CN112864526A - 一种室温钠硫电池隔膜的制备方法 - Google Patents

一种室温钠硫电池隔膜的制备方法 Download PDF

Info

Publication number
CN112864526A
CN112864526A CN202110339375.0A CN202110339375A CN112864526A CN 112864526 A CN112864526 A CN 112864526A CN 202110339375 A CN202110339375 A CN 202110339375A CN 112864526 A CN112864526 A CN 112864526A
Authority
CN
China
Prior art keywords
nitrogen
hollow carbon
doped hollow
diaphragm
molybdenum diselenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110339375.0A
Other languages
English (en)
Inventor
文子
董春伟
金波
蒋青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202110339375.0A priority Critical patent/CN112864526A/zh
Publication of CN112864526A publication Critical patent/CN112864526A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种室温钠硫电池隔膜的制备方法,涉及室温钠硫电池技术领域。制备方法如下:将一定量的硒粉、钼酸钠分别加入水合肼和去离子水中形成溶液,转入高压反应釜进行水热反应。前驱体经离心、洗涤、干燥以及退火后得到二硒化钼/氮掺杂空心碳球复合材料。再将制备的二硒化钼/氮掺杂空心碳球和氧化石墨烯按照一定的比例加入到盛有500毫升乙醇的烧杯中,用砂芯过滤装置进行过滤。二硒化钼为多硫化钠吸附材料,片层结构的氧化石墨烯可以有效阻挡二硒化钼/氮掺杂空心碳球复合材料穿过玻璃纤维隔膜。该改性方法生产工艺简单、成本低、所制得的功能化隔膜表现出优良的电化学性能。

