CN112859538B - 一种基于声光偏转器的双光子聚合激光直写加工*** - Google Patents

一种基于声光偏转器的双光子聚合激光直写加工*** Download PDF

Info

Publication number
CN112859538B
CN112859538B CN202110045996.8A CN202110045996A CN112859538B CN 112859538 B CN112859538 B CN 112859538B CN 202110045996 A CN202110045996 A CN 202110045996A CN 112859538 B CN112859538 B CN 112859538B
Authority
CN
China
Prior art keywords
laser
optic deflector
acousto
angular dispersion
dimensional acousto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110045996.8A
Other languages
English (en)
Other versions
CN112859538A (zh
Inventor
熊伟
焦玢璋
高辉
刘耘呈
范旭浩
邓磊敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Publication of CN112859538A publication Critical patent/CN112859538A/zh
Application granted granted Critical
Publication of CN112859538B publication Critical patent/CN112859538B/zh
Priority to US17/501,183 priority Critical patent/US11982945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0031Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for scanning purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/005Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70375Multiphoton lithography or multiphoton photopolymerization; Imaging systems comprising means for converting one type of radiation into another type of radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供一种基于声光偏转器的双光子聚合激光直写加工***,包括:利用声光偏转器实现每秒50000行的高速激光扫描,使激光点的扫描速度达到5000mm/s以上。本发明消除了超快激光经过声光偏转器产生的角色散,补偿了声光偏转器高速扫描引入的像散,使扫描范围内的激光点均能实现紧聚焦,具有相同的峰值功率,实现扫描范围内任意位置处的加工特征尺寸相同且达到衍射极限值,进而实现对任意三维微纳结构的高速、高精度加工。本发明通过消除超快激光经过声光偏转器产生的角色散,补偿声光偏转器高速扫描引入的像散,实现了与传统双光子聚合激光直写加工***相同的加工特征尺寸,同时大幅提高了加工速度,可将加工效率提高500倍以上。

Description

一种基于声光偏转器的双光子聚合激光直写加工***
本申请要求于2021年1月8日提交中国国家知识产权局、申请号为2021100253382、发明名称为“一种基于声光偏转器的双光子聚合激光直写加工***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于激光加工技术领域,更具体地,涉及一种基于声光偏转器的双光子聚合激光直写加工***。
背景技术
双光子聚合激光直写是一种利用超快激光的紧聚焦激光点对光敏材料进行曝光,直接得到三维微纳结构的加工技术,这种加工技术基于双光子吸收效应与双光子聚合效应。双光子吸收效应是一种三阶非线性效应,该效应作用强度与光强的平方成正比。双光子聚合是指光敏材料经过紧聚焦的超快激光的照射,在紧聚焦焦点附近的双光子吸收效应强度大,产生大量自由基,当自由基浓度大于一定阈值时,聚合成链并形成微结构。只有当激光强度大于一定阈值时,才会发生双光子聚合效应;通过控制激光强度,可以使双光子聚合效应只在小于紧聚焦焦点艾里斑的尺度内发生,实现超越衍射极限的微结构加工精度,其加工横向特征尺寸可以达到200nm以下,纵向特征尺寸可以达到1um以下。双光子聚合直写加工技术具有加工分辨率高、热效应小的优点,在微纳电子学、微机械、微光学器件等方面得到了广泛应用。
