CN112863722B - 包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法 - Google Patents

包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法 Download PDF

Info

Publication number
CN112863722B
CN112863722B CN201911185896.4A CN201911185896A CN112863722B CN 112863722 B CN112863722 B CN 112863722B CN 201911185896 A CN201911185896 A CN 201911185896A CN 112863722 B CN112863722 B CN 112863722B
Authority
CN
China
Prior art keywords
nanocrystalline
carbon nanotube
cladding material
temperature
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911185896.4A
Other languages
English (en)
Other versions
CN112863722A (zh
Inventor
邰凯平
毛鹏燕
崔刊
乔吉祥
赵洋
康斯清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201911185896.4A priority Critical patent/CN112863722B/zh
Publication of CN112863722A publication Critical patent/CN112863722A/zh
Application granted granted Critical
Publication of CN112863722B publication Critical patent/CN112863722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using ion beam radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明属于复合材料和抗辐照损伤材料领域,具体为一种包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法。该复合材料包括:自支撑CNTs为基体,在其表面均匀附着纳米晶及高温热稳定的包壳材料。该制备方法包括:将CNTs基底在20至800℃温度下,利用物理或化学气相沉积方法均匀沉积纳米晶;再利用物理或化学气相沉积、裂解有机物等技术沉积高温稳定的非晶碳或金属氧化物。该复合材料具有高密度纳米线结构,较高的电导率,良好的抗辐照性能、高温热稳定性、化学稳定性和柔性弯曲性能可大面积制备,铺展在具有任意曲率的物体表面。本发明用于中高温度下工作的电子器件和传感器材料等,也能作为保护层材料应用于辐照损伤领域。

Description

包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法
技术领域
本发明涉及复合材料和抗辐照损伤材料领域,具体为一种三层纳米纤维网络结构的高稳定包壳材料(如:非晶碳或金属氧化物等)/纳米晶/碳纳米管(Carbon Nanotubes,CNTs)复合材料的结构设计及其制备方法,该复合材料表现出良好的抗辐照损伤性能和高温稳定性。
背景技术
能源转型是人类文明进步的重要标志,21世纪人类正逐步从化石能源为主的能源体系向清洁低碳、安全高效的能源体系转型。我国作为世界上最大的发展中国家,支撑社会经济可持续发展,积极推进向绿色清洁低碳能源体系转型成为新的历史使命。核电由于其安全、清洁、可靠、高效,已成为世界能源的三大支柱之一,长远来看,核电是唯一可大规模替代火电的基础能源。发展核电对于保障国家能源安全、调整能源结构、改善大气环境及提高我国装备制造业水平、促进科技进步均有重要意义。