Description

一种室温钠硫电池隔膜的制备方法
技术领域
本发明涉及一种纳米复合材料的制备方法,特别是涉及一种室温钠硫电池隔膜的制备方法,属于先进纳米复合材料制备工艺技术领域。
背景技术
自从大约30年前锂离子电池首次商业化以来,可充电锂离子电池已成为消费者、健康以及军事领域中便携式设备的通用电源。现在,开始进入运输领域的市场,并且用于负载均衡和电能的大规模存储来自替代能源,例如风能和太阳能。基于Li+/Li氧化还原对的电池具有极具吸引力高压和较高容量,锂是正电性最强的金属(相对于标准氢为-3.04V电极),并具有非常低的原子质量。在过去的30年中,锂离子电池容量逐渐提高,但主要组件(包括阴极和阳极材料)并未发生重大改变。
目前,商用锂离子电池具有理论容量低的特点,越来越不能满足日益增长的需求,特别是在电动汽车和固定电力存储设备领域中的应用。因此,开发具有高能量密度、高比容量的新一代电池成为研究热点。室温钠硫电池不仅具有较低的工作温度,而且还具有更高的理论重量容量(1675毫安时每克)和能量密度(1274瓦时每千克),基于硫被完全还原为硫化钠,其理论容量是高温钠硫电池的三倍。尽管具有这些优点,室温钠硫电池的发展仍受到穿梭效应、枝晶生长和低电导率等难题的限制。因此,发展新型功能化隔膜来改善室温钠硫电池电化学性能并促进其实际应用迫在眉睫。
二硒化钼不仅和可溶性多硫化物存在强烈的相互作用,而且促进中间多硫化物的氧化还原反应动力学,从而提高了硫的利用率。玻璃纤维隔膜常用于室温钠硫电池。在充放电过程中,室温钠硫电池中易溶解的高阶多硫化物中间体会扩散到隔膜区域,然后优先以非活性硫基相关物质的形式沉淀在硫正极表面。另外,聚丙烯隔膜和玻璃纤维隔膜的微米级孔隙绝对不能防止多硫化物的穿梭。如在现有技术““Performance Enhancement andMechanistic Studies of Room-Temperature Sodium-Sulfur Batteries with aCarbon-Coated Functional Nafion Separator and a Na2S/Activated CarbonNanofiber Cathode”,Xingwen Yu et al.,Chem.Mater.28(2016),896-905”中提到“利用非多孔钠化Nafion膜作为钠离子交换分离器,其离子电导率在室温下高达2.7×10-5西门子每厘米”,然而其容量大小和循环寿命还有待于进一步提高。还有一部分研究人员利用碳材料来修饰玻璃纤维隔膜或者在正极和玻璃纤维隔膜之间加入插层来限制多硫化物溶解到电解液中形成的穿梭效应。这在一定程度上可以抑制多硫化物的穿梭效应。但是,随着反应的不断进行,产生的多硫化物逐渐增多,碳材料的吸附能力会达到极限。由于非极性的碳材料只能通过较弱的范德华力来吸附多硫化物,所以,在长循环过程中,可溶性中间多硫化物仍会溶解到电解液。为了提高室温钠硫电池的电化学性能,抑制可溶性中间多硫化物的穿梭是需要解决的技术难题,本发明针对这一问题,提出以二硒化钼/氮掺杂空心碳球/氧化石墨烯复合材料功能化的玻璃纤维作为室温钠硫电池的隔膜,以此提高室温钠硫电池的循环稳定性并且提高其放电比容量。
发明内容
本发明目的是提供一种室温钠硫电池隔膜的制备方法,制备方法简单、成本低廉、制备的二硒化钼/氮掺杂空心碳球复合材料具有较强的多硫化物吸附能力,以二硒化钼/氮掺杂空心碳球/氧化石墨烯复合材料功能化玻璃纤维为隔膜的室温钠硫电池,其放电比容量在500次循环后可达到484毫安时每克,容量衰减率仅为0.077%/每圈,超过了文献中报道的大多数室温钠硫电池的实验结果。
本发明的技术方案是:
通过水热法获得的二硒化钼/氮掺杂空心碳球复合材料作为可溶性中间多硫化物的吸附材料,以此提高室温钠硫电池的充放电循环性能。
该制备方法选用钼酸钠、硒粉、水合肼和去离子水作为出发物质,然后采用水热法后,经离心分离、洗涤、真空干燥和热处理得到二硒化钼/氮掺杂空心碳球复合材料。再将得到的复合材料和氧化石墨烯按照一定的比例加入无水乙醇中,最后,进行抽滤。具体制备步骤如下:
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.010-0.055克钼酸钠、0.010-0.040克硒粉分别溶于20-60毫升的去离子水和5-12毫升的水合肼中形成溶液,磁力搅拌60-150分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在150-300摄氏度下加热1-5小时;自然冷却到室温,然后在500-900摄氏度惰性气体气氛中焙烧2-6小时,得到二硒化钼/氮掺杂空心碳球;
S2、4.0-12.0毫克二硒化钼/氮掺杂空心碳球和0.5-1.2毫克氧化石墨烯分别加入到100-600毫升无水乙醇中,超声1-6小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在50-70摄氏度下进行真空烘干,5-15小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
步骤S2中所述的二硒化钼/氮掺杂空心碳球用二硒化钼和氮掺杂空心碳球中的一种替代,其原料物质的量不变。
本发明所述的技术方案具有以下技术效果:
1、本发明首先通过水热法合成二硒化钼/氮掺杂空心碳球复合材料,然后将其与氧化石墨烯混合用于功能化玻璃纤维隔膜。二硒化钼/氮掺杂空心碳球/氧化石墨烯复合材料功能化隔膜表现出良好的电化学性能;对充放电过程中产生的多硫化物有较强的抑制作用。
2、本发明用二硒化钼/氮掺杂空心碳球/氧化石墨烯复合材料功能化的玻璃纤维作为室温钠硫电池的隔膜,其中氮掺杂空心碳球可以通过范德华力物理限制多硫化物溶解到电解液,同时提高电导率,从而在一定程度上抑制穿梭效应,进而改善硫/二硒化钼/氮掺杂空心碳球复合材料的循环性能。
3、本发明用二硒化钼/氮掺杂空心碳球/氧化石墨烯复合材料功能化的玻璃纤维作为室温钠硫电池的隔膜,二硒化钼是极性材料,对可溶性中间多硫化物有较强的吸附能力,这一特点可由实验以及理论计算来证明。并且这种改性隔膜有利于钠离子的扩散,因此其具有较好的循环性能。
