CN112924849B - 一种应用于相位调整电路的误差补偿计算方法 - Google Patents

一种应用于相位调整电路的误差补偿计算方法 Download PDF

Info

Publication number
CN112924849B
CN112924849B CN202110109098.4A CN202110109098A CN112924849B CN 112924849 B CN112924849 B CN 112924849B CN 202110109098 A CN202110109098 A CN 202110109098A CN 112924849 B CN112924849 B CN 112924849B
Authority
CN
China
Prior art keywords
phase
fpga
circuit
comparator
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110109098.4A
Other languages
English (en)
Other versions
CN112924849A (zh
Inventor
魏津
张经祥
杜宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sundak Semiconductor Technology Shanghai Co ltd
Original Assignee
Sundec Semiconductor Technology Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sundec Semiconductor Technology Shanghai Co ltd filed Critical Sundec Semiconductor Technology Shanghai Co ltd
Priority to CN202110109098.4A priority Critical patent/CN112924849B/zh
Publication of CN112924849A publication Critical patent/CN112924849A/zh
Priority to TW110127212A priority patent/TWI773457B/zh
Application granted granted Critical
Publication of CN112924849B publication Critical patent/CN112924849B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2834Automated test systems [ATE]; using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/30Structural combination of electric measuring instruments with basic electronic circuits, e.g. with amplifier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analogue/Digital Conversion (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本发明涉及半导体测试技术领域,具体地说是一种应用于相位调整电路的误差补偿计算方法。具体流程如下:S1:FPGA初始化;S2:FPGA自检,若显示正常,则继续步骤S3;若自检显示有误,则***上报错误;S3:读取FPGA使用时间的长度;S4:计算电路漂移系数K=(1+αt)*(1‑βt)*(1‑γ
Figure 100004_DEST_PATH_IMAGE001
);S5:根据电路漂移系数,计算相位补偿值T=RC*Ln[UVG1/(UVG1‑UC)]*K=RC*Ln[UVG1/(UVG1‑UC)]*(1+αt)*(1‑βt)*(1‑γ
Figure 895904DEST_PATH_IMAGE001
);S6:计算出需要输出给相位调整电路的比较器的电压值;S7:将输出的电压值给相位调整电路的数模转换器;S8:相位调整电路补偿配置完成。同现有技术相比,采用实测对相位偏移误差和时间建模,从而预测相位调整电路随时间产生误差,低成本方便的实现对使用时间造成的误差进行补偿。