为了进一步提高核燃料利用率和核电站的运行经济性、安全稳定性,一方面要对目前服役和在建的第二、三代核反应堆改造升级,另一方面,世界各国也在紧张研发***核反应堆以及可控核聚变反应堆。这对核反应堆的核心结构材料提出了更严苛的要求,例如:***核反应堆核心的工作温度高达500~1000℃,辐照损伤剂量超过150dpa(displacement per atom),而商用聚变反应堆第一壁的工作温度预计在1000 ℃以上,同时还面临高达14MeV能量的中子的辐照以及高通量的氘、氚、氦等离子体冲击。发展新型高效核反应堆必须开发能长期在高温高压、应力及强辐照等极端条件下稳定服役的核用材料,现有材料尚难以满足这些要求。而辐照损伤是核材料面临的最特殊和最困难的问题,材料的抗辐照损伤性能直接影响核反应堆运行的可靠性与安全性。开发具有优异抗辐照损伤性能的新材料是目前核能领域面临的最紧迫、最棘手的问题之一。
发明内容
为了解决研发高性能抗辐照损伤材料这一难题,本发明的目的在于提供一种包壳材料/纳米晶/碳纳米管(CNTs)复合材料及其制备方法,该复合材料具有高密度纳米线结构,在高温条件下,该复合材料能够保持极高的结构稳定性;同时,在高能离子辐照下,该复合材料也表现出良好的抗辐照损伤性能和柔性弯曲性能,可以铺展在具有任意曲率的物体表面。本发明复合材料可大面积制备,可以用于中高温度下工作的电子器件和传感器材料等,也能作为保护层材料应用于辐照损伤领域。
本发明的技术方案是:
一种包壳材料/纳米晶/碳纳米管复合结构材料,该自支撑碳纳米管基底为单壁碳纳米管薄膜管束结构,先利用物理气相沉积技术或化学气相沉积技术在表面均匀沉积纳米晶,再利用物理气相沉积技术、化学气相沉积技术或裂解有机物蒸汽技术沉积包壳材料层,形成具有纳米尺度纤维结构、高电导率和结构稳定性的三层复合三维网络复合材料;其中,碳纳米管薄膜管束基体的体积分数5%~30%。
所述的包壳材料/纳米晶/碳纳米管复合结构材料,碳纳米管薄膜管束作为基体,由随机取向分布且直径为2~20nm的束状碳纳米管所构成,碳纳米管薄膜内的碳纳米管长度为5~50μm。
所述的包壳材料/纳米晶/碳纳米管复合结构材料,沉积的纳米晶为Al、Cu、Ni、Fe、Nb、W高纯金属或其合金或非金属纳米晶体材料;对于Cu或Ni高纯金属纳米晶,该复合材料具有较高的电导率,25℃至600℃范围内的电导率为1×106~5×106S·m-1
所述的包壳材料/纳米晶/碳纳米管复合结构材料,沉积在碳纳米管表面的纳米晶厚度均匀,纳米晶呈随机取向分布,晶粒尺寸10~300nm,垂直碳管轴线方向的晶粒尺寸30~500nm,纳米晶厚度和晶粒尺寸均可连续调控。
所述的包壳材料/纳米晶/碳纳米管复合结构材料,沉积的包壳材料层厚度为1~50 nm,其厚度均匀可连续调控,包壳材料为非晶Al2O3、非晶碳或其他高强度、高熔点、化学惰性、高温稳定的材料。
所述的包壳材料/纳米晶/碳纳米管复合结构材料,碳纳米管基体、纳米晶与包壳材料层之间界面结合良好,在反复弯曲、振动条件下,未发生界面脱离或开裂现象;该复合材料具有良好的结构热稳定性,在纳米晶体再结晶温度以上,仍能保持初始形貌,纳米晶不发生明显团聚和晶粒长大;该复合材料具有较高柔性性能,铺展在具有任意曲率的物体表面,该复合材料实现“卷对卷”大尺度制备,该复合材料通过激光加工切割成任意尺寸。
所述的包壳材料/纳米晶/碳纳米管复合结构材料,该复合材料具有良好的抗高能粒子辐照损伤的性能,在25℃至500℃下,经50keV~5MeV高能粒子辐照1dpa~ 10dpa剂量后,该复合材料未发生可观测的结构性失稳,高能粒子为He离子、Ni离子或Fe离子。
所述的包壳材料/纳米晶/碳纳米管复合结构材料的制备方法,包括如下具体步骤:
(S1)自支撑碳纳米管基底准备:
制备金属支架,支架材料为高导热耐高温材料,采用Mo、Ti、Cu或其合金材料;并进行表面溶液超声清洗处理,清洗液包括丙酮、酒精、去离子水,而后将碳纳米管薄膜基底转移至金属支架上成悬空状态;
(S2)安装金属支架:
