Inventor
许银银
吴涯璐
李爰缘
冯敬博
张岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202110235854.8A priority Critical patent/CN113019454B/zh
Publication of CN113019454A publication Critical patent/CN113019454A/zh
Application granted granted Critical
Publication of CN113019454B publication Critical patent/CN113019454B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米光催化材料制备及应用技术领域,具体为NH2‑MIL‑101(Fe)@NiCoP纳米光催化剂的制备方法及应用,制备方法为:通过FeCl3·6H2O、NH2‑BDC和DMF制备NH2‑MIL‑101(Fe);将NH2‑MIL‑101(Fe)通过原位沉积法分散于、CoCl2·6H2O和RP的混合溶液中,制备NH2‑MIL‑101(Fe)@NiCoP复合纳米光催化剂。本发明制备的NH2‑MIL‑101(Fe)@NiCoP纳米光催化剂在降解水中抗生素类污染物,如四环素等有机污染物中的应用。本发明获得的NH2‑MIL‑101(Fe)@NiCoP复合纳米光催化剂表现出高效的光催化活性,在可见光去除水中抗生素等污染物方面具有较好的应用前景,制备方法简单,经济可行。

Description

一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及 应用
技术领域
本发明属于纳米光催化材料制备及应用技术领域,具体为NH2-MIL-101(Fe)@NiCoP纳米光催化剂的制备方法及应用。
背景技术
随着社会经济发展,水中微量及痕量抗生素污染问题,引起了研究者的广泛关注。目前,吸附、膜处理、生物氧化、催化降解等方法,均被应用于对水中抗生素的去除。其中,纳米材料可见光催化降解去除水中抗生素方法,由于可见光利用效率高,不引起二次污染等原因,备受研究者的青睐。
在光催化材料中,为了便于电子的传输一般将金属、金属氧化物等活性纳米材料与氧化石墨烯、碳纳米管、金属骨架材料等基质纳米材料进行复合,进而得到光催化性能较好的复合纳米材料。但是许多的基质材料的光吸收范围较窄,无法充分利用可见光,使得纳米材料的可见光降解效率较低。同时,许多的活性纳米材料都是贵金属及复合物,大大增加了光催化纳米材料的成本。研究表明,采用合适的助催化剂可以扩大基质纳米材料可见光吸收范围,有效促进空穴和光生电子的分离,降低催化剂的光催化过电位。过渡金属磷化物是一种新型的助催化剂,由过渡金属和磷元素组成,近年来受到研究者的关注。过渡金属磷化物具有无毒、低成本、天然丰度高等优点,是实现对污染物高效光催化降解的理想选择。磷化物已成为替代贵金属的优良催化剂。研究表明,NiCoP表现出较低的过电位和电荷转移电阻,其电化学性能优于单一金属磷化物。
发明内容
本发明的目的之一是提供NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,包括:
S1、通过FeCl3·6H2O(六水氯化铁)、NH2-BDC(二氨基对苯二甲酸)和DMF(N,N-二甲基甲酰胺)制备NH2-MIL-101(Fe);
S2、将NH2-MIL-101(Fe)通过原位沉积法分散于NiCl2·6H2O(六水氯化镍)、CoCl2·6H2O(六水氯化钴)和RP(红磷)的混合溶液中,制备NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂;
所述S1包括
S101、将FeCl3·6H2O和NH2-BDC溶解于DMF中,得到均一混合溶液;
S102、将混合溶液倒入聚四氟乙烯反应釜中加热反应;
S103、加热反应后冷却,用第一清洗剂清洗后烘干,得到NH2-MIL-101(Fe)。
所述S102中,加热温度为110℃,反应时间为20-28h。
所述S103中,第一清洗剂为二甲基甲酰胺与甲醇,清洗方式是采用二甲基甲酰胺与甲醇交替清洗的方式。
所述S2包括
S201、将NH2-MIL-101(Fe)加入到醇水混合溶液中,形成均匀的悬浊液;
S202、将NiCl2·6H2O和CoCl2·6H2O加入悬浊液中溶解,形成混合溶液A;
S203、将RP,十六烷基三甲基溴化铵(CTAB)和十二烷基苯磺酸钠(SDBS)加入到混合溶液A中,形成混合溶液B;
S204将混合B溶液在反应釜中加热反应;
S205加热反应冷却后,用第二清洗剂清洗后烘干,得到NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂。
所述S201中,醇水混合溶液的的体积比为V:V=1:1。
所述S202中,NiCl2·6H2O和CoCl2·6H2O的摩尔比为1:30。
所述S204中,加热温度为110℃,反应时间为20-28h;
所述205中,第二清洗剂为水和乙醇,清洗方式是采用水和乙醇交替清洗的方式。
本发明的另一目的是提供一种NH2-MIL-101(Fe)@NiCoP纳米光催化剂的应用,即NH2-MIL-101(Fe)@NiCoP纳米光催化剂在降解水中抗生素类污染物,如四环素等有机污染物中的应用。
有益效果:
(1)本发明选择NH2-MIL-101(Fe)作为载体,利用NH2-MIL-101(Fe)的多级孔结构和纳米孔道的限阈效应,可以改善类贵金属NiCoP纳米粒子的分散性,增大比表面积,增加光催化反应的活性中心,最终提高光催化性能。同时,NH2-MIL-101(Fe)可以对光催化进行固定化,有利于光催化剂的回收、循环使用,避免二次污染;
(2)本发明采用原位沉积法,原位制备NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂,并以四环素(TC)为模拟污染物评价所得样品的光催化性能,考察了溶液中不同TC污染物浓度、光催化材料投加量、溶液PH、离子强度等因素影响下NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对TC的降解效果的影响。结果表明,10mg的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对50mL,浓度为50mg/L的TC的降解效率在在2小时内达到90%以上;