双光子聚合激光直写技术采用逐点曝光的加工方式实现复杂三维微结构的制造,逐点曝光的速度限制了该技术的产率,降低了其所加工的复杂三维微结构的实用性。例如期刊文献《Rapid Assembly of Small Materials Building Blocks(Voxels)into LargeFunctional 3D Metamaterials》(Advanced functional materials,2020)中列举了利用商用加工***制造的衍射光学元件,该衍射光学元件直径达到6mm,满足使用需求,然而加工时间长达50小时,无法满足大规模应用需求。因此提高双光子聚合激光直写的加工速度、降低复杂三维微纳结构的加工时间成为了本领域的关键问题。
双光子聚合激光直写加工***利用高数值孔径物镜对超快激光进行紧聚焦,利用扫描器改变光束的偏转角,实现紧聚焦激光点在光刻胶内的二维移动,同时通过控制光束的通断,完成二维图形的扫描。紧聚焦激光点完成一层图形的扫描后,改变光刻胶与物镜之间距离,进行逐层扫描,最终完成三维微纳结构的曝光。为了提高加工速度,需要提高紧聚焦激光点的扫描速度。扫描器改变光束偏转角的频率越高,紧聚焦激光点的扫描速度越快,因此提高扫描器改变光束偏转角的频率成为了提高加工速度的关键。
扫描器可分为机械偏转式扫描器与衍射偏转式扫描器两类。机械偏转式扫描器通过旋转反射面实现光束偏转,包括多面转镜、振镜与共振镜。衍射偏转式扫描器通过调制光的波前实现光束偏转,包括液晶空间光调制器、数字微镜阵列与声光偏转器。下表对比了不同扫描器的最大扫描频率,并列举了参考文献。
Figure GDA0003207018780000021
由此可见,声光偏转器具有最快的线扫描频率,可以达到50kHz,适合进行高速激光扫描。中国专利CN109514093A提出了一种利用声光偏转器进行分散区域调整的激光加工装置,该装置利用声光偏转器对脉冲激光进行调制,实现高速扫描。声光偏转器对超快激光进行高速扫描有两方面的问题,首先,超快激光具有较大的光谱宽度(通常为3nm-10nm),经过声光偏转器时产生角色散;其次,声光偏转器在高速扫描时,使光束在扫描方向上聚焦,引入像散,最终会使超快激光无法紧聚焦,聚焦光点的峰值功率下降,导致无法进行双光子聚合加工。针对上述问题,中国专利CN1749803A提出利用角色散棱镜补偿声光偏转器扫场中心角色散,该专利中棱镜顶角需要满足角色散补偿的要求,使棱镜对激光的透射率较低,同时声光偏转器扫场边缘角色散未得到完全补偿,使扫场边缘的激光点无法实现紧聚焦;美国专利US007332705提出利用一对扫描方向相反的声光偏转器进行像散补偿,该方法对激光的透射率较低,约20%,限制了紧聚焦激光点的功率,无法满足高速激光扫描的需求。
综上所述,目前并没有基于声光偏转器的高速双光子聚合激光直写加工***的报道,无法实现对任意三维微纳结构的高速、高精度加工。
发明内容
针对现有技术的缺陷,本发明的目的在于提供一种基于声光偏转器的双光子聚合激光直写加工***,旨在解决目前没有基于声光偏转器的高速双光子聚合激光直写加工***的报道,无法实现对任意三维微纳结构的高速、高精度加工的问题。
为实现上述目的,本发明提供了一种基于声光偏转器的双光子聚合激光直写加工***,包括:超快激光器、扩束器、扫场中心角色散补偿器件、二维声光偏转器、扫场边缘角色散补偿器件、像散补偿器件以及聚焦物镜;
超快激光器用于发射超快激光;
扩束器用于对超快激光进行准直扩束;准直扩束后的激光依次经过所述扫场中心角色散补偿器件和所述二维声光偏转器;
扫场中心角色散补偿器件用于根据所述二维声光偏转器的参数对二维声光偏转器扫场中心的角色散进行预补偿;
二维声光偏转器用于对扫场中心角色散预补偿后的激光进行预设角度的偏转,使偏转后的激光满足激光直写的需求;所述二维声光偏转器由两个正交放置的一维声光偏转器组成;
经过所述二维声光偏转器偏转后的激光依次经过所述扫场边缘角色散补偿器件和所述像散补偿器件,所述扫场边缘角色散补偿器件用于对二维声光偏转器扫场边缘的角色散进行补偿;所述像散补偿器件用于对二维声光偏转器对激光进行偏转过程中引入的像散进行补偿;
聚焦物镜用于对所述像散补偿器件补偿后的激光进行紧聚焦后出射到光敏材料,以对光敏材料进行双光子聚合激光直写,并通过所述二维声光偏转器对所述预设角度进行控制,以实现对光敏材料不同位置的双光子聚合激光直写。