将步骤(S1)中清洗后载有碳纳米管的金属支架固定在薄膜沉积设备样品台上,并用导电银胶粘连,保证支架与样品台热接触良好,金属支架与沉积靶材间距为5~ 20cm;
(S3)高真空环境对碳纳米管基底进行高温处理:
在磁控溅射沉积***内:背景真空度(1~3)×10-5Pa,通入流量为30~50sccm 高纯氩气,对碳纳米管基底进行500~800℃加热处理1~2h,充分去除表面吸附的杂质原子;
(S4)沉积金属纳米晶:
在磁控溅射沉积***内进行单靶或多靶溅射,沉积纯金属或合金纳米晶,生长条件为:溅射靶材为商用块体高纯靶材,背景真空度(1~3)×10-5Pa,工作气体为0.1~3Pa 的高纯氩气,生长温度范围为20~800℃,沉积速率为0.1~5μm/h,沉积功率为10~ 300W,金属支架旋转速度为1~20转/分钟,形成纳米晶/碳纳米管复合材料;
(S5)均匀沉积高稳定包壳材料层:
包壳材料应具有高强度、高熔点、化学惰性、高温稳定特性,采用非晶Al2O3或非晶碳材料,进而能够从动力学上稳定内层的纳米晶材料。
所述的包壳材料/纳米晶/碳纳米管复合结构材料的制备方法,步骤(S4)中,磁控溅射沉积后,在100~800℃保温时间1~10h下退火;步骤(S5)中,均匀沉积高稳定包壳材料层后,在100~800℃保温时间1~10h下退火。
所述的包壳材料/纳米晶/碳纳米管复合结构材料的制备方法,步骤(S5)中:
非晶Al2O3采用原子层沉积***进行沉积,前躯体为商用Al(CH3)3,工作气体为0.1~1MPa的高纯氩气,沉积温度范围为50~300℃,沉积速率0.1~1nm/min;
非晶碳采用高能离子裂解有机物的方法制备,在高真空环境中,背景真空度为1~3×10-5Pa,沉积温度范围为20~800℃,利用200~400keV的氦离子裂解1~15h。
本发明的设计思想如下:
首先,对于多晶纳米线材料来说,其在高温下会先进行晶粒长大变成竹节状结构,而后将产生晶界沟槽效应,通过表面扩散,使得晶界发生颈缩,直至球化断裂,表现出很差的固有形态稳定性,这不利于其在中高温电子器件中的电路连接,阻碍其作为保护层材料应用于辐照损伤领域。所以,在CNTs表面均匀沉积纳米晶材料后,在其表面上利用物理或化学气相沉积、裂解有机物等技术沉积一层均匀高稳定包壳材料后,借助包壳材料良好的高温稳定性及包壳材料、纳米晶、CNTs间的界面能、晶界能的调控,使得亚稳状态的纳米晶材料获得良好的高温结构稳定性,和良好的抗高能粒子辐照损伤性能,并能预见其在中高温度下工作的电子器件和传感器材料等领域的应用前景,实现高稳定的电路连接。其次,这种高稳定包壳材料/纳米晶/碳纳米管(CNTs) 复合材料可以实现“卷对卷”大面积制备,可以作为核反应堆屏蔽涂层材料,延长核反应堆使用寿命,提高其经济性、可靠性、永续性和安全性。
正式基于以上两点主要指导设计思想,本发明成功实现利用超薄CNTs薄膜材料作为基体,利用物理或化学气相沉积技术沉积各种纳米晶薄膜材料并在其表面包裹一层高稳定包壳材料,并能做到“卷对卷”大尺度制备,实现了其结构稳定性、抗氧化性以及抗辐照损伤性能的大幅提升。
本发明的优点及有益效果如下:
1、本发明利用物理或化学气相沉积技术,可使用于各种纳米晶薄膜材料,如: Cu、Ni、Fe、Nb、W等,以及它们的合金,或者非金属材料的纳米晶。进一步的,利用物理或化学气相沉积、裂解有机物等技术沉积高温稳定的非晶碳或金属氧化物。
2、本发明提供的复合材料在微观上具有极佳的阻滞裂纹扩展的能力,具有一定的柔性变形能力,且CNTs基体、纳米晶与包壳材料层之间界面结合良好,在反复弯曲、振动条件下,不会发生界面脱离或开裂现象。
3、本发明提供的复合材料具有良好的结构热稳定性,在纳米晶体再结晶温度以上,仍能保持初始形貌,纳米晶不发生明显团聚和晶粒长大,可实现其在中高温电子器件中的电路连接。
4、本发明提供的复合材料具有高密度纳米线结构、较高的电导率、良好的抗辐照性能、高温热稳定性、化学稳定性和柔性弯曲性能,可以铺展在具有任意曲率的物体表面。
5、本发明复合材料可大面积制备,可以用于中高温度下工作的电子器件和传感器材料等,也能作为保护层材料应用于辐照损伤领域。