(3)本发明制备的复合纳米光催化剂表现出较好的稳定性,重复利用4次后,降解效率仍在80%以上。降解机理研究表明,·O2-和电子空穴是降解TC的主要活性物质,最终降解产物为H2O和CO2
附图说明
图1为NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的扫描电镜图(SEM)和元素分析图;
图2为NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的X射线光电子能谱图(XPS);
图3为NH2-MIL-101(Fe)和NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的傅里叶红外吸收光谱图(FT-IR);
图4是NH2-MIL-101(Fe)和NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的固体紫外吸收光谱图(DRS);
图5是NH2-MIL-101(Fe)和NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的时间分辨荧光光谱图(PL);
图6(A)是溶液中TC浓度、6(B)是水中NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂投加量、6(C)是溶液pH值、6(D)是溶液中离子强度等不同条件下NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对TC降解效率的影响。
图7是反应中活性基团对NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对溶液中TC去除效果的影响。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下结合实施例及附图对本发明一种新型的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及其对水中四环素可见光的降解作具体阐述。
本发明采用溶剂热法、原位沉积法制备NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂。
第一步是以FeCl3·6H2O、NH2-BDC和DMF为原料,采用溶剂热法制备NH2-MIL-101(Fe)纳米材料。第二步是将所制备得到的NH2-MIL-101(Fe)NPs分散于NiCl2·6H2O、CoCl2·6H2O和RP的混合溶液中,用原位沉积法制备NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂。第三步是以水溶液中的抗生素类污染物TC为研究对象,考察了NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂在可见光辐射下对TC的去除效果。
实施例1
NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,步骤如下:
NH2-MIL-101(Fe)的制备
准确称取0.675g FeCl3·6H2O与15mL DMF中,超声溶解;随后向该混合溶液中加入0.225g NH2-BDC,超声溶解后转移至聚四氟乙烯反应釜中,在烘箱中加热至110℃后反应24h;自然冷却至室温,用DMF和甲醇反复交替洗涤多次后,60℃真空干燥2-6h,得NH2-MIL-101(Fe)纳米材料。
NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备
准确称取0.2g NH2-MIL-101(Fe)纳米材料,加入到50mL(V:V=1:1)混合溶液中,超声分散形成均匀的悬浊液;将0.05mmoL的NiCl2·6H2O和1.5mmoL的CoCl2·6H2O加入至上述悬浊液中搅拌溶解;随后,将25mmoL红磷(RP),0.1g CTAB和0.1g SDBS加入到上述混合溶液中常温搅拌30min溶解;将上述混合溶液转移至反应釜中,与200℃反应24h;自然冷却至室温,用水和乙醇反复交替洗涤多次后,60℃真空干燥2-6h,得NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂。
图1(A)是本发明的实施例1中的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的扫描电镜图。如图1(A)所示,NiCoP成功沉积在NH2-MIL-101(Fe)纳米材料表面;图1(B)、(C)、(D)、(E)、(F)、(G)及(H)是本发明的实施例1中的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的元素分析图;图1(B)、(C)、(D)、(E)、(F)、(G)及(H)分别显示C、N、O、Fe、Ni、Co和P元素的分布,可以看出C、N、O、Fe、Ni、Co和P元素在材料中的分布较为均匀。成功制备NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂。
图2(A)、(B)、(C)、(D)、(E)、(F)、(G)及(H)是本发明的实施例1中的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的X射线光电子能谱图(XPS)。图2(A)、(B)、(C)、(D)、(E)、(F)、(G)及(H)分别显示C、N、O、Fe、Ni、Co和P元素的XPS谱图,通过XPS表征证明,成功制备NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂。
图3是本发明的实施例1中的NH2-MIL-101(Fe)@NiCoP纳米复合材料的傅里叶红外吸收光谱图(FT-IR)。图中3342.088和3411.514cm-1处与绿色方框内的尖峰均属于NH2-MIL-101(Fe)的特征吸收峰;蓝色圆圈内的特征峰则属于NiCoP上的Ni-P和Co-P键。从图可以看出NiCoP成功负载在NH2-MIL-101(Fe)纳米材料表面。
图4是本发明的实施例1中的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的固体紫外吸收光谱图;经NiCoP改性后,NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的吸收波长范围为200~700nm,强度明显高于NH2-MIL-101(Fe)。