在一个可选的实施例中,扫场中心角色散补偿器件包括:依次放置的角色散器件和中继镜;
二维声光偏转器扫场中心处的角色散值为
Figure GDA0003207018780000041
其中,f0为二维声光偏转器的中心驱动频率,v为二维声光偏转器的声速;
超快激光以预设入射角入射到角色散器件,使从角色散器件出射的激光功率达到最大,能量利用率最高;当从角色散器件出射的激光功率达到最大时,所述角色散器件在超快激光中心波长λ0处的角色散值为α;所述中继镜的光焦度为零,在超快激光中心波长λ0处的角放大率为β;
Figure GDA0003207018780000042
在一个可选的实施例中,扫场边缘角色散补偿器件包括:前镜组和后镜组;
前镜组包括依次放置的双凸透镜和弯月透镜,后镜组包括依次放置的双凹透镜与双凸透镜;
扫场边缘角色散补偿器件产生的角色散与扫场边缘处的角色散等大反向;所述扫场边缘处的角色散值为
Figure GDA0003207018780000051
其中,θ为光束偏转角,即对激光进行偏转的预设角度,f1、f2分别为两个一维声光偏转器在光束偏转角θ下的驱动频率。
在一个可选的实施例中,像散补偿器件在光束聚焦方向上的焦距fc与二维声光偏转器对激光进行偏转过程中像散引起的光束聚焦的焦距等大反向,为
Figure GDA0003207018780000052
其中,Tscan为二维声光偏转器扫描一行所需的时间,Δf为二维声光偏转器的驱动频率的带宽。
在一个可选的实施例中,角色散器件为折射棱镜,折射棱镜的顶角θc=π-2*arctan(n),其中,n为折射棱镜在超快激光中心波长λ0处的折射率,超快激光的偏振方向与超快激光在折射棱镜中发生折射的折射面平行,预设入射角θin=arctan(n),出射角θout=θin
在一个可选的实施例中,角色散器件为衍射光栅,预设入射角θin=γ,其中,γ为衍射光栅的刻槽面与光栅面的夹角。
在一个可选的实施例中,两个正交放置的一维声光偏转器包括:第一一维声光偏转器和第二一维声光偏转器;
第一一维声光偏转器用于对激光高速扫描,所述激光在高速扫描的方向上聚焦,会引入像散;
第二一维声光偏转器在第一一维声光偏转器完成一行的高速扫描后,在其高速扫描的正交方向上改变下一行的扫描位置,以实现对激光进行预设角度的偏转。
在一个可选的实施例中,像散补偿器件为柱面镜;
柱面镜的焦距为
Figure GDA0003207018780000053
像散补偿器件在第一一维声光偏转器的扫描方向上的焦距与第一一维声光偏转器高速扫描引起的光束聚焦的焦距等大反向。
在一个可选的实施例中,像散补偿器件为空间光调制器;
空间光调制器用于调制的波前函数为
Figure GDA0003207018780000061
其中,x为第一一维声光偏转器高速扫描方向上的坐标;空间光调制器在第一一维声光偏转器的扫描方向上的焦距与第一一维声光偏转器高速扫描引起的光束聚焦的焦距等大反向。
在一个可选的实施例中,聚焦物镜的数值孔径大于0.7。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
本发明提供一种基于声光偏转器的双光子聚合激光直写加工***,补偿了二维声光偏转器的扫场中心角色散和扫场边缘角色散,使扫场范围内激光焦点的横向特征尺寸一致;补偿了二维声光偏转器高速扫描过程中引入的像散,使扫场范围内激光焦点实现紧聚焦,且达到衍射极限;通过消除超快激光经过声光偏转器产生的角色散,补偿声光偏转器高速扫描引入的像散,实现了与传统双光子聚合激光直写加工***相同的加工特征尺寸,进一步实现了基于声光偏转器的高速双光子聚合激光直写加工***,实现每秒50000行的高速激光扫描加工,其扫描速度达到5000mm/s以上,其加工效率与传统加工***相比,提高了500倍以上,可以实现对任意三维微纳结构的高速、高精度加工。
附图说明
图1为本发明实施例提供的一种基于声光偏转器的双光子聚合激光直写加工***架构图;
图2为本发明实施例提供的一种扫场中心角色散补偿器件的示意图;
图3为本发明实施例提供的一种扫场中心角色散补偿器件的示意图;
图4为本发明实施例提供的一种扫场边缘角色散补偿器件的补偿效果图;
图5为本发明实施例提供的一种像散效应补偿器件的示意图;
图6为本发明实施例提供的一种像散效应补偿器件的示意图;
在所有附图中,相同的附图标记用来表示相同的元件或结构,包括:超快激光器1,声光强度调制器2,扩束镜3,角色散器件4,中继镜5,扫场中心角色散补偿器件6,第一一维声光偏转器7,第二一维声光偏转器8,二维声光偏转器9,第一双凸透镜10,弯月透镜11,双凹透镜12,第二双凸透镜13,扫场边缘角色散补偿器件14,像散补偿器件15,第一导光器件16,第二导光器件17,第一镜组18,第二镜组19,分光器件20,聚焦物镜21,光刻胶22,载物台23,管镜24,图像传感器25,控制器26,折射棱镜401、衍射光栅402,600为入射到角色散器件的激光光束,1500为入射到像散补偿器件的激光光束,柱面镜1501以及空间光调制器1502。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