附图说明
图1(a)是复合材料纳米纤维三层结构的示意图。图中,1包壳材料层,2纳米晶层,3碳纳米管薄膜管束基体。
图1(b)是复合材料的制备流程图。
图2(a)是磁控溅射沉积的CNTs/Cu复合薄膜样品的透射电镜照片。
图2(b)是磁控溅射沉积的CNTs/Cu复合薄膜样品400℃退火后的透射电镜照片。
图3(a)是非晶C/Cu/CNTs复合材料的透射电镜照片。
图3(b)是非晶C/Cu/CNTs复合材料400℃退火后的透射电镜照片。
具体实施方式
如图1(a)所示,该复合材料包括超薄的碳纳米管薄膜管束基体3以及均匀沉积在碳纳米管薄膜管束基体3表面的纳米晶层2,利用物理和化学气相沉积技术、裂解有机物等技术沉积高稳定、高强度、高熔点的包壳材料层1,形成具有纳米尺度纤维结构、高电导率和结构稳定性的三层复合三维网络复合材料。
该制备方法包括:将CNTs基底在0.1~3Pa气压、20至800℃温度下,利用物理或化学气相沉积方法均匀沉积纳米晶,利用物理或化学气相沉积、裂解有机物等技术沉积高熔点包壳材料层。以自支撑碳纳米管(CNTs)为基体,在其表面均匀附着纳米晶及高强度高熔点包壳材料层。本发明结合物理和气相沉积技术,可使用于各种纳米晶薄膜材料,如:Cu、Ni、Fe、Nb、W等,以及它们的合金或是非金属纳米晶。
CNTs基体、纳米晶与包壳材料之间界面结合良好,在反复弯曲、振动条件下,未发生界面脱离或开裂现象。该复合材料具有良好的结构热稳定性,在纳米晶体再结晶温度以上,仍能保持初始形貌,纳米晶不发生明显团聚和晶粒长大。该复合材料具有良好的抗高能粒子辐照损伤的性能,在25℃至500℃下,经50keV~5MeV高能粒子(如:He、Ni、Fe离子等)辐照1dpa~10dpa剂量后,该复合材料未发生可观测的结构性失稳。本发明复合材料可实现“卷对卷”大面积制备,可以用于中高温电子器件的电路连接,也能作为保护层材料应用于辐照损伤领域。
本发明的核心思想在于,通过在物理或化学气相沉积、裂解有机物过程中引入均匀高熔点且具有较高稳定性的包壳材料,抑制该复合材料在高温下的晶界沟槽效应,抑制原子在包壳材料-纳米晶材料界面处的原子扩散。包壳材料可调控其与纳米晶材料界面处的表面能、界面能和晶界能,从而保持纳米晶在高温或强离子辐照条件下的结构稳定性,实现其在中高温电子器件中的实际应用。该复合材料将能够实现“卷对卷”大尺度制备,可作为大型涂层材料使用,例如:作为核反应堆屏蔽涂层材料,延长核反应堆使用寿命,提高其经济性、可靠性、永续性和安全性。
为使本发明实施例的目的、技术方案和优点更加清晰,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清晰、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
实施例
参照图1(b),本实施例采用非晶碳(C)/Cu/CNTs复合材料,制备流程为:金属支架准备→自支撑CNTs薄膜转移→沉积纳米晶层→沉积包壳层,其制备的具体步骤如下:
(S1)自支撑CNTs基底准备:
制备金属支架,支架材料为黄铜合金,并进行表面溶液超声清洗处理,具体清洗步骤如下:首先丙酮超声清洗40min,然后无水乙醇超声清洗40min,最后依次用丙酮、无水乙醇以及去离子水冲洗,吹干;而后将CNTs薄膜基底转移至金属支架上成悬空状态。
(S2)安装金属支架:
将步骤(S1)中清洗后载有CNTs的金属支架固定在磁控溅射沉积设备样品台上,并用导电银胶粘连,保证支架与样品台热接触良好,金属支架与靶材间距为10cm。
(S3)高真空环境对CNTs基底进行高温处理:
在磁控溅射沉积***内:背景真空度2×10-5Pa,通入流量为40sccm高纯氩气(体积纯度99.999%),对CNTs基底进行600℃加热处理1~2h,充分去除表面吸附的杂质原子。
(S4)沉积Cu纳米晶:
纳米Cu薄膜的生长条件为:溅射靶材为商用Cu靶材(纯度为99.999wt%),背景真空度2×10-5Pa,工作气体为0.5Pa的高纯氩气(体积纯度为99.999%),生长温度范围为30℃,沉积速率为3.6μm/h,沉积功率为265W,金属支架旋转速度为10 转/分钟,获得磁控溅射沉积的CNTs/Cu复合薄膜,见图2(a)。