图5是本发明的实施例1中的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的时间分辨荧光光谱图;光致发光强度来自纳米复合材料中自由载流子的复合。因此,荧光强度的降低意味着材料具有较高的载流子分离效率。如图4所示,NH2-MIL-101(Fe)@NiCoP具有比NH2-MIL-101(Fe)更低的发光强度。这一现象说明NH2-MIL-101(Fe)@NiCoP的载体分离能力较高,更有利于四环素的光降解。
实施例2
光催化降解TC实验
将2~40mg NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂,加入新配置的50mL浓度范围为10~300mg/L的TC水溶液中,放入光化学反应仪中,室温避光搅拌30min,以达到吸附平衡。随后,打开光源,300w氙灯照射溶液,每隔30min取样测吸光度,利用标准曲线,得到TC溶液溶度C,将TC的初始浓度设为C0,按照公式:(1-C/C0)*100%,计算TC的降解效率(R)。
探究了不同催化反应时间内,TC污染物浓度、材料投加量、溶液PH值、离子强度等不同条件下,NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对TC降解效果的影响,如图6所示。
图6A为不同TC污染物浓度下,10mg NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对TC降解效果的影响。通过图6A可以看出,当水中TC浓度为10~120mg/L时,NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对水中四环素的降解效率随四环素浓度的上升而增加;当水中四环素浓度高于120mg/L时NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对水中四环素的降解效率随四环素浓度的上升而降低。
图6B是2~40mg的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对50mL溶液中50mg/mL TC的去处效率的影响;结果表明,随着NH2-MIL-101(Fe)@NiCoP复合纳米光催化材料投加量的增加,NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对水中TC的降解效率逐渐提高。
图6C是溶液pH值对本发明的实施例1中的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对水中TC去处效果的影响;结果表明在自然pH下,NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对水中四环素的降解效率最高。
图6D是溶液中离子强度对本发明的实施例1中的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对水中四环素去处效果的影响;结果表明,水中离子强度的变化对NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对水中TC的降解效率没有明显影响。
图7是反应中活性基团对本发明的实施例1中的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对水中TC去除效果的影响。从图7可以看出,在没有任何猝灭剂的情况下,NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂对TC的去除率可以达到91.0%。在溶液中加入10.0mM IPA后,TC在可见光下的光降解效率降为84.5%。当加入10.0mM的AO时,TC的光降解效率下降到53.7%。当加入5.0mM的1,4-BQ时,TC的降解效率显著降低,仅为21.6%。结果表明,·OH对TC的降解有一定贡献,但是并不是光催化过程中的主要活性物质,而h+作为主要活性组分参与了TC的降解,同时,·O2-是光催化TC最主要的活性物种。
通过实施例2可以看出,当将10mg的NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂加入到50mL的50mg/mL的TC溶液中时,在可见光条件下辐射2h,NH2-MIL-101(Fe)@NiCoP复合纳米光催剂对TC的降解效率可达到91.0%。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

1.一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,其特征在于,包括:
S1、通过FeCl3·6H2O、NH2-BDC和DMF制备NH2-MIL-101(Fe);
S2、将NH2-MIL-101(Fe)通过原位沉积法分散于NiCl2·6H2O、CoCl2·6H2O和RP的混合溶液中,制备NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂。
2.根据权利要求1所述的一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,其特征在于,所述S1包括
S101、将FeCl3·6H2O和NH2-BDC溶解于DMF中,得到均一混合溶液;
S102、将混合溶液倒入聚四氟乙烯反应釜中加热反应;
S103、加热反应后冷却,用第一清洗剂清洗后烘干,得到NH2-MIL-101(Fe)。
3.根据权利要求2所述的一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,其特征在于,所述S102中,加热温度为110℃,反应时间为20-28h。
4.根据权利要求2所述的一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,其特征在于,所述S103中,第一清洗剂为二甲基甲酰胺与甲醇,清洗方式是采用二甲基甲酰胺与甲醇交替清洗的方式。
5.根据权利要求1所述的一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,其特征在于,所述S2包括
S201、将NH2-MIL-101(Fe)加入到醇水混合溶液中,形成均匀的悬浊液;
S202、将NiCl2·6H2O和CoCl2·6H2O加入悬浊液中溶解,形成混合溶液A;
S203、将RP,CTAB和SDBS加入到混合溶液A中,形成混合溶液B;