针对现有技术的缺陷和改进需求,本发明提出一种基于声光偏转器的双光子聚合激光直写加工***,通过利用声光偏转器实现每秒50000行的高速激光扫描,使激光点的扫描速度达到5000mm/s以上。本发明消除了超快激光经过声光偏转器产生的角色散,补偿了声光偏转器高速扫描引入的像散,使扫描范围内的激光点均能实现紧聚焦,具有相同的峰值功率,实现扫描范围内任意位置处的加工特征尺寸相同且达到衍射极限值,进而实现对任意三维微纳结构的高速、高精度加工。本发明通过消除超快激光经过声光偏转器产生的角色散,补偿声光偏转器高速扫描引入的像散,实现了与传统双光子聚合激光直写加工***相同的加工特征尺寸,同时大幅提高了加工速度,可将加工效率提高500倍以上。
具体地,本发明提供的基于声光偏转器的双光子聚合激光直写加工***,包括:二维声光扫描组件、像散补偿器件、聚焦物镜和观察组件。
二维声光扫描组件,用于实现对超快激光光束的二维快速扫描,同时消除超快激光经过声光偏转器产生的角色散,包括依次放置的超快激光器、声光强度调制器、扩束镜、扫场中心角色散补偿器件、二维声光偏转器和扫场边缘角色散补偿器件。工作时,超快激光器发出超快激光;经过声光强度调制器,调节激光的功率;受调制后的激光束经过扩束镜,进行准直扩束,接着经过扫场中心角色散补偿器件,对二维声光偏转器扫场中心的角色散进行预补偿;再经过二维声光偏转器,对经过的激光束进行偏转;最后经过扫场边缘角色散补偿器件,对扫场边缘的角色散进行补偿。
二维声光偏转器由两个正交放置的一维声光偏转器组成。
扫场中心角色散补偿器件用于补偿扫场中心处的角色散,其产生的角色散与扫场中心处的角色散等大反向。扫场中心处的角色散值为
Figure GDA0003207018780000081
其中,f0为二维声光偏转器的中心驱动频率,v为二维声光偏转器的声速。
优选的,扫场中心角色散补偿器件的主平面与二维声光偏转器中任意一个一维声光偏转器的夹角为45°。
优选的,扫场边缘角色散补偿器件包括前镜组和后镜组。
作为进一步优选的,前镜组包括依次放置的双凸透镜与弯月透镜。其中双凸透镜的材料为H-K9L,前表面曲率半径为48.12mm,后表面曲率半径为-31.16mm,前后表面间距为6mm;弯月透镜的材料为H-ZF88,前表面曲率半径为-31.03mm,后表面曲率半径为-119.94mm,前后表面间距为2mm。
作为进一步优选的,后镜组包括依次放置的双凹透镜与双凸透镜。其中双凹透镜的材料为H-K9L,前表面曲率半径为-95.81mm,后表面曲率半径为75.26mm,前后表面间距为3.49mm;双凸透镜的材料为H-ZF88,前表面曲率半径为127.94mm,后表面曲率半径为-106.47mm,前后表面间距为6mm。
像散补偿器件用于补偿二维声光偏转器高速扫描引入的像散。该像散引起光束在扫描方向上聚焦,其在超快激光中心波长λ0处的焦距
Figure GDA0003207018780000091
其中v为二维声光偏转器的声速,Tscan为高速扫描一行所需的时间,Δf为二维声光偏转器的驱动频率的带宽。而像散补偿器件在光束聚焦方向上的焦距与像散引起的光束聚焦的焦距等大反向,为
Figure GDA0003207018780000092
这样就可以补偿二维声光偏转器高速扫描引入的像散。
优选的,像散补偿器件可以为柱面镜,其焦距与高速扫描一行所需的时间Tscan相对应,为
Figure GDA0003207018780000093
柱面镜对激光的透射率可以达到90%以上,使紧聚焦激光点的功率满足高速激光扫描的需求。
优选的,像散补偿器件可以为空间光调制器,需要加载柱面镜所对应的相位全息图,其焦距与高速扫描一行所需的时间Tscan相对应,为
Figure GDA0003207018780000094
空见光调制器对激光的反射率可以达到80%以上,使紧聚焦激光点的功率满足高速激光扫描的需求。
聚焦物镜,用于对激光束进行紧聚焦。所述聚焦物镜的数值孔径大于0.7。
观察组件,用于对激光加工过程进行在线观察。其包括依次放置且位于同一光路中的分光组件、管镜与图像传感器,工作时,分光组件使激光入射聚焦物镜,并使加工过程中产生的荧光信号等通过管镜收集,并在图像传感器上成像。
优选的,分光组件可以为二向色平板分光镜。
优选的,分光组件可以为二向色分光棱镜。
