CN112882029A - 基于快速后向投影的机动轨迹大斜视波束指向sar成像方法 - Google Patents

基于快速后向投影的机动轨迹大斜视波束指向sar成像方法 Download PDF

Info

Publication number
CN112882029A
CN112882029A CN202110039015.9A CN202110039015A CN112882029A CN 112882029 A CN112882029 A CN 112882029A CN 202110039015 A CN202110039015 A CN 202110039015A CN 112882029 A CN112882029 A CN 112882029A
Authority
CN
China
Prior art keywords
signal
compression
spectrum
aperture
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110039015.9A
Other languages
English (en)
Inventor
孙光才
万明慧
陈潇翔
邢孟道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110039015.9A priority Critical patent/CN112882029A/zh
Publication of CN112882029A publication Critical patent/CN112882029A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9011SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法包括:接收回波信号,并进行解调和距离向脉冲压缩;建立地面坐标系并布置包含成像目标点的成像网格;对回波信号进行子孔径划分并建立子孔径坐标系和子孔径成像网格;对子孔径成像网格进行初步时域成像;进行第一次谱压缩;进行距离向傅里叶变换;对距离向傅里叶变换信号进行第二次谱压缩;对第二次谱压缩后信号进行补零操作;对补零后的信号再进行一次解谱压缩;对一次解谱压缩后的信号进行二次解谱压缩;将二次解谱压缩后的信号融合到全孔径图像中,得到最终的成像结果。该方法通过在地面建立直角坐标系,布置成像网格进行后向投影成像,解决了成像几何畸变严重的问题。