4、本发明应用到的抽滤装置以及水热法使得合成路线简单易行,最终降低了生产成本和工艺复杂程度。
附图说明
图1为本发明制备的二硒化钼/氮掺杂空心碳球的场发射扫描电镜图(1)、透射电镜图(2,3)、高分辨透射电镜图(4,5和6)。
图2为本发明制备的氮掺杂空心碳球、二硒化钼、二硒化钼/氮掺杂空心碳球和硫/二硒化钼/氮掺杂空心碳球的X射线衍射图,由图可见二硒化钼/氮掺杂空心碳球和硫/二硒化钼/氮掺杂空心碳球中明显的二硒化钼存在,即二硒化钼的成功制备。
图3为本发明制备的以二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维为隔膜的室温钠硫电池的循环曲线图,100次循环后放电比容量仍保持在787毫安时每克。
图4为本发明制备的以二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维为隔膜的室温钠硫电池的倍率曲线图,图中可以看出其具有优秀的倍率性能。
具体实施方式
实施例1
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.010克钼酸钠、0.010克硒粉分别溶于20毫升的去离子水和5毫升的水合肼中形成溶液,磁力搅拌60分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在150摄氏度下加热1小时;自然冷却到室温,然后在500摄氏度惰性气体气氛中焙烧2小时,得到二硒化钼/氮掺杂空心碳球;
S2、4.0毫克二硒化钼/氮掺杂空心碳球和0.5毫克氧化石墨烯分别加入到100毫升无水乙醇中,超声1小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在50摄氏度下进行真空烘干,5小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
实施例2
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.020克钼酸钠、0.015克硒粉分别溶于30毫升的去离子水和6毫升的水合肼中形成溶液,磁力搅拌80分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在160摄氏度下加热2小时;自然冷却到室温,然后在600摄氏度惰性气体气氛中焙烧3小时,得到二硒化钼/氮掺杂空心碳球;
S2、6.0毫克二硒化钼/氮掺杂空心碳球和0.6毫克氧化石墨烯分别加入到200毫升无水乙醇中,超声2小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在55摄氏度下进行真空烘干,6小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
实施例3
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.03克钼酸钠、0.025克硒粉分别溶于40毫升的去离子水和8毫升的水合肼中形成溶液,磁力搅拌100分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在180摄氏度下加热3小时;自然冷却到室温,然后在700摄氏度惰性气体气氛中焙烧4小时,得到二硒化钼/氮掺杂空心碳球;
S2、8.0毫克二硒化钼/氮掺杂空心碳球和0.7毫克氧化石墨烯分别加入到300毫升无水乙醇中,超声3小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在58摄氏度下进行真空烘干,10小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
实施例4
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.048克钼酸钠、0.031克硒粉分别溶于50毫升的去离子水和10毫升的水合肼中形成溶液,磁力搅拌120分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在200摄氏度下加热4小时;自然冷却到室温,然后在800摄氏度惰性气体气氛中焙烧5小时,得到二硒化钼/氮掺杂空心碳球;
S2、10.0毫克二硒化钼/氮掺杂空心碳球和1.0毫克氧化石墨烯分别加入到500毫升无水乙醇中,超声4小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在60摄氏度下进行真空烘干,12小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
后面附图中所测试的性能是本实施例1测出来的。
实施例5
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.055克钼酸钠、0.040克硒粉分别溶于60毫升的去离子水和12毫升的水合肼中形成溶液,磁力搅拌150分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在300摄氏度下加热5小时;自然冷却到室温,然后在900摄氏度惰性气体气氛中焙烧6小时,得到二硒化钼/氮掺杂空心碳球;
S2、12.0毫克二硒化钼/氮掺杂空心碳球和1.2毫克氧化石墨烯分别加入到600毫升无水乙醇中,超声5小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在70摄氏度下进行真空烘干,15小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
本发明的实施方式不仅仅限于上述实施例,其中:步骤S2中所述的二硒化钼/氮掺杂空心碳球用二硒化钼和氮掺杂空心碳球中的一种替代,其原料物质的量不变。