图1为本发明实施例提供的一种基于声光偏转器的双光子聚合激光直写加工***架构图,如图1所示,包括:超快激光器1,声光强度调制器2,扩束镜3,扫场中心角色散补偿器件6,二维声光偏转器9,扫场边缘角色散补偿器件14,像散补偿器件15,第一导光器件16,第二导光器件17,第一镜组18,第二镜组19,分光器件20,聚焦物镜21,光刻胶22,载物台23,管镜24,图像传感器25以及控制器26。
扫场中心角色散补偿器件6包括角色散器件4和中继镜5;二维声光偏转器9包括第一一维声光偏转器7和第二一维声光偏转器8;扫场边缘角色散补偿器件14包括第一双凸透镜10弯月透镜11,双凹透镜12和第二双凸透镜13。
二维声光扫描组件,如图1所示,包括依次放置的超快激光器1,声光强度调制器2、扩束镜3、扫场中心角色散补偿器件6、二维声光偏转器9和扫场边缘角色散补偿器件14。工作时,超快激光器1发出超快激光;经过声光强度调制器2,调节激光的功率;受调制后的激光束经过扩束镜3,进行准直扩束,接着经过扫场中心角色散补偿器件6,对二维声光偏转器9扫场中心的角色散的补偿;再经过二维声光偏转器9,对经过的激光束进行偏转;最后经过扫场边缘角色散补偿器件14,对扫场边缘的角色散进行补偿。
所述二维声光偏转器9由两个正交放置的第一一维声光偏转器7和第二一维声光偏转器8组成。
优选的,声光强度调制器2与第一一维声光偏转器7和第二一维声光偏转器8分别由控制器26控制。第一一维声光偏转器7的扫描方向与第二一维声光偏转器8的扫描方向垂直。可以由控制器26控制第一一维声光偏转器7进行高速行扫描,扫描完一行后,再控制第二一维声光偏转器8改变行扫描位置,进而完成整个加工平面的扫描。在控制器26控制二维声光偏转器完成平面扫描的过程中,同时控制声光强度调制器2进行光强度调制,这样就能在加工平面上扫描出特定的图形。
所述扫场中心角色散补偿器件6用于补偿扫场中心处的角色散,其在超快激光中心波长λ0处的角色散与二维声光偏转器9的扫场中心的角色散等大反向。二维声光偏转器9的扫场中心的角色散值为
Figure GDA0003207018780000101
其中,f0为二维声光偏转器的中心驱动频率,v为二维声光偏转器的声速。
优选的,所述扫场中心角色散补偿器件6包括依次放置的角色散器件4与中继镜5。超快激光以特定角度入射角色散器件4,使从角色散器件4出射的激光功率达到最大,能量利用率最高,此时角色散器件4在超快激光中心波长λ0处的角色散值为α;中继镜5的光焦度为零,在超快激光中心波长λ0处的角放大率为β,满足
Figure GDA0003207018780000111
这样便使扫场中心角色散补偿器件产生的角色散与扫场中心处的角色散等大反向,补偿了扫场中心处的像散。
优选的,扫场中心角色散补偿器件6的主平面与二维声光偏转器9中的一维声光偏转器7的夹角为45°。
所述扫场边缘角色散补偿器件14用于补偿二维声光偏转器9的扫场边缘的角色散,其产生的角色散与扫场边缘处的角色散等大反向。扫场边缘处的角色散值为
Figure GDA0003207018780000112
其中,θ为光束偏转角,f1、f2分别为二维声光偏转器9中两个一维声光偏转器在光束偏转角θ下的驱动频率,f0为二维声光偏转器9的中心驱动频率,v为二维声光偏转器9的声速,而扫场边缘角色散补偿器件14在不同偏转角θ下的角色散值为
Figure GDA0003207018780000113
与扫场边缘处的角色散等大反向,因此能够补偿扫场边缘角色散。
优选的,所述扫场边缘角色散补偿器件14包括前镜组和后镜组。
作为进一步优选的,所述前镜组包括依次放置的双凸透镜10与弯月透镜11。其中双凸透镜10的材料为H-K9L,前表面曲率半径为48.12mm,后表面曲率半径为-31.16mm,前后表面间距为6mm;弯月透镜11的材料为H-ZF88,前表面曲率半径为-31.03mm,后表面曲率半径为-119.94mm,前后表面间距为2mm。
作为进一步优选的,所述后镜组包括依次放置的双凹透镜12与双凸透镜13。其中双凹透镜12的材料为H-K9L,前表面曲率半径为-95.81mm,后表面曲率半径为75.26mm,前后表面间距为3.49mm;双凸透镜13的材料为H-ZF88,前表面曲率半径为127.94mm,后表面曲率半径为-106.47mm,前后表面间距为6mm。
所述像散补偿器件15用于校正第一一维声光偏转器7高速扫描引入的像散。该像散引起光束在第一一维声光偏转器7的扫描方向上聚焦,其在超快激光中心波长λ0处的焦距
Figure GDA0003207018780000121
其中,v为第一一维声光偏转器7的声速,Tscan为高速扫描一行所需的时间,Δf为一维声光偏转器7的驱动频率的带宽。而像散补偿器件15在第一一维声光偏转器7的扫描方向上的焦距与第一一维声光偏转器7高速扫描引起的光束聚焦的焦距等大反向,为
Figure GDA0003207018780000122