Description

一种应用于相位调整电路的误差补偿计算方法
技术领域
本发明涉及半导体测试技术领域,具体地说是一种应用于相位调整电路的误差补偿计算方法。
背景技术
在芯片自动测试机领域,常常需要对某些信号做输出波形相位的调整,对于高速信号来说,精确的相位控制电路代表着测试机的设计水平,直接影响到测试厂对芯片的测试效果。业内传统使用FPGA对高频时钟计数的方式来做信号相位调整,这种方式有两个不足:一是相位调整只能是高频时钟周期的整数倍,无法做到无极调整;二是如果信号频率较快,需要选用高阶的FPGA,对成本和FPGA设计都是一个挑战。特别的,当实际电路采用的芯片和阻容随着使用时间的增加,其特性会随时间产生偏移,大部分测试机会要求测试机使用者每隔3~6个月对测试机进行校准,通常直流方面的校准会比较容易,采用相应的校准仪表即可,但是相位调整电路的校准会需要用到高阶示波器,在用户现场很难满足条件。如果长时间不进行相位调整电路的校准,会造成相位调整结果随时间发生偏移。
发明内容
本发明为克服现有技术的不足,提供一种应用于相位调整电路的误差补偿计算方法,采用实测对相位偏移误差和时间建模,从而预测相位调整电路随时间产生误差,低成本方便的实现对使用时间造成的误差进行补偿。
为实现上述目的,设计一种应用于相位调整电路的误差补偿计算方法,包括FPGA、相位调整电路,FPGA与相位调整电路连接,相位调整电路内包括数模转换器和比较器,其特征在于:具体流程如下:
S1:FPGA初始化开始;
S2:FPGA自检,若自检显示正常,则继续步骤S3;若自检显示有误,则***上报错误;
S3:读取FPGA使用时间的长度;
S4:计算电路漂移系数K=(1+αt)* (1-βt) * (1- γ
Figure DEST_PATH_IMAGE001
);
S5:根据电路漂移系数,计算相位
补偿值T = RC*Ln[UVG1/( UVG1-UC)] * K= RC*Ln[UVG1/( UVG1-UC)] * (1+αt)*(1-βt) * (1- γ
Figure 389588DEST_PATH_IMAGE001
);
S6:计算出需要输出给相位调整电路的比较器的电压值;
S7:将输出的电压值给相位调整电路的数模转换器;
S8:相位调整电路补偿配置完成。
所述的相位补偿系数K=(1+αt)* (1-βt) * (1- γ
Figure 399133DEST_PATH_IMAGE001
),FPGA的使用时间对于电阻的影响公式为 R=R0 *(1+αt),其中R0是初始时的精确阻值,α为电阻的电阻时间系数,通过具体实验可以测出电路中采用电阻的系数;C = C0 * (1-βt),经实验得出电容量每年的损耗大概在1%~2%;运放增益随时间的变化多在10mV/年,变化因子考虑为 1- γ
Figure 714708DEST_PATH_IMAGE001
所述的FPGA自检为通过FPGA和相位调整电路的数模转换器产生一个精细可调电压输入相位调整电路的比较器负端;相位调整的高速信号输入相位调整电路的比较器正端;两个电压输入到比较器的两端,通过调整比较器负端的电压,可以在比较器的输出端得到不同相位的波形。
本发明同现有技术相比,提供一种应用于相位调整电路的误差补偿计算方法,采用实测对相位偏移误差和时间建模,从而预测相位调整电路随时间产生误差,低成本方便的实现对使用时间造成的误差进行补偿。
附图说明
图1为本发明流程图。
图2为相位调整电路图。
具体实施方式
下面根据附图对本发明做进一步的说明。
如图1所示,一种应用于相位调整电路的误差补偿计算方法,FPGA与相位调整电路连接,相位调整电路内包括数模转换器和比较器,具体流程如下:
S1:FPGA初始化开始;
S2:FPGA自检,若自检显示正常,则继续步骤S3;若自检显示有误,则***上报错误;
S3:读取FPGA使用时间的长度;
S4:计算电路漂移系数K=(1+αt)* (1-βt) * (1- γ
Figure 784295DEST_PATH_IMAGE001
);
S5:根据电路漂移系数,计算相位补偿值T = RC*Ln[UVG1/( UVG1-UC)] * K= RC*Ln[UVG1/( UVG1-UC)] * (1+αt)* (1-βt) * (1- γ
Figure 480593DEST_PATH_IMAGE001
);
S6:计算出需要输出给相位调整电路的比较器的电压值;
S7:将输出的电压值给相位调整电路的数模转换器;
S8:相位调整电路补偿配置完成。
相位补偿系数K=(1+αt)* (1-βt) * (1- γ