Description

基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法
技术领域
本发明属于雷达信号处理技术领域,具体涉及一种基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法。
背景技术
SAR(Synthetic Aperture Radar,合成孔径雷达)是一种先进的雷达***,能够全天候、全天时工作,现已广泛应用于全球地形观测、海洋遥感等诸多方面,SAR技术的发展一直受到高度关注。机动轨迹大斜视波束指向SAR是一种新的SAR模式,是指雷达平台的飞行模式不再是简单的沿水平方向飞行,而是可以俯冲和仰冲并且斜视角较大,波束可以以固定的速度和方向进行扫描变化,不再是简单的固定不动,这样可以获得更宽的成像场景。
与传统的大斜视模式相比,机动轨迹大斜视波束指向SAR可以克服天线波束范围限制,获得更宽的方位向成像场景,有利于SAR图像的后续应用,例如精确制导中的图像匹配。但是在机动轨迹大斜视波束指向SAR模式下,波束指向的大范围变化会导致多普勒折叠,大斜视俯冲会导致成像结果几何畸变严重,现有的多普勒域成像算法已经不再适用,从而限制了许多SAR图像的应用。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法。本发明要解决的技术问题通过以下技术方案实现:
本发明提供了一种基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法,包括:
S1:接收来自机动轨迹大斜视波束指向SAR的回波信号,并对所述回波信号进行解调和距离向脉冲压缩,获得距离向脉冲压缩后的回波信号;
S2:建立地面坐标系,并在地面坐标系中布置包含成像目标点的成像网格;
S3:对所述距离向脉冲压缩后的回波信号进行子孔径划分,并在子孔径范围内建立子孔径坐标系和子孔径成像网格;
S4:利用后向投影算法对所述子孔径成像网格中的点目标进行初步时域成像,获得子孔径成像结果;
S5:对所述子孔径成像结果进行第一次谱压缩,得到第一次谱压缩后的信号;
S6:对第一次谱压缩后的信号进行距离向傅里叶变换,得到距离向傅里叶变换信号;
S7:对所述距离向傅里叶变换信号进行第二次谱压缩,得到第二次谱压缩后的信号;
S8:对第二次谱压缩后的信号进行方位向傅里叶变换并进行补零操作,得到补零后的信号;
S9:对补零后的信号进行方位向逆傅里叶变换得到方位向逆傅里叶变换后的信号,再进行一次解谱压缩,得到一次解谱压缩后的信号;
S10:对一次解谱压缩后的信号进行距离向逆傅里叶变换,得到距离向逆傅里叶变换后的信号,再进行二次解谱压缩,得到二次解谱压缩后的信号;
S11:将二次解谱压缩后的信号融合到全孔径图像中,得到最终的成像结果。
在本发明的一个实施例中,在所述S1中,所述距离向脉冲压缩后的回波信号
Figure BDA0002894919300000021
表示为:
Figure BDA0002894919300000022
其中,
Figure BDA0002894919300000023
为距离时间,tm为方位时间,Wm(tm)为方位窗函数的位置域形式,λ为波长,B为信号带宽,c为光速,j为虚数单位,R(tm)为点目标到主天线的斜距历程,sinc(·)为辛格函数,表示距离向聚焦后的信号包络。
在本发明的一个实施例中,在所述S4中,所述子孔径成像结果的表达式为:
Figure BDA0002894919300000024
S(Kr,tm;xp,yp)=exp(-jKrR(tm;xp,yp));
Figure BDA0002894919300000025
其中,(xp,yp)为点目标的坐标,(Xri(tm),Yri(tm),Zri(tm))为雷达位置坐标,R(tm;xp,yp)为子孔径内点目标到雷达的瞬时斜距,R(tm;xi,yi)为在子孔径内布置的网格点到雷达的瞬时距离,tis和tie分别为子孔径开始和结束时间,Kr为波束值,Br为子孔径带宽,c为光速,fc为信号载频。