这样就可以补偿第一一维声光偏转器7高速扫描引入的像散。
所述导光组件由导光器件16和导光器件17组成,用于转折光束。所述中继组件由镜组18与镜组19组成,镜组18的后焦面与镜组19的前焦面重合,构成4F中继***,用于将光束导入聚焦物镜21。
所述聚焦物镜21,用于对激光束进行紧聚焦,将激光束聚焦至光刻胶22内部,光刻胶22位于聚焦物镜21与载物台23之间。所述聚焦物镜21的数值孔径大于0.7。
所述观察组件,用于对激光加工过程进行在线观察。其包括依次放置且位于同一光路中的分光器件20、管镜24与图像传感器25,工作时,分光器件20使激光入射聚焦物镜21,并使加工过程中产生的荧光信号等通过管镜24收集,并在图像传感器25上成像,控制器26控制图像传感器25,用于实现在线观察。
在一个示例中,如图2所示,所述扫场中心角色散补偿器件6可以为折射棱镜401与中继镜5。折射棱镜401的顶角θc=π-2*arctan(n),其中n为折射棱镜401在超快激光中心波长处的折射率。所述超快激光的偏振方向与超快激光在折射棱镜中发生折射的折射面平行,入射角θin=arctan(n),出射角θout=θin,此时激光在经过棱镜折射面时没有反射,能量利用率高。含有不同波长成分λ123的超快激光沿光束600所示的方向射入折射棱镜401,激光的不同波长成分在折射棱镜401中的折射率不同,因此沿不同的出射角从折射棱镜401射出,不同波长成分所对应的出射角之差为角色散。折射棱镜401在超快激光中心波长λ0处的角色散值为α,随后激光经过中继镜5,中继镜角放大率为β,出射激光的角色散
Figure GDA0003207018780000131
其中f0为二维声光偏转器9的中心驱动频率,v为二维声光偏转器9的声速,即出射激光的角色散与二维声光偏转器9的扫场中心的角色散等大反向,这样便可以实现对二维声光偏转器9扫场中心的角色散的补偿。
在一个示例中,如图3所示,所述扫场中心角色散补偿器件6可以为衍射光栅402与中继镜5。所述超快激光射入衍射光栅402的入射角θin=γ,其中γ为所述衍射光栅的刻槽面与光栅面的夹角,此时衍射光栅402对激光的衍射效率最大,能量利用率最高。含有不同波长成分λ123的超快激光沿光束600所示的方向射入衍射光栅402,激光的不同波长成分经过周期相同的光栅后的衍射角度不同,因此沿不同的出射角从衍射光栅402射出,不同波长成分所对应的出射角之差为角色散。衍射光栅402在超快激光中心波长λ0处的角色散值为α。随后激光经过中继镜5,中继镜角放大率为β,出射激光的角色散为
Figure GDA0003207018780000132
其中,f0为二维声光偏转器9的中心驱动频率,v为二维声光偏转器9的声速,即出射激光的角色散与二维声光偏转器9的扫场中心的角色散等大反向,这样便可以实现对二维声光偏转器9扫场中心的角色散的补偿。
在一个示例中,如图4所示,图4中(a)为二维声光偏转器9的扫场边缘光斑测试图,该光斑带有角色散,在角色散方向上光斑拉伸变形;图4中(b)为利用扫场边缘角色散补偿器件14补偿扫场边缘角色散后的光斑测试图,该光斑角色散得到补偿,在角色散方向上的拉伸变形消失,光斑变为圆形。
在一个示例中,如图5所示,所述像散补偿器件15可以为柱面镜1501。在第一一维声光偏转器7高速扫描方向上聚焦的光束1500经过柱面镜1501,柱面镜1501的焦距为
Figure GDA0003207018780000141
其中v为第一一维声光偏转器7的声速,其中,第一一维声光偏转器7和第二一维声光偏转器8的声速是相同的,都等于二维声光偏转器的声速,Tscan为高速扫描一行所需的时间,Δf为第一一维声光偏转器7的驱动频率的带宽。这样像散补偿器件15在第一一维声光偏转器7的扫描方向上的焦距与第一一维声光偏转器7高速扫描引起的光束聚焦的焦距等大反向,就可以补偿第一一维声光偏转器7高速扫描引入的像散。经过补偿后出射的光束1503为准直光束。
在一个示例中,如图6所示,所述像散补偿器件15可以为空间光调制器1502。在第一一维声光偏转器7高速扫描方向上聚焦的光束1500经过空间光调制器1502,光束1500的波前得到调制,用于调制的波前函数为
Figure GDA0003207018780000142
Figure GDA0003207018780000143
x为第一一维声光偏转器7高速扫描方向上的坐标,其中v为第一一维声光偏转器7的声速,Tscan为高速扫描一行所需的时间,Δf为第一一维声光偏转器7的驱动频率的带宽。这样像散补偿器件15在第一一维声光偏转器7的扫描方向上的焦距与第一一维声光偏转器7高速扫描引起的光束聚焦的焦距等大反向,就可以补偿第一一维声光偏转器7高速扫描引入的像散。调制后光束1500的波前变为平面波,所出射的光束1503为准直光束。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于声光偏转器的双光子聚合激光直写加工***,其特征在于,包括:超快激光器、扩束器、扫场中心角色散补偿器件、二维声光偏转器、扫场边缘角色散补偿器件、像散补偿器件以及聚焦物镜;