(S5)沉积非晶C:
非晶C利用高能离子裂解有机物的方法制备,在高真空环境中,背景真空度为 2×10-5Pa,沉积温度范围为30℃,利用300keV左右的氦离子裂解1.5h。沉积完成后形成非晶C/Cu/CNTs复合材料,其表面形貌见图3(a)。
采用以上方法,通过在物理或化学气相沉积、裂解有机物过程中引入均匀高熔点非晶C材料,抑制该复合材料在高温下的晶界沟槽效应,抑制原子在非晶C-纳米晶材料界面处的原子扩散。如图2(b)所示,磁控溅射沉积的CNTs/Cu复合薄膜样品400℃保温时间3h退火后的透射电镜照片;如图3(b)所示,非晶C/Cu/CNTs复合材料400℃保温时间3h退火后的透射电镜照片。由图2(b)、图3(b)可以看出,非晶C材料可调控其与纳米晶材料界面处的表面能、界面能和晶界能,实现其在高温或强离子辐照条件下维持其结构稳定性,实现其在中高温电子器件中的实际应用。该复合材料将能够实现“卷对卷”大尺度制备,可作为大型涂层材料使用,例如:作为核反应堆屏蔽涂层材料,延长核反应堆使用寿命,提高其经济性、可靠性、永续性和安全性。
以上对本发明所提供的一种包壳材料/纳米晶/碳纳米管(CNTs)复合材料及其制备方法做详细介绍。通过应用具体个例对本发明的原理及实施方式进行阐述,以上实施例的说明只是用于帮助理解本发明的方法及核心思想。应当指出,对于本技术领域的普通实验人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围之内。

Claims (8)

1.一种包壳材料/纳米晶/碳纳米管复合结构材料,其特征在于,自支撑碳纳米管基底为单壁碳纳米管薄膜管束结构,先利用物理气相沉积技术或化学气相沉积技术在自支撑碳纳米管基底表面均匀沉积纳米晶,再利用物理气相沉积技术、化学气相沉积技术或裂解有机物蒸汽技术沉积包壳材料层,形成具有纳米尺度纤维结构、高电导率和结构稳定性的三层复合三维网络复合材料;其中,碳纳米管薄膜管束基底的体积分数5%~30%;
沉积的包壳材料层厚度为1~50 nm,其厚度均匀可连续调控,包壳材料为非晶Al2O3或非晶碳;
碳纳米管基底、纳米晶与包壳材料层之间界面结合良好,在反复弯曲、振动条件下,未发生界面脱离或开裂现象;该复合材料具有良好的结构热稳定性,在纳米晶体再结晶温度以上,仍能保持初始形貌,纳米晶不发生明显团聚和晶粒长大;该复合材料具有较高柔性性能,铺展在具有任意曲率的物体表面,该复合材料实现“卷对卷”大尺度制备,该复合材料通过激光加工切割成任意尺寸;
通过在物理或化学气相沉积、裂解有机物过程中引入均匀高熔点且具有较高稳定性的包壳材料,抑制该复合材料在高温下的晶界沟槽效应,抑制原子在包壳材料-纳米晶材料界面处的原子扩散;包壳材料调控其与纳米晶材料界面处的表面能、界面能和晶界能,从而保持纳米晶在高温或强离子辐照条件下的结构稳定性,实现其在中高温电子器件中的实际应用。
2.根据权利要求1所述的包壳材料/纳米晶/碳纳米管复合结构材料,其特征在于,碳纳米管薄膜管束作为基底,由随机取向分布且直径为2~20 nm的束状碳纳米管所构成,碳纳米管薄膜内的碳纳米管长度为5~50 μm。
3.根据权利要求1所述的包壳材料/纳米晶/碳纳米管复合结构材料,其特征在于,沉积的纳米晶为Al、Cu、Ni、Fe、Nb、W高纯金属或其合金或非金属纳米晶体材料;对于Cu或Ni高纯金属纳米晶,该复合材料具有较高的电导率,25 ℃至600 ℃范围内的电导率为1×106~5×106 S·m-1
4.根据权利要求1所述的包壳材料/纳米晶/碳纳米管复合结构材料,其特征在于,沉积在碳纳米管表面的纳米晶厚度均匀,纳米晶呈随机取向分布,晶粒尺寸 10~300 nm,垂直碳管轴线方向的晶粒尺寸 30~500 nm,纳米晶厚度和晶粒尺寸均可连续调控。
5.根据权利要求1所述的包壳材料/纳米晶/碳纳米管复合结构材料,其特征在于,该复合材料具有良好的抗高能粒子辐照损伤的性能,在25 ℃至500 ℃ 下,经50 keV~5 MeV高能粒子辐照1 dpa~10 dpa 剂量后,该复合材料未发生可观测的结构性失稳,高能粒子为He离子、Ni离子或Fe离子。