在本发明的一个实施例中,所述S5包括:
对所述子孔径成像结果Ii(xi,yi)补偿一个两维相位f(xi,yi),进行第一次谱压缩,得到第一次谱压缩后的信号Ii-sc1(xi,yi),其中,
所述两维相位f(xi,yi)的表达式为:
Figure BDA0002894919300000031
其中,(Xri(ti),Yri(ti),Zri(ti))是雷达在ti时刻的位置,ti为子孔径中心时间,Krc为波束值Kr的平均值;
所述第一次谱压缩后的信号Ii-sc1(xi,yi)的表达式为:
Ii-sc1(xi,yi)=Ii(xi,yi)exp(jf(xi,yi))。
在本发明的一个实施例中,所述S7包括:
对所述距离向傅里叶变换信号补偿一个一维函数g(xi;Ky′),进行第二次谱压缩,得到第二次谱压缩后的信号Ii-sc2(xi,K′y),其中,
所述一维函数g(xi;Ky′)的表达式为:
Figure BDA0002894919300000032
其中,K′y为距离向波束域;
所述第二次谱压缩后的信号Ii-sc2(xi,K′y)的表达式为:
Ii-sc2(xi,Ky′)=Ii-sc1(xi,Ky′)exp(jg(xi;Ky′)),
其中,Ii-sc1(xi,K′y)为距离向傅里叶变换信号。
在本发明的一个实施例中,所述S9包括:
对补零后的信号进行方位向逆傅里叶变换得到方位向逆傅里叶变换后的信号I′i-sc2(xi,K′y),再补偿一个函数g*(xi;Ky′),进行一次解谱压缩,得到一次解谱压缩后的信号Ii-ssc1(xi,K′y),其中,
所述函数g*(xi;Ky′)的表达式为:
g*(xi;Ky′)=conj(g(xi;Ky′))
其中,conj表示共轭函数;
所述一次解谱压缩后的信号Ii-ssc1(xi,K′y)的表达式为:
Ii-ssc1(xi,K′y)=I′i-sc2(xi,K′y)exp(jg*(xi;Ky′)),
其中,I′i-sc2(xi,K′y)表示方位向逆傅里叶变换后的信号。
在本发明的一个实施例中,所述S10包括:
对一次解谱压缩后的信号Ii-ssc1(xi,K′y)进行距离向逆傅里叶变换,得到距离向逆傅里叶变换后的信号I′i-sc2(xi,yi),再补偿一个函数f*(xi,yi),进行二次解谱压缩,得到二次解谱压缩后的信号Ii-ssc2(xi,yi),其中,
所述函数f*(xi,yi)的表达式为:
f*(xi;yi)=conj(f(xi;yi)),
所述二次解谱压缩后的信号Ii-ssc2(xi,yi)的表达式为:
Ii-ssc2(xi,yi)=I′i-sc2(xi,yi)exp(jf*(xi;yi)),
其中,I′i-sc2(xi,yi)表示距离向逆傅里叶变换后的信号。
本发明的有益效果:
1、本发明的机动轨迹大斜视波束指向SAR成像方法通过在地面建立直角坐标系,布置成像网格进行BP成像,解决了现有机动轨迹大斜视波束指向SAR模式下只在成像平面内成像导致的几何畸变严重的问题。
2、本发明的机动轨迹大斜视波束指向SAR成像方法,通过求解子孔径谱压缩函数,解决了现有机动轨迹大斜视波束指向SAR模式成像过程中波束指向的大范围变化导致频谱压缩不完全问题,实现了图像的几何矫正与成像过程的融合。
附图说明
图1是本发明实施例提供的一种基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法的流程图;
图2是本发明实施例提供的一种机动轨迹大斜视波束指向SAR成像运动几何模型示意图;
图3是图2中的运动几何模型在地面上的几何投影图;
图4是本发明实施例提供的一种仿真成像目标的分布几何示意图;
图5是本发明实施例提供的一种两维谱压缩前的部分子孔径二维频谱图;
图6是本发明实施例提供的一种使用传统算法进行谱压缩后的部分子孔径二维频谱图;
图7是本发明实施例提供的一种两维谱压缩后的部分子孔径二维频谱图;
图8是利用本发明实施例的机动轨迹大斜视波束指向SAR成像方法获得的仿真结果图;
图9是利用本发明实施例的机动轨迹大斜视波束指向SAR成像方法获得的仿真部分点目标的等高线图;
图10是利用本发明实施例的机动轨迹大斜视波束指向SAR成像方法的实测数据处理结果图。
具体实施方式
为了进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及具体实施方式,对依据本发明提出的一种基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法进行详细说明。
有关本发明的前述及其他技术内容、特点及功效,在以下配合附图的具体实施方式详细说明中即可清楚地呈现。通过具体实施方式的说明,可对本发明为达成预定目的所采取的技术手段及功效进行更加深入且具体地了解,然而所附附图仅是提供参考与说明之用,并非用来对本发明的技术方案加以限制。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。
请参见图1,图1是本发明实施例提供的一种基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法的流程图,本实施例的成像方法包括:
S1:接收来自机动轨迹大斜视波束指向SAR的回波信号,并对回波信号进行解调和距离向脉冲压缩,获得解调和距离向脉冲压缩后的回波信号。
具体地,解调和距离向脉冲压缩后的回波信号
Figure BDA0002894919300000061
表示为:
Figure BDA0002894919300000062
其中,
Figure BDA0002894919300000063
为距离时间,tm为方位时间,Wm(tm)为方位窗函数的位置域形式,λ为波长,B为信号带宽,c为光速,j表示虚数单位,R(tm)为点目标到主天线的斜距历程,sinc(·)为辛格函数,表示距离向聚焦后的信号包络。
S2:建立地面坐标系xoy,并在地面坐标系中布置包含成像目标点的成像网格(x,y);
在本实施例中,成像目标点的间隔小于分辨率。
S3:对解调和距离向脉冲压缩后的回波信号进行子孔径划分,并在子孔径范围内建立子孔径坐标系xioiyi和包含成像目标点的子孔径成像网格(xi,yi);
具体地,请参见图2和图3,图2是本发明实施例提供的一种机动轨迹大斜视波束指向SAR成像运动几何模型示意图;图3是图2中的运动几何模型在地面上的几何投影图,其中,xoy是地面坐标系,xioiyi是进行子孔径划分后的建立的子孔径坐标系。如图2所示,在本实施例的机动轨迹大斜视SAR成像几何模型中,带有雷达的运动平台从A点沿曲线轨迹飞行到B点,在地面的投影分别为Ag和Bg。雷达飞行速度为
Figure BDA0002894919300000064
在地面上的投影为
Figure BDA0002894919300000065
雷达波束中心沿图中Pb1-Pb2实现匀速变化,中心波束扫描的速度大小为
Figure BDA0002894919300000066
扫描的起点与终点分别为pb1点到pb2点。扫描中心时刻地面速度
Figure BDA0002894919300000067
与波束地面投影的夹角为方位角,记为βc,此时的波束中心点记为pbc。数据录取的过程假设走停模型成立,对于数据录取过程中的任意方位时刻tm,雷达的位置假设为C,其地面投影点为Cg,此时的波束方位角为β,中心波束轨迹点为pb,高度为H。
设雷达位置为C时,场景中有一个任意点目标P,点目标P与平台的瞬时斜距R(tm)表示为:
Figure BDA0002894919300000071
其中,(Xr(tm),Yr(tm),Zr(tm))和(Xp(tm),Yp(tm),Zp(tm))是tm时刻的雷达和目标坐标。
S4:利用BP(Back Projection,后向投影)算法对所述子孔径成像网格(xi,yi)中的点目标进行初步时域成像,获得子孔径成像结果Ii(xi,yi);
具体地,请参见图4,图4是本发明实施例提供的一种仿真成像目标的分布几何示意图,其中共100个点,均匀分布在4km×4km的子孔径成像网格中,