S204将混合B溶液在反应釜中加热反应;
S205加热反应冷却后,用第二清洗剂清洗后烘干,得到NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂。
6.根据权利要求5所述的一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,其特征在于,所述S201中,醇水混合溶液的的体积比为V:V=1:1。
7.根据权利要求5所述的一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,其特征在于,所述S202中,NiCl2·6H2O和CoCl2·6H2O的摩尔比为1:30。
8.根据权利要求5所述的一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,其特征在于,所述S204中,加热温度为110℃,反应时间为20-28h。
9.根据权利要求5所述的一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法,其特征在于,所述205中,第二清洗剂为水和乙醇,清洗方式是采用水和乙醇交替清洗的方式。
10.一种NH2-MIL-101(Fe)@NiCoP纳米光催化剂的应用,其特征在于:NH2-MIL-101(Fe)@NiCoP纳米光催化剂在降解水中抗生素类污染物,如四环素等有机污染物中的应用。
CN202110235854.8A 2021-03-03 2021-03-03 一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用 Expired - Fee Related CN113019454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110235854.8A CN113019454B (zh) 2021-03-03 2021-03-03 一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110235854.8A CN113019454B (zh) 2021-03-03 2021-03-03 一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113019454A true CN113019454A (zh) 2021-06-25
CN113019454B CN113019454B (zh) 2022-04-26

Family

ID=76465994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110235854.8A Expired - Fee Related CN113019454B (zh) 2021-03-03 2021-03-03 一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113019454B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318791A (zh) * 2021-06-30 2021-08-31 武汉大学 一种氨基修饰的Fe/Cu-MOF光催化剂的制备方法及其应用
CN113842887A (zh) * 2021-09-26 2021-12-28 常州大学 Co-MIL-53(Fe)-NH2/UIO-66-NH2复合材料及其制备和应用
CN114471445A (zh) * 2022-02-15 2022-05-13 兰州大学 一种WO3@NiCoP纳米吸附剂的制备方法及应用
CN116459850A (zh) * 2023-04-04 2023-07-21 常州大学 一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105498844A (zh) * 2015-12-07 2016-04-20 辽宁师范大学 具有纺锤形貌的Ag/AgCl/NH2-MIL-101(Fe)复合光催化剂的原位制备方法及该催化剂的应用
CN106238100A (zh) * 2016-07-28 2016-12-21 北京科技大学 二氧化钛纳米片负载MIL‑100(Fe)复合光催化材料的制备及应用方法
WO2017066328A1 (en) * 2015-10-12 2017-04-20 The University Of Chicago Stabilization of active metal catalysts at metal-organic framework nodes for highly efficient organic transformations
CN110882725A (zh) * 2019-12-06 2020-03-17 北京科技大学 金属有机骨架负载二氧化钛光催化材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017066328A1 (en) * 2015-10-12 2017-04-20 The University Of Chicago Stabilization of active metal catalysts at metal-organic framework nodes for highly efficient organic transformations
CN105498844A (zh) * 2015-12-07 2016-04-20 辽宁师范大学 具有纺锤形貌的Ag/AgCl/NH2-MIL-101(Fe)复合光催化剂的原位制备方法及该催化剂的应用
CN106238100A (zh) * 2016-07-28 2016-12-21 北京科技大学 二氧化钛纳米片负载MIL‑100(Fe)复合光催化材料的制备及应用方法
CN110882725A (zh) * 2019-12-06 2020-03-17 北京科技大学 金属有机骨架负载二氧化钛光催化材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林思宇等: "助催化剂 NiCoP 修饰改性增强半导体 TiO2的光催化性能", 《材料导报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318791A (zh) * 2021-06-30 2021-08-31 武汉大学 一种氨基修饰的Fe/Cu-MOF光催化剂的制备方法及其应用