所述超快激光器用于发射超快激光;
所述扩束器用于对超快激光进行准直扩束;准直扩束后的激光依次经过所述扫场中心角色散补偿器件和所述二维声光偏转器;
所述扫场中心角色散补偿器件用于根据所述二维声光偏转器的参数对二维声光偏转器扫场中心的角色散进行预补偿;
所述二维声光偏转器用于对扫场中心角色散预补偿后的激光进行预设角度的偏转,使偏转后的激光满足激光直写的需求;所述二维声光偏转器由两个正交放置的一维声光偏转器组成;
经过所述二维声光偏转器偏转后的激光依次经过所述扫场边缘角色散补偿器件和所述像散补偿器件,所述扫场边缘角色散补偿器件用于对二维声光偏转器扫场边缘的角色散进行补偿;所述像散补偿器件用于对二维声光偏转器对激光进行偏转过程中引入的像散进行补偿;
所述聚焦物镜用于对所述像散补偿器件补偿后的激光进行紧聚焦后出射到光敏材料,以对光敏材料进行双光子聚合激光直写,并通过所述二维声光偏转器对所述预设角度进行控制,以实现对光敏材料不同位置的双光子聚合激光直写。
2.根据权利要求1所述的双光子聚合激光直写加工***,其特征在于,所述扫场中心角色散补偿器件包括:依次放置的角色散器件和中继镜;
所述二维声光偏转器扫场中心处的角色散值为
Figure FDA0003207018770000011
其中,f0为二维声光偏转器的中心驱动频率,v为二维声光偏转器的声速;
所述超快激光以预设入射角入射到角色散器件,使从角色散器件出射的激光功率达到最大,能量利用率最高;当从角色散器件出射的激光功率达到最大时,所述角色散器件在超快激光中心波长λ0处的角色散值为α;所述中继镜的光焦度为零,在超快激光中心波长λ0处的角放大率为β;
Figure FDA0003207018770000021
3.根据权利要求1所述的双光子聚合激光直写加工***,其特征在于,所述扫场边缘角色散补偿器件包括:前镜组和后镜组;
所述前镜组包括依次放置的双凸透镜和弯月透镜,所述后镜组包括依次放置的双凹透镜与双凸透镜;
所述扫场边缘角色散补偿器件产生的角色散与扫场边缘处的角色散等大反向;所述扫场边缘处的角色散值为
Figure FDA0003207018770000022
其中,θ为光束偏转角,f1、f2分别为两个一维声光偏转器在光束偏转角θ下的驱动频率。
4.根据权利要求1所述的双光子聚合激光直写加工***,其特征在于,所述像散补偿器件在光束聚焦方向上的焦距fc与二维声光偏转器对激光进行偏转过程中像散引起的光束聚焦的焦距等大反向,为
Figure FDA0003207018770000023
其中,Tscan为二维声光偏转器扫描一行所需的时间,Δf为二维声光偏转器的驱动频率的带宽。
5.根据权利要求2所述的双光子聚合激光直写加工***,其特征在于,所述角色散器件为折射棱镜,所述折射棱镜的顶角θc=π-2*arctan(n),其中,n为折射棱镜在超快激光中心波长λ0处的折射率,所述超快激光的偏振方向与超快激光在折射棱镜中发生折射的折射面平行,所述预设入射角θin=arctan(n),出射角θout=θin
6.根据权利要求2所述的双光子聚合激光直写加工***,其特征在于,所述角色散器件为衍射光栅,所述预设入射角θin=γ,其中,γ为衍射光栅的刻槽面与光栅面的夹角。
7.根据权利要求4所述的双光子聚合激光直写加工***,其特征在于,所述两个正交放置的一维声光偏转器包括:第一一维声光偏转器和第二一维声光偏转器;
所述第一一维声光偏转器用于对激光高速扫描,所述激光在高速扫描的方向上聚焦,引入像散;
所述第二一维声光偏转器在第一一维声光偏转器完成一行的高速扫描后,在其高速扫描的正交方向上改变下一行的扫描位置,以实现对激光进行预设角度的偏转。
8.根据权利要求7所述的双光子聚合激光直写加工***,其特征在于,所述像散补偿器件为柱面镜;
所述柱面镜的焦距为
Figure FDA0003207018770000031
所述像散补偿器件在第一一维声光偏转器的扫描方向上的焦距与第一一维声光偏转器高速扫描引起的光束聚焦的焦距等大反向。
9.根据权利要求7所述的双光子聚合激光直写加工***,其特征在于,所述像散补偿器件为空间光调制器;
所述空间光调制器用于调制的波前函数为
Figure FDA0003207018770000032
其中,x为第一一维声光偏转器高速扫描方向上的坐标;所述空间光调制器在第一一维声光偏转器的扫描方向上的焦距与第一一维声光偏转器高速扫描引起的光束聚焦的焦距等大反向。