Claims (7)

1.一种一种室温钠硫电池隔膜的制备方法,其特征在于:
二硒化钼/氮掺杂空心碳球/氧化石墨烯复合材料改性的玻璃纤维隔膜以二硒化钼/氮掺杂空心碳球作为多硫化钠吸附材料、氧化石墨烯在过滤时主要用于阻挡二硒化钼/氮掺杂空心碳球穿过玻璃纤维隔膜,以此增强功能化隔膜的充放电循环性能;该制备方法选用硒粉、钼酸钠、氮掺杂空心碳球、氧化石墨烯作为出发物质,然后采用水热法和抽滤法,经离心分离、洗涤、真空干燥和热处理得到二硒化钼/氮掺杂空心碳球/氧化石墨烯复合材料功能化的玻璃纤维隔膜,具体制备步骤如下:
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.010-0.055克钼酸钠、0.010-0.040克硒粉分别溶于20-60毫升的去离子水和5-12毫升的水合肼中形成溶液,磁力搅拌60-150分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在150-300摄氏度下加热1-5小时;自然冷却到室温,然后在500-900摄氏度惰性气体气氛中焙烧2-6小时,得到二硒化钼/氮掺杂空心碳球;
S2、4.0-12.0毫克二硒化钼/氮掺杂空心碳球和0.5-1.2毫克氧化石墨烯分别加入到100-600毫升无水乙醇中,超声1-6小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在50-70摄氏度下进行真空烘干,5-15小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
2.根据权利要求1所述的一种室温钠硫电池隔膜的制备方法,其特征在于:
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.010克钼酸钠、0.010克硒粉分别溶于20毫升的去离子水和5毫升的水合肼中形成溶液,磁力搅拌60分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在150摄氏度下加热1小时;自然冷却到室温,然后在500摄氏度惰性气体气氛中焙烧2小时,得到二硒化钼/氮掺杂空心碳球;
S2、4.0毫克二硒化钼/氮掺杂空心碳球和0.5毫克氧化石墨烯分别加入到100毫升无水乙醇中,超声1小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在50摄氏度下进行真空烘干,5小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
3.根据权利要求1所述的一种室温钠硫电池隔膜的制备方法,其特征在于:
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.020克钼酸钠、0.015克硒粉分别溶于30毫升的去离子水和6毫升的水合肼中形成溶液,磁力搅拌80分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在160摄氏度下加热2小时;自然冷却到室温,然后在600摄氏度惰性气体气氛中焙烧3小时,得到二硒化钼/氮掺杂空心碳球;
S2、6.0毫克二硒化钼/氮掺杂空心碳球和0.6毫克氧化石墨烯分别加入到200毫升无水乙醇中,超声2小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在55摄氏度下进行真空烘干,6小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
4.根据权利要求1所述的一种室温钠硫电池隔膜的制备方法,其特征在于:
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.03克钼酸钠、0.025克硒粉分别溶于40毫升的去离子水和8毫升的水合肼中形成溶液,磁力搅拌100分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在180摄氏度下加热3小时;自然冷却到室温,然后在700摄氏度惰性气体气氛中焙烧4小时,得到二硒化钼/氮掺杂空心碳球;
S2、8.0毫克二硒化钼/氮掺杂空心碳球和0.7毫克氧化石墨烯分别加入到300毫升无水乙醇中,超声3小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在58摄氏度下进行真空烘干,10小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
5.根据权利要求1所述的一种室温钠硫电池隔膜的制备方法,其特征在于:
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.048克钼酸钠、0.031克硒粉分别溶于50毫升的去离子水和10毫升的水合肼中形成溶液,磁力搅拌120分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在200摄氏度下加热4小时;自然冷却到室温,然后在800摄氏度惰性气体气氛中焙烧5小时,得到二硒化钼/氮掺杂空心碳球;
S2、10.0毫克二硒化钼/氮掺杂空心碳球和1.0毫克氧化石墨烯分别加入到500毫升无水乙醇中,超声4小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在60摄氏度下进行真空烘干,12小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
6.根据权利要求1所述的一种室温钠硫电池隔膜的制备方法,其特征在于:
S1、采用过滤法制备二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜:将0.055克钼酸钠、0.040克硒粉分别溶于60毫升的去离子水和12毫升的水合肼中形成溶液,磁力搅拌150分钟;然后将以上两种溶液和氮掺杂空心碳球转移到100毫升的不锈钢高压反应釜中,并将反应釜密封在300摄氏度下加热5小时;自然冷却到室温,然后在900摄氏度惰性气体气氛中焙烧6小时,得到二硒化钼/氮掺杂空心碳球;
S2、12.0毫克二硒化钼/氮掺杂空心碳球和1.2毫克氧化石墨烯分别加入到600毫升无水乙醇中,超声5小时,形成均匀溶液;
S3、将上述溶液进行等体积分配,安装抽滤装置,进行抽滤,制备功能化隔膜;
S4、抽滤结束后,取下隔膜,将滤液倒入指定容器,在70摄氏度下进行真空烘干,15小时后,获得二硒化钼/氮掺杂空心碳球/氧化石墨烯功能化的玻璃纤维隔膜。
7.根据权利要求1至6任一项所述的一种室温钠硫电池隔膜的制备方法,其特征在于:
步骤S2中所述的二硒化钼/氮掺杂空心碳球用二硒化钼和氮掺杂空心碳球中的一种替代,其原料物质的量不变。
CN202110339375.0A 2021-03-30 2021-03-30 一种室温钠硫电池隔膜的制备方法 Pending CN112864526A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110339375.0A CN112864526A (zh) 2021-03-30 2021-03-30 一种室温钠硫电池隔膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110339375.0A CN112864526A (zh) 2021-03-30 2021-03-30 一种室温钠硫电池隔膜的制备方法