Figure BDA0002894919300000072
为中心波束扫描的速度,β为波束方位角。子孔径成像结果具体表示为:
Figure BDA0002894919300000073
S(Kr,tm;xp,yp)=exp(-jKrR(tm;xp,yp));
Figure BDA0002894919300000074
其中,(xp,yp)为点目标的坐标,(Xri(tm),Yri(tm),Zri(tm))为雷达位置坐标,R(tm;xp,yp)是子孔径内点目标到雷达的瞬时斜距,R(tm;xi,yi)是在子孔径内布置的网格点到雷达的瞬时距离,tis和tie分别是子孔径开始和结束时间,Kr为波束值,Br为子孔径带宽,c为光速,fc为信号载频。
S5:对子孔径成像结果Ii(xi,yi)补偿一个两维相位f(xi,yi),进行第一次谱压缩,得到第一次谱压缩后的信号Ii-sc1(xi,yi),把所有点目标的波束谱中心校正到原点;
具体地,两维相位f(xi,yi)的表达式为:
Figure BDA0002894919300000075
其中,(Xri(ti),Yri(ti),Zri(ti))是雷达在ti时刻的位置,ti为子孔径中心时间,Krc为波束值Kr的平均值;
第一次谱压缩后的信号Ii-sc1(xi,yi)的表达式为:
Ii-sc1(xi,yi)=Ii(xi,yi)exp(jf(xi,yi))。
S6:对第一次谱压缩后的信号Ii-sc1(xi,yi)进行距离向傅里叶变换,得到距离向傅里叶变换信号Ii-sc1(xi,K′y),其中,K′y为距离向波束域;
S7:对所述距离向傅里叶变换信号补偿一个一维函数g(xi;Ky′),进行第二次谱压缩,得到第二次谱压缩后的信号Ii-sc2(xi,K′y),校正空变的频谱倾斜;
在本实施例中,该一维函数g(xi;Ky′)的表达式为:
Figure BDA0002894919300000081
其中,K′y为距离向波束域。
进一步地,第二次谱压缩后的信号Ii-sc2(xi,K′y)的表达式为:
Ii-sc2(xi,Ky′)=Ii-sc1(xi,Ky′)exp(jg(xi;Ky′))。
S8:对第二次谱压缩后信号进行方位向傅里叶变换,并进行补零操作,得到补零后的信号Ii-sc2(K′x,K′y),以提高分辨率,其中,K′x为方位向波束域;
S9:对补零后的信号进行方位向逆傅里叶变换得到方位向逆傅里叶变换后的信号I′i-sc2(xi,K′y),再补偿一个函数g*(xi;Ky′),进行一次解谱压缩,得到一次解谱压缩后的信号Ii-ssc1(xi,K′y);
在本实施例中,函数g*(xi;Ky′)的表达式为:
g*(xi;Ky′)=conj(g(xi;Ky′))
其中,conj表示共轭函数。
进一步地,一次解谱压缩后的信号Ii-ssc1(xi,K′y)的表达式为:
Ii-ssc1(xi,K′y)=I′i-sc2(xi,K′y)exp(jg*(xi;Ky′)),
其中,I′i-sc2(xi,K′y)表示方位向逆傅里叶变换后的信号。
S10:对一次解谱压缩后的信号Ii-ssc1(xi,K′y)进行距离向逆傅里叶变换,得到距离向逆傅里叶变换后的信号I′i-sc2(xi,yi),再补偿一个函数f*(xi,yi),进行二次解谱压缩,得到二次解谱压缩后的信号Ii-ssc2(xi,yi)。
在本实施例中,函数f*(xi,yi)的表达式为:
f*(xi;yi)=conj(f(xi;yi)),
进一步地,二次解谱压缩后的信号Ii-ssc2(xi,yi)的表达式为:
Ii-ssc2(xi,yi)=I′i-sc2(xi,yi)exp(jf*(xi;yi)),
其中,I′i-sc2(xi,yi)表示距离向逆傅里叶变换后的信号。
S11:将二次解谱压缩后的子孔径信号Ii-ssc2(xi,yi)融合成全孔径图像I(x,y),得到最终的全孔径成像结果。
I(x,y)=∑Ii-ssc2(xi,yi)