Figure 231511DEST_PATH_IMAGE001
),FPGA的使用时间对于电阻的影响公式为 R=R0 *(1+αt),其中R0是初始时的精确阻值,α为电阻的电阻时间系数,通过具体实验可以测出电路中采用电阻的系数;C = C0 * (1-βt),经实验得出电容量每年的损耗大概在1%~2%;运放增益随时间的变化多在10mV/年,变化因子考虑为 1- γ
Figure 779690DEST_PATH_IMAGE001
FPGA自检为通过FPGA和相位调整电路的数模转换器产生一个精细可调电压输入相位调整电路的比较器负端;相位调整的高速信号输入相位调整电路的比较器正端;两个电压输入到比较器的两端,通过调整比较器负端的电压,可以在比较器的输出端得到不同相位的波形。
可以通过FPGA记录和读取使用时间的长度,再通过示波器实际的测量,对时间跟相位漂移建模。后续在测试机的使用中,FPGA会依据这个补偿模型和实际使用时间长度,来计算比较器负端电压设定值。
如图2所示,其中电阻R1和电容C1用于RC上升时间延迟的调整,由RC充电时间公式推导电容C1上的电压,UC=UVG1 * (1- e-t/rc),所以延迟误差t=RC*Ln[UVG1/( UVG1-UC)], 其中UC为电容C1的电压,电容C1上的电压会随着电阻R1对其的充电逐渐升高,也就是数模转换器IOP1的输入正端的电压会逐渐升高,电阻R5及电阻R2构成运放的放大电路,实际应用可以根据具体电压需求来调整成期望的放大倍数。
LMV393为比较器U1的型号,其正端为前一级数模转换器IOP1的输出电压UO = UC *(1+ R2/R1)(即放大后的Uc)。比较器U1的负端输入电压UVS1,即图2中的VS1电压,为FPGA通过DAC调整的,为可编程端。随着比较器U1正端的 UO的上升,当UO > UVS1时,比较器U1输出端反向,发出上升沿,这个上升沿的延迟是可以通过调整比较器负端输入的VS1的电压来调整的。
电路中的电阻R1、电容 C1、数模转换器IOP1、VS1和比较器U1等均存在随时间漂移,当使用时间发生变化时其运放增益,阻值,容值,输出电压等参数均可能发生变化。该电路可能由于自动测试机使用时间的推移,相位调整电路的输出会发生改变,由此建立数学模型,针对相位随时间变化T=RC*Ln[UVG1/( UVG1-UC)]建立数学模型,以求得更为精确的误差补偿。
使用时间对于电阻的影响公式为 R=R0 *(1+αt),其中R0是初始时的精确阻值,α为电阻的电阻时间系数,通过具体实验可以测出电路中采用电阻的系数,经实测α非常小。
使用时间对于X7R电容的容值影响比较大,呈现线性老化特性C=C0 * (1-βt),经实验,电容量每年的损耗大概在1%~2%。
运放增益随时间的变化较小,多在10mV/年,变化因子考虑为 1- γ
Figure 20179DEST_PATH_IMAGE002
因此,电路漂移系数K =(1+αt)* (1-βt) * (1- γ
Figure 705238DEST_PATH_IMAGE001
)。
最终计算延迟的补偿公式如下:T=RC*Ln[UVG1/( UVG1-UC)]*K;T=RC*Ln[UVG1/( UVG1-UC)]*(1+αt)* (1-βt) * (1- γ
Figure 791006DEST_PATH_IMAGE001
)。
实施例:
基于Sandtek公司的Astar系列自动测试机,经过实际测量,得出α, β和γ参数数值如表一所示。
表一
α <0.0001(电阻老化)
β 1.1%
γ 0.003
带入延迟计算公式:假设阶跃信号源电压UVG1 = 2V,UC设定为50%的UVG1,即当UC到达输入阶跃信号50%的时候,比较器发生翻转,从而输出延迟后的讯号,即进行了相位的调整。当不考虑时间补偿时,计算如下:
设UVG1= 2V,UC= 1;带入T = RC*Ln[UVG1/( UVG1- UC)] = Ln[2/(2-1)] = 6.931us;加入时间补偿因子,假定时间t=1年,重新计算T:
T= RC*Ln[UVG1/( UVG1- UC)] *(1+αt)* (1-βt) * (1- γ
Figure 612331DEST_PATH_IMAGE001
)
= 6.931 * (1+0.0001) * (1- 0.011) * (1 – 0.003)
= 6.931 * 0.986
= 6.835 us。
依据T= 6.835 带入之前公式T = RC*Ln[UVG1/( UVG1- UC)],计算出调整后的UC