Publications (1)

Publication Number Publication Date
CN112864526A true CN112864526A (zh) 2021-05-28

Family

ID=75993231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110339375.0A Pending CN112864526A (zh) 2021-03-30 2021-03-30 一种室温钠硫电池隔膜的制备方法

Country Status (1)

Country Link
CN (1) CN112864526A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514425A (zh) * 2015-12-11 2016-04-20 南开大学 一种高性能室温钠离子电池及其制备方法
CN106848165A (zh) * 2017-04-08 2017-06-13 深圳市佩成科技有限责任公司 一种锂硫电池复合隔膜
CN108269982A (zh) * 2018-01-09 2018-07-10 中国科学院福建物质结构研究所 一种复合材料、其制备方法及在锂离子电池中的应用
CN108701870A (zh) * 2016-01-15 2018-10-23 纳米技术仪器公司 具有高体积和重量能量密度的碱金属-硫电池
CN109546133A (zh) * 2018-12-04 2019-03-29 浙江理工大学 一种夹心结构的石墨烯/硒化钼/氮掺杂多孔石墨烯复合材料及其制备方法和应用
CN109768203A (zh) * 2019-01-24 2019-05-17 吉林大学 一种复合功能化隔膜的制备方法
CN110137475A (zh) * 2019-05-24 2019-08-16 西南大学 一种空心碳球/二硫化钼双极性复合材料及其制备方法和应用
CN111211273A (zh) * 2020-01-13 2020-05-29 吉林大学 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法
CN111362254A (zh) * 2020-03-17 2020-07-03 广西师范大学 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN111403658A (zh) * 2020-03-04 2020-07-10 南昌大学 一种具有电催化功能隔膜的制备方法及其在锂硫电池中的应用
CN112421045A (zh) * 2020-11-23 2021-02-26 福建师范大学 石墨烯负载高导电硫化钼纳米花材料的制备方法和用途