接着,通过以下仿真实验与实测数据处理实验对本发明实施例成像方法的有效性作进一步说明。
一、仿真实验
1、仿真条件
本实验仿真参数如表1所示。
表1.机动轨迹大斜视波束指向SAR模式的仿真参数
载频f<sub>c</sub> 10GHz 脉冲重复频率 800Hz
带宽 100MHz 脉冲宽度 10μs
平台速度 (150,0,-55) 合成孔径时间 8s
平台加速度 (10,5,-10) 方位向扫描长度 5km
高度 5km 中心斜距 12km
子孔径脉冲数 16 方位向波束宽度 30°
2、仿真内容和结果分析
采用图3的仿真几何模型与表1中的机动轨迹大斜视波束指向SAR模式仿真参数。采用图4设置的成像网格图。图5是本发明实施例提供的一种两维谱压缩前的部分子孔径二维频谱图,为了证明本发明实施例方法的有效性,选取比较边缘化第一个和最后一个子孔径以及中心的中间孔径,其中,图5(a)为第一个子孔径二维频谱,图5(b)为中间子孔径二维频谱图,图5(c)为最后一个子孔径二维频谱,横坐标Azimuth表示方位向采样点,纵坐标range表示距离向采样点。图6是采用传统算法的两维谱压缩后的部分子孔径二维频谱压缩图,其中图6(a)是采用传统算法两维谱压缩之后第一个子孔径二维频谱,图6(b)是采用传统算法两维谱压缩之后中间子孔径二维频谱,图6(c)是采用传统算法两维谱压缩之后最后一个子孔径二维频谱。这里所述的传统算法是传统的在成像平面建立坐标系的后向投影算法。图7是本发明实施例提供的一种两维谱压缩后的部分子孔径二维频谱图,其中,图7(a)为采用本发明实施例谱压缩之后第一个子孔径二维频谱,图7(b)为采用本发明实施例谱压缩之后中间子孔径二维频谱,图7(c)为采用本发明实施例谱压缩之后最后一个子孔径二维频谱。通过对比图5、图6和图7可以看出,使用本发明实施例方法前所需要的方位向采样点是使用本发明实施例方法后所需要的方位采样点的几十甚至上百倍,大大提升了计算效率;通过对比图6和图7可以看出,与传统算法相比,使用本发明实施例方法后,谱压缩不完全的问题得到了解决,谱压缩质量得到了明显的提升。
请参见图8和图9,图8是利用本发明实施例的机动轨迹大斜视波束指向SAR成像方法获得的仿真结果图;图9是利用本发明实施例的机动轨迹大斜视波束指向SAR成像方法获得的仿真部分点目标的等高线图,其中,图9(a)从左到右依次为图4的成像网格图中p1、p2、p3的等高线图,图9(b)从左到右依次为图4成像网格图中p4、p5、p6的等高线图,图9(c)从左到右依次为图4成像网格图中p7、p8、p9的等高线图。从图8可以看出,点目标聚焦良好,没有散焦现象,图9中等高线图较清晰,说明本发明实施例的方法成像质量较高。
二.实测数据处理结果分析
实测数据为机载SAR数据,实测数据的主要参数如表2所示。
表2.机动轨迹大斜视波束指向SAR的实测数据参数
载频f<sub>c</sub> 15GHz 脉冲重复频率 800Hz
波束扫描角度 15° 方位角 30°
平台速度 60m/s 合成孔径时间 2s
距离场景宽度 1.5km 方位向扫描长度 1.5km
高度 4km 中心斜距 10km
距离分辨率 3m 方位分辨率 3m
请参见图10,图10是利用本发明实施例的机动轨迹大斜视波束指向SAR成像方法的实测数据处理结果图,图中场景清晰可见,以中部圆圈内参考点为例,说明使用本发明实施例的方法后图像聚焦良好。
综上,从仿真数据与实测数据两方面均验证了本发明实施例的方法的有效性。
本实施例的机动轨迹大斜视波束指向SAR成像方法通过在地面建立直角坐标系,布置成像网格进行BP成像,解决了现有机动轨迹大斜视波束指向SAR模式下只在成像平面内成像导致的几何畸变严重的问题。此外,本实施例的机动轨迹大斜视波束指向SAR成像方法,通过求解子孔径谱压缩函数,解决了现有机动轨迹大斜视波束指向SAR模式成像过程中波束指向的大范围变化导致频谱压缩不完全问题,实现了图像的几何矫正与成像过程的融合。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (7)