Claims (2)

1.一种应用于相位调整电路的误差补偿计算方法,包括FPGA、相位调整电路,FPGA与相位调整电路连接,相位调整电路内包括数模转换器和比较器,其特征在于:具体流程如下:
S1:FPGA初始化开始;
S2:FPGA自检,若自检显示正常,则继续步骤S3;若自检显示有误,则***上报错误;
S3:读取FPGA使用时间的长度;
S4:计算电路漂移系数K=(1+αt)* (1-βt) * (1- γ
Figure 282753DEST_PATH_IMAGE001
);
S5:根据电路漂移系数,计算相位补偿值T = R0*C0*Ln[UVG1/( UVG1-UC)] * K= R0*C0*Ln[UVG1/( UVG1-UC)] * (1+αt)* (1-βt) * (1- γ
Figure 165258DEST_PATH_IMAGE001
);
S6:计算出需要输出给相位调整电路的比较器的电压值;
S7:将输出的电压值给相位调整电路的数模转换器;
S8:相位调整电路补偿配置完成;
所述的相位补偿系数K=(1+αt)* (1-βt) * (1- γ
Figure 517742DEST_PATH_IMAGE001
),FPGA的使用时间对于电阻的影响公式为 R=R0 *(1+αt),其中R0是初始时的精确阻值,α为电阻的电阻时间系数,通过具体实验可以测出电路中采用电阻的系数;C = C0 * (1-βt),经实验得出电容量每年的损耗大概在1%~2%;运放增益随时间的变化多在10mV/年,变化因子考虑为 1- γ
Figure 729516DEST_PATH_IMAGE001
2.根据权利要求1所述的一种应用于相位调整电路的误差补偿计算方法,其特征在于:所述的FPGA自检为通过FPGA和相位调整电路的数模转换器产生一个精细可调电压输入相位调整电路的比较器负端;相位调整的高速信号输入相位调整电路的比较器正端;两个电压输入到比较器的两端,通过调整比较器负端的电压,可以在比较器的输出端得到不同相位的波形。
CN202110109098.4A 2021-01-27 2021-01-27 一种应用于相位调整电路的误差补偿计算方法 Active CN112924849B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110109098.4A CN112924849B (zh) 2021-01-27 2021-01-27 一种应用于相位调整电路的误差补偿计算方法
TW110127212A TWI773457B (zh) 2021-01-27 2021-07-23 應用於相位調整電路的誤差補償計算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110109098.4A CN112924849B (zh) 2021-01-27 2021-01-27 一种应用于相位调整电路的误差补偿计算方法

Publications (2)

Publication Number Publication Date
CN112924849A CN112924849A (zh) 2021-06-08
CN112924849B true CN112924849B (zh) 2023-02-28

Family

ID=76166787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110109098.4A Active CN112924849B (zh) 2021-01-27 2021-01-27 一种应用于相位调整电路的误差补偿计算方法

Country Status (2)