6.一种权利要求1至5之一所述的包壳材料/纳米晶/碳纳米管复合结构材料的制备方法,其特征在于,包括如下具体步骤:
(S1) 自支撑碳纳米管基底准备:
制备金属支架,支架材料为高导热耐高温材料,采用Mo、Ti、Cu 或其合金材料;并进行表面溶液超声清洗处理,清洗液包括丙酮、酒精、去离子水,而后将碳纳米管薄膜基底转移至金属支架上成悬空状态;
(S2) 安装金属支架:
将步骤(S1)中清洗后载有碳纳米管的金属支架固定在薄膜沉积设备样品台上,并用导电银胶粘连,保证支架与样品台热接触良好,金属支架与沉积靶材间距为5~20 cm;
(S3) 高真空环境对碳纳米管基底进行高温处理:
在磁控溅射沉积***内:背景真空度(1~3)×10-5 Pa,通入流量为30~50 sccm高纯氩气,对碳纳米管基底进行500~800 ℃加热处理1~2 h,充分去除表面吸附的杂质原子;
(S4) 沉积金属纳米晶:
在磁控溅射沉积***内进行单靶或多靶溅射,沉积纯金属或合金纳米晶,生长条件为:溅射靶材为商用块体高纯靶材,背景真空度(1~3)×10-5 Pa,工作气体为0.1~3 Pa的高纯氩气,生长温度范围为20~800 ℃,沉积速率为0.1~5 μm/h,沉积功率为10~300 W,金属支架旋转速度为1~20转/分钟,形成纳米晶/碳纳米管复合材料;
(S5) 均匀沉积高稳定包壳材料层:
包壳材料应具有高强度、高熔点、化学惰性、高温稳定特性,采用非晶Al2O3或非晶碳材料,进而能够从动力学上稳定内层的纳米晶材料。
7.根据权利要求6所述的包壳材料/纳米晶/碳纳米管复合结构材料的制备方法,其特征在于,步骤(S4)中,磁控溅射沉积后,在100~800 ℃保温时间1~10 h下退火;步骤(S5)中,均匀沉积高稳定包壳材料层后,在100~800 ℃保温时间1~10 h下退火。
8.根据权利要求6所述的包壳材料/纳米晶/碳纳米管复合结构材料的制备方法,其特征在于,步骤(S5)中:
非晶Al2O3采用原子层沉积***进行沉积,前躯体为商用Al(CH3)3,工作气体为 0.1~1MPa的高纯氩气,沉积温度范围为50~300 ℃,沉积速率0.1~1 nm/min;
非晶碳采用高能离子裂解有机物的方法制备,在高真空环境中,背景真空度为1~3×10-5 Pa,沉积温度范围为20~800 ℃,利用200~400 keV的氦离子裂解1~15 h。
CN201911185896.4A 2019-11-27 2019-11-27 包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法 Active CN112863722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911185896.4A CN112863722B (zh) 2019-11-27 2019-11-27 包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911185896.4A CN112863722B (zh) 2019-11-27 2019-11-27 包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112863722A CN112863722A (zh) 2021-05-28
CN112863722B true CN112863722B (zh) 2024-03-01

Family

ID=75985134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911185896.4A Active CN112863722B (zh) 2019-11-27 2019-11-27 包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112863722B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106030A1 (en) * 2002-06-13 2003-12-24 National University Of Singapore Selective area growth of aligned carbon nanotubes on a modified catalytic surface