1.一种基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法,其特征在于,包括:
S1:接收来自机动轨迹大斜视波束指向SAR的回波信号,并对所述回波信号进行解调和距离向脉冲压缩,获得距离向脉冲压缩后的回波信号;
S2:建立地面坐标系,并在地面坐标系中布置包含成像目标点的成像网格;
S3:对所述距离向脉冲压缩后的回波信号进行子孔径划分,并在子孔径范围内建立子孔径坐标系和子孔径成像网格;
S4:利用后向投影算法对所述子孔径成像网格中的点目标进行初步时域成像,获得子孔径成像结果;
S5:对所述子孔径成像结果进行第一次谱压缩,得到第一次谱压缩后的信号;
S6:对第一次谱压缩后的信号进行距离向傅里叶变换,得到距离向傅里叶变换信号;
S7:对所述距离向傅里叶变换信号进行第二次谱压缩,得到第二次谱压缩后的信号;
S8:对第二次谱压缩后的信号进行方位向傅里叶变换并进行补零操作,得到补零后的信号;
S9:对补零后的信号进行方位向逆傅里叶变换得到方位向逆傅里叶变换后的信号,再进行一次解谱压缩,得到一次解谱压缩后的信号;
S10:对一次解谱压缩后的信号进行距离向逆傅里叶变换,得到距离向逆傅里叶变换后的信号,再进行二次解谱压缩,得到二次解谱压缩后的信号;
S11:将二次解谱压缩后的信号融合到全孔径图像中,得到最终的成像结果。
2.根据权利要求1所述的基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法,其特征在于,在所述S1中,所述距离向脉冲压缩后的回波信号
Figure FDA0002894919290000011
表示为:
Figure FDA0002894919290000012
其中,
Figure FDA0002894919290000013
为距离时间,tm为方位时间,Wm(tm)为方位窗函数的位置域形式,λ为波长,B为信号带宽,c为光速,j为虚数单位,R(tm)为点目标到主天线的斜距历程,sinc(·)为辛格函数,表示距离向聚焦后的信号包络。
3.根据权利要求2所述的基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法,其特征在于,在所述S4中,所述子孔径成像结果的表达式为:
Figure FDA0002894919290000021
S(Kr,tm;xp,yp)=exp(-jKrR(tm;xp,yp));
Figure FDA0002894919290000022
其中,(xp,yp)为点目标的坐标,(Xri(tm),Yri(tm),Zri(tm))为雷达位置坐标,R(tm;xp,yp)为子孔径内点目标到雷达的瞬时斜距,R(tm;xi,yi)为在子孔径内布置的网格点到雷达的瞬时距离,tis和tie分别为子孔径开始和结束时间,Kr为波束值,Br为子孔径带宽,c为光速,fc为信号载频。
4.根据权利要求3所述的基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法,其特征在于,所述S5包括:
对所述子孔径成像结果Ii(xi,yi)补偿一个两维相位f(xi,yi),进行第一次谱压缩,得到第一次谱压缩后的信号Ii-sc1(xi,yi),其中,
所述两维相位f(xi,yi)的表达式为:
Figure FDA0002894919290000023
其中,(Xri(ti),Yri(ti),Zri(ti))是雷达在ti时刻的位置,ti为子孔径中心时间,Krc为波束值Kr的平均值;
所述第一次谱压缩后的信号Ii-sc1(xi,yi)的表达式为:
Ii-sc1(xi,yi)=Ii(xi,yi)exp(jf(xi,yi))。
5.根据权利要求4所述的基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法,其特征在于,所述S7包括:
对所述距离向傅里叶变换信号补偿一个一维函数g(xi;Ky′),进行第二次谱压缩,得到第二次谱压缩后的信号Ii-sc2(xi,K′y),其中,
所述一维函数g(xi;Ky′)的表达式为:
Figure FDA0002894919290000031
其中,K′y为距离向波束域;
所述第二次谱压缩后的信号Ii-sc2(xi,K′y)的表达式为:
Ii-sc2(xi,Ky′)=Ii-sc1(xi,Ky′)exp(jg(xi;Ky′)),
其中,Ii-sc1(xi,K′y)为距离向傅里叶变换信号。
6.根据权利要求5所述的基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法,其特征在于,所述S9包括:
对补零后的信号进行方位向逆傅里叶变换得到方位向逆傅里叶变换后的信号I′i-sc2(xi,K′y),再补偿一个函数g*(xi;Ky′),进行一次解谱压缩,得到一次解谱压缩后的信号Ii-ssc1(xi,K′y),其中,
所述函数g*(xi;Ky′)的表达式为:
g*(xi;Ky′)=conj(g(xi;Ky′))
其中,conj表示共轭函数;
所述一次解谱压缩后的信号Ii-ssc1(xi,K′y)的表达式为:
Ii-ssc1(xi,K′y)=I′i-sc2(xi,K′y)exp(jg*(xi;Ky′)),
其中,I′i-sc2(xi,K′y)表示方位向逆傅里叶变换后的信号。
7.根据权利要求6所述的基于快速后向投影的机动轨迹大斜视波束指向SAR成像方法,其特征在于,所述S10包括:
对一次解谱压缩后的信号Ii-ssc1(xi,K′y)进行距离向逆傅里叶变换,得到距离向逆傅里叶变换后的信号I′i-sc2(xi,yi),再补偿一个函数f*(xi,yi),进行二次解谱压缩,得到二次解谱压缩后的信号Ii-ssc2(xi,yi),其中,
所述函数f*(xi,yi)的表达式为:
f*(xi;yi)=conj(f(xi;yi)),
所述二次解谱压缩后的信号Ii-ssc2(xi,yi)的表达式为:
Ii-ssc2(xi,yi)=I′i-sc2(xi,yi)exp(jf*(xi;yi)),
其中,I′i-sc2(xi,yi)表示距离向逆傅里叶变换后的信号。
CN202110039015.9A 2021-01-12 2021-01-12 基于快速后向投影的机动轨迹大斜视波束指向sar成像方法 Pending CN112882029A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110039015.9A CN112882029A (zh) 2021-01-12 2021-01-12 基于快速后向投影的机动轨迹大斜视波束指向sar成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110039015.9A CN112882029A (zh) 2021-01-12 2021-01-12 基于快速后向投影的机动轨迹大斜视波束指向sar成像方法

Publications (1)

Publication Number Publication Date
CN112882029A true CN112882029A (zh) 2021-06-01

Family

ID=76044787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110039015.9A Pending CN112882029A (zh) 2021-01-12 2021-01-12 基于快速后向投影的机动轨迹大斜视波束指向sar成像方法

Country Status (1)

Country Link
CN (1) CN112882029A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015920A (zh) * 2022-02-28 2022-09-06 西安电子科技大学 一种基于距离空变频谱矫正的快速后向投影成像方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266293A (zh) * 2008-04-30 2008-09-17 西安电子科技大学 激光合成孔径雷达成像距离向相位补偿方法
CN102393518A (zh) * 2011-10-27 2012-03-28 上海大学 一种适用于大斜视角的机载sar成像方法
CN104833974A (zh) * 2015-05-08 2015-08-12 西安电子科技大学 基于图像谱压缩的sar成像快速后向投影方法
CN108061890A (zh) * 2016-11-08 2018-05-22 北京机电工程研究所 一种sar成像方法
CN109188432A (zh) * 2018-08-08 2019-01-11 中国航空工业集团公司雷华电子技术研究所 一种平行双基聚束sar快速bp成像方法
GB2564648A (en) * 2017-07-17 2019-01-23 Jaguar Land Rover Ltd A Radar system for use in a vehicle
CN109870686A (zh) * 2019-01-03 2019-06-11 西安电子科技大学 一种基于改进斜距模型的曲线轨迹sar斜视成像方法
CN110673143A (zh) * 2019-09-30 2020-01-10 西安电子科技大学 一种子孔径大斜视sar俯冲成像的两步处理方法
CN111965643A (zh) * 2020-07-10 2020-11-20 西安电子科技大学 一种斜视sar bp图像中运动舰船目标重聚焦方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266293A (zh) * 2008-04-30 2008-09-17 西安电子科技大学 激光合成孔径雷达成像距离向相位补偿方法
CN102393518A (zh) * 2011-10-27 2012-03-28 上海大学 一种适用于大斜视角的机载sar成像方法
CN104833974A (zh) * 2015-05-08 2015-08-12 西安电子科技大学 基于图像谱压缩的sar成像快速后向投影方法
CN108061890A (zh) * 2016-11-08 2018-05-22 北京机电工程研究所 一种sar成像方法
GB2564648A (en) * 2017-07-17 2019-01-23 Jaguar Land Rover Ltd A Radar system for use in a vehicle
CN109188432A (zh) * 2018-08-08 2019-01-11 中国航空工业集团公司雷华电子技术研究所 一种平行双基聚束sar快速bp成像方法
CN109870686A (zh) * 2019-01-03 2019-06-11 西安电子科技大学 一种基于改进斜距模型的曲线轨迹sar斜视成像方法
CN110673143A (zh) * 2019-09-30 2020-01-10 西安电子科技大学 一种子孔径大斜视sar俯冲成像的两步处理方法
CN111965643A (zh) * 2020-07-10 2020-11-20 西安电子科技大学 一种斜视sar bp图像中运动舰船目标重聚焦方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XIAOXIANG CHEN ET AL.: "Ground Cartesian Back-Projection Algorithm for High Squint Diving TOPS SAR Imaging", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 *
YIN LUO: "A modified cartesian factorized back-projection algorithm for highly squint spotlight synthetic aperture radar imaging", 《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》 *
杨军等: "一种新的大斜视TOPS SAR全孔径成像方法", 《西安电子科技大学学报》 *
王沛等: "星载大斜视聚束SAR变PRI成像技术研究", 《电子与信息学报》 *
董祺等: "直角坐标多级后投影聚束SAR成像算法", 《电子与信息学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015920A (zh) * 2022-02-28 2022-09-06 西安电子科技大学 一种基于距离空变频谱矫正的快速后向投影成像方法

Similar Documents

Publication Publication Date Title
CN104007440B (zh) 一种加速分解后向投影聚束合成孔径雷达成像方法
CN110018474B (zh) 基于地球同步轨道合成孔径雷达层析技术的三维成像方法
CN109932718B (zh) 多旋翼无人机载的圆周轨迹环视sar全孔径成像方法
CN102393518A (zh) 一种适用于大斜视角的机载sar成像方法
CN102879784A (zh) 四种模式的合成孔径雷达统一成像方法
CN115685200A (zh) 一种高精度大前斜视sar成像运动补偿与几何校正方法
CN111208514B (zh) 一种曲线运动轨迹SAR的切比雪夫斜距模型和Chirp Scaling成像方法
CN112882029A (zh) 基于快速后向投影的机动轨迹大斜视波束指向sar成像方法
CN105044720A (zh) 一种基于直角坐标系的后向投影成像方法
CN112179314B (zh) 一种基于三维网格投影的多角度sar高程测量方法及***
CN111880179A (zh) 一种弹载弧线俯冲大斜视tops sar的成像方法
CN116359921A (zh) 基于加速轨迹双基前视合成孔径雷达的快速时域成像方法
CN108469612B (zh) 基于等效斜距的双基时变加速度前视sar成像方法
CN114280613B (zh) 基于dem数据生成仿真机载火控雷达对地测绘图像方法
CN104569970B (zh) 一种用于机载雷达前视单脉冲成像的自聚焦方法
CN113671497B (zh) 基于圆柱对称模型的单通道sar目标三维坐标提取方法
CN115015920A (zh) 一种基于距离空变频谱矫正的快速后向投影成像方法
CN113030968B (zh) 基于csar模式提取dem的方法、装置及存储介质
CN115390070A (zh) 一种机动平台单通道短孔径sar的海面目标聚焦定位方法
CN111323777B (zh) 顾及波数域Delaunay子块的压缩感知下视阵列SAR误差补偿算法
CN114859349A (zh) 基于空间极坐标斜距模型的极坐标成像方法
CN110736988B (zh) 双基地pfa运动目标参数估计和成像方法
CN104076361A (zh) 无人机载战场监视雷达超分辨广域成像方法
Zhou et al. Wavenumber domain imaging algorithm for hypersonic platform SAR with curved trajectory
CN118112567B (zh) 一种多通道sar运动误差关联成像处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210601

RJ01 Rejection of invention patent application after publication