Country Link
CN (1) CN112924849B (zh)
TW (1) TWI773457B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322965A (zh) * 2015-12-07 2016-02-10 中国科学院微电子研究所 具有延迟偏差检测和校准功能的数模转换器
CN205283410U (zh) * 2015-12-19 2016-06-01 蒋小春 基于fpga的高精度死区补偿装置
CN107070450A (zh) * 2016-11-30 2017-08-18 黄山学院 基于电荷域信号处理的多通道dac相位误差校准电路
CN107084662A (zh) * 2017-04-12 2017-08-22 合肥工业大学 基于fpga的正交信号实时处理方法
CN110166049A (zh) * 2019-06-10 2019-08-23 中车大连机车车辆有限公司 模数转换基准漂移自动补偿方法及装置
CN111998842A (zh) * 2020-06-30 2020-11-27 浙江大学 一种用于微机械陀螺检测模态接口电路相位延迟的在线实时自动补偿方法和***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040210790A1 (en) * 2001-11-26 2004-10-21 Yongsam Moon 0.6-2.5 GBaud CMOS tracked 3X oversampling transceiver with dead zone phase detection for robust clock/data recovery
US7321259B1 (en) * 2005-10-06 2008-01-22 Altera Corporation Programmable logic enabled dynamic offset cancellation
US7728690B2 (en) * 2007-10-19 2010-06-01 Qualcomm, Incorporated Method and apparatus for compensating for tuning nonlinearity of an oscillator
US10985762B2 (en) * 2018-06-06 2021-04-20 Microchip Technology Incorporated Compensating for frequency variation of a crystal oscillator and related systems, methods and devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322965A (zh) * 2015-12-07 2016-02-10 中国科学院微电子研究所 具有延迟偏差检测和校准功能的数模转换器
CN205283410U (zh) * 2015-12-19 2016-06-01 蒋小春 基于fpga的高精度死区补偿装置
CN107070450A (zh) * 2016-11-30 2017-08-18 黄山学院 基于电荷域信号处理的多通道dac相位误差校准电路
CN107084662A (zh) * 2017-04-12 2017-08-22 合肥工业大学 基于fpga的正交信号实时处理方法
CN110166049A (zh) * 2019-06-10 2019-08-23 中车大连机车车辆有限公司 模数转换基准漂移自动补偿方法及装置
CN111998842A (zh) * 2020-06-30 2020-11-27 浙江大学 一种用于微机械陀螺检测模态接口电路相位延迟的在线实时自动补偿方法和***

Also Published As

Publication number Publication date
CN112924849A (zh) 2021-06-08
TWI773457B (zh) 2022-08-01
TW202230992A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
US7230444B2 (en) Method for measuring characteristics of FETs
US9726696B2 (en) Precision reference circuit and related method
EP3309564B1 (en) Circuits for on-situ differential impedance balance error measurement and correction
US8710888B2 (en) System and method for oscillator frequency control
CN114296504B (zh) 带隙基准电压校准方法
CN110488092B (zh) 一种对电能质量装置进行测量补偿的方法
KR101446669B1 (ko) 회로 전 입력 범위의 연속적 전압/전류 샘플링을 통한 계측 값 왜곡 보정 방법
US8723711B1 (en) Stair-step voltage ramp module including programmable gain amplifier
CN109029791B (zh) 一种抗反向厄利效应的温度传感器校准方法
CN112924849B (zh) 一种应用于相位调整电路的误差补偿计算方法
US8514112B2 (en) Programmable linearity correction circuit for digital-to-analog converter
US6989663B2 (en) Flatness correction
CN113702710A (zh) 电阻测试电路及电阻测试方法
CA1151771A (en) Method and apparatus for enhancing the output of an rms converter
US9608570B1 (en) Amplifier calibration methods and circuits
US20140210546A1 (en) Tuning circuitry and method for active filters
EP3806331B1 (en) Rc oscillator
Beug et al. A new calibration transformer and measurement setup for bridge standard calibrations up to 5 kHz
CN103178708B (zh) 静态电荷源及其校准方法
Rietveld et al. Accurate high-ohmic resistance measurement techniques up to 1 PΩ
WO2023233889A1 (ja) 測定装置、測定用回路、及び測定方法
Mariscotti A low cost capacitive bridge based on voltage drop balance
Houtzager et al. Calibration systems for analogue non-conventional voltage and current transducers
CN117572321B (zh) 电压比率超量程自校准方法、计算机设备和存储介质
Mohns et al. A current clamp based high voltage monitoring system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 201799 Room 103, 1st Floor, Building 1, No. 480 Huapu Road, Qingpu District, Shanghai

Patentee after: Sundak Semiconductor Technology (Shanghai) Co.,Ltd.

Address before: 201799 1st floor, building 1, 1130 qinghewan Road, Qingpu District, Shanghai

Patentee before: Sundec semiconductor technology (Shanghai) Co.,Ltd.

CP03 Change of name, title or address