CN113842887A (zh) * 2021-09-26 2021-12-28 常州大学 Co-MIL-53(Fe)-NH2/UIO-66-NH2复合材料及其制备和应用
CN113842887B (zh) * 2021-09-26 2023-01-17 常州大学 Co-MIL-53(Fe)-NH2/UIO-66-NH2复合材料及其制备和应用
CN114471445A (zh) * 2022-02-15 2022-05-13 兰州大学 一种WO3@NiCoP纳米吸附剂的制备方法及应用
CN116459850A (zh) * 2023-04-04 2023-07-21 常州大学 一种用于降解四环素的NiCoP/g-C3N4复合光催化剂的制备方法

Also Published As

Publication number Publication date
CN113019454B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN113019454B (zh) 一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用
Meng et al. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst
Shi et al. Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation
Han et al. Ni-Mo nanoparticles as co-catalyst for drastically enhanced photocatalytic hydrogen production activity over g-C3N4
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Wang et al. Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation
Zhang et al. High-efficiency all-solid-state Z-scheme Ag3PO4/g-C3N4/MoSe2 photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination
Zhang et al. Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward ofloxacin photo-degradation
Zhang et al. Enhanced photo-catalytic performance by effective electron-hole separation for MoS2 inlaying in g-C3N4 hetero-junction
CN106047850A (zh) 一种微生物固定化剂及其制备方法和应用
He et al. NH2-MIL-125 (Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution
Wu et al. Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst
CN107983371B (zh) 一种光催化材料Cu2-xS/Mn0.5Cd0.5S/MoS2及其制备方法与应用
Zhang et al. MOF templated to construct hierarchical ZnIn2S4-In2S3 hollow nanotube for enhancing photocatalytic performance
Zhang et al. Enhanced visible-light photocatalytic H2 production of hierarchical g-C3N4 hexagon by one-step self-assembly strategy
CN111036249A (zh) 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用
CN113856702B (zh) 一种硫化镉纳米棒/硫化亚铜纳米壳异质结构光催化剂及制备方法与应用
CN108479772A (zh) 金掺杂纳米氧化锌复合材料及其制备方法与在光催化降解四环素中的应用
Sun et al. Modulating charge transport behavior across the interface via g-C3N4 surface discrete modified BiOI and Bi2MoO6 for efficient photodegradation of glyphosate
CN113578212B (zh) 氧化锌/石墨烯/氧化石墨烯/碳纳米管气凝胶及方法
Zhao et al. Efficient charge transfer in cadmium sulfide quantum dot-decorated hierarchical zinc sulfide-coated tin disulfide cages for carbon dioxide photoreduction
CN110064437B (zh) 一种表面规则负载Ag/BiOBr纳米片纤维素基织物及其制备和应用
Zhang et al. Promoted interfacial charge transfer by coral-like nickel diselenide for enhanced photocatalytic hydrogen evolution over carbon nitride nanosheet
CN114534760B (zh) 一种N-CDs/FeNbO4复合光催化剂及其制备方法和应用
Cao et al. Construction of nanosized MoP decorated highly crystalline carbon nitride sphere as an excellent photocatalyst for boosted photocatalytic hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220426