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514425A (zh) * 2015-12-11 2016-04-20 南开大学 一种高性能室温钠离子电池及其制备方法
CN108701870A (zh) * 2016-01-15 2018-10-23 纳米技术仪器公司 具有高体积和重量能量密度的碱金属-硫电池
CN106848165A (zh) * 2017-04-08 2017-06-13 深圳市佩成科技有限责任公司 一种锂硫电池复合隔膜
CN108269982A (zh) * 2018-01-09 2018-07-10 中国科学院福建物质结构研究所 一种复合材料、其制备方法及在锂离子电池中的应用
CN109546133A (zh) * 2018-12-04 2019-03-29 浙江理工大学 一种夹心结构的石墨烯/硒化钼/氮掺杂多孔石墨烯复合材料及其制备方法和应用
CN109768203A (zh) * 2019-01-24 2019-05-17 吉林大学 一种复合功能化隔膜的制备方法
CN110137475A (zh) * 2019-05-24 2019-08-16 西南大学 一种空心碳球/二硫化钼双极性复合材料及其制备方法和应用
CN111211273A (zh) * 2020-01-13 2020-05-29 吉林大学 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法
CN111403658A (zh) * 2020-03-04 2020-07-10 南昌大学 一种具有电催化功能隔膜的制备方法及其在锂硫电池中的应用
CN111362254A (zh) * 2020-03-17 2020-07-03 广西师范大学 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN112421045A (zh) * 2020-11-23 2021-02-26 福建师范大学 石墨烯负载高导电硫化钼纳米花材料的制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG,CW;ZHOU,HY;JIN,B;GAO,W;LANG,XY;LI,JC;JIANG,Q: "《Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers》", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Similar Documents

Publication Publication Date Title
WO2022032745A1 (zh) 一种VO2/MXene复合材料及其制备方法与应用
CN109473643B (zh) 一种CoSe2/石墨烯复合材料制备方法和用途
CN110808179A (zh) 一种氮氧共掺杂生物质硬碳材料及其制备方法和应用
CN108550824B (zh) 一种高容量电池负极材料制备方法
CN115571867B (zh) 一种硬碳负极材料及其制备方法和应用
Xi et al. Designing the effective microstructure of lignin-based porous carbon substrate to inhibit the capacity decline for SnO2 anode
CN112357956A (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN108539170B (zh) 锂离子电池纳米片负极材料的形成方法
CN108598403B (zh) 锂离子电池二元过渡金属氧化物负极材料的形成方法
CN110600710B (zh) 硫化铁-碳复合材料及其制备方法、锂离子电池负极材料、锂离子电池负极片和锂离子电池
CN113173600A (zh) 三维多通道空心核桃状的二氧化钒@碳复合材料的制备方法及其应用
CN113809286A (zh) 一种mof催化生长碳纳米管包覆镍锡合金电极材料及其制备方法和应用
CN110783542A (zh) 一种纸巾衍生碳纤维负载MoS2微米花复合材料的制备方法及其在锂硫电池中的应用
CN111600005B (zh) 一种锂离子电池负极材料多孔Si/C复合材料的制备方法
CN111276683B (zh) 一种富含铝羟基的二氧化硅硫正极及其制备方法
CN112864526A (zh) 一种室温钠硫电池隔膜的制备方法
CN113130905A (zh) 一种超小硫化钴纳米片/碳布复合材料及其制备方法
Yi et al. The manganese oxyborate Mn3 (BO3) 2 as a high-performance anode for lithium-ion batteries
CN108666569B (zh) 一种海绵状碳材料的制备方法
CN113113609A (zh) 一种钠离子电池三维复合负极材料及其制备方法和应用
CN112390284A (zh) 氧化锡修饰的钴锌双金属有机骨架衍生碳复合材料制备方法
CN112018356A (zh) 一种片状钾离子负极材料
CN112531148A (zh) 一种V2O5/MoS2/EG电极材料及制备方法
CN107785564B (zh) VTi2.6O7.7纳米颗粒、制备和应用
CN112072084A (zh) 一种复合电极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210528

WD01 Invention patent application deemed withdrawn after publication