10.根据权利要求1至9任一项所述的双光子聚合激光直写加工***,其特征在于,所述聚焦物镜的数值孔径大于0.7。
CN202110045996.8A 2021-01-08 2021-01-14 一种基于声光偏转器的双光子聚合激光直写加工*** Active CN112859538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/501,183 US11982945B2 (en) 2021-01-08 2021-10-14 Two-photon-polymerization laser direct writing system based on acousto-optic deflector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021100253382 2021-01-08
CN202110025338 2021-01-08

Publications (2)

Publication Number Publication Date
CN112859538A CN112859538A (zh) 2021-05-28
CN112859538B true CN112859538B (zh) 2021-10-08

Family

ID=76003683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110045996.8A Active CN112859538B (zh) 2021-01-08 2021-01-14 一种基于声光偏转器的双光子聚合激光直写加工***

Country Status (2)

Country Link
US (1) US11982945B2 (zh)
CN (1) CN112859538B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874790B (zh) * 2019-03-29 2024-05-28 迈康尼股份公司 长扫掠长度duv微光刻光束扫描声光偏转器和光学器件设计
EP4163083B1 (de) * 2021-10-06 2024-04-24 UpNano GmbH Verfahren und vorrichtung zur lithographiebasierten generativen fertigung eines dreidimensionalen bauteils
CN113909677B (zh) * 2021-10-22 2023-10-31 吉林大学 一种振镜辅助循环扫描的双光子聚合高功率曝光方法及***
WO2024073400A1 (en) * 2022-09-28 2024-04-04 Massachusetts Institute Of Technology Line scanning temporally focused two-photon lithography system
US20240152022A1 (en) * 2022-11-04 2024-05-09 Orbotech Ltd. Passive dispersion compensation for an acousto-optic deflector
CN115805365B (zh) * 2023-01-17 2023-05-26 武汉铱科赛科技有限公司 一种复合偏转激光填充扫描***、方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037967A (en) * 1996-12-18 2000-03-14 Etec Systems, Inc. Short wavelength pulsed laser scanner
CN202199931U (zh) * 2011-06-15 2012-04-25 中科中涵激光设备(福建)股份有限公司 一种基于声光效应加工微圆孔的激光扫描装置
CN103592803A (zh) * 2013-11-13 2014-02-19 华中科技大学 基于声光偏转器的多色激光束动态补偿同步扫描方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015067772A1 (en) * 2013-11-08 2015-05-14 Institut National De La Sante Et De La Recherche Medicale (Inserm) Adjustable speed fast laser scanning system and two-photon microscope associated
CN104155851