CN108866496A (zh) * 2017-11-28 2018-11-23 中国科学院金属研究所 抗辐照损伤金属纳米晶/碳纳米管复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106030A1 (en) * 2002-06-13 2003-12-24 National University Of Singapore Selective area growth of aligned carbon nanotubes on a modified catalytic surface
CN108866496A (zh) * 2017-11-28 2018-11-23 中国科学院金属研究所 抗辐照损伤金属纳米晶/碳纳米管复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种Zr基核材料的制备工艺、结构及力学性能研究;杨亮等;《核技术》(12);881-886页 *

Also Published As

Publication number Publication date
CN112863722A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN108203090B (zh) 一种石墨烯的制备方法
CN106587030B (zh) 一种常压低温化学气相沉积制备石墨烯薄膜的方法
CN104532206A (zh) 一种在绝缘衬底上原位生长掺杂石墨烯薄膜的制备方法
CN106756870B (zh) 一种等离子体增强化学气相沉积生长石墨烯的方法
CN106276870A (zh) 石墨烯‑碳纳米管纯碳复合薄膜的制备方法
CN102367570B (zh) 一种制备金刚石-石墨烯复合膜的方法
CN102320591A (zh) 铜基体上直接生长网状碳纳米管的方法
CN111378954A (zh) 一种制备金刚石膜的装置及方法
CN103613094A (zh) 一种同时制备石墨烯和多孔非晶碳薄膜的方法
CN110182788A (zh) 一种高收率制备碳纳米管的装置及方法
CN103643217A (zh) 一种自支撑类石墨多孔非晶碳薄膜的制备方法
CN108866496B (zh) 抗辐照损伤金属纳米晶/碳纳米管复合材料及其制备方法
CN114212772B (zh) 一种制备单壁碳纳米管@六方氮化硼复合薄膜的方法
CN112863722B (zh) 包壳材料/纳米晶/碳纳米管复合结构材料及其制备方法
CN113307252B (zh) 一种制备可纺丝超顺排碳纳米管阵列的方法
CN113564699B (zh) 基于Cu2O介质层生长单层单晶石墨烯的方法
CN104465267B (zh) 一种多级降压收集极Cu电极表面采用石墨烯处理的方法
CN103833001B (zh) 一种船槽式图案结构生长的碳纳米管生长方法及其发射体
CN111003705A (zh) 强流脉冲电子束辐照石墨原位生成石墨烯的方法
CN115466954A (zh) 金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法
CN102234764B (zh) 一种热解石墨的金属化工艺及焊接方法
CN105621388A (zh) 单壁碳纳米管水平阵列及其制备方法与应用
CN113897591A (zh) 金属防护方法及应用
CN107545936A (zh) 金刚石膜与石墨复合材料
CN103811240B (zh) 碳纳米管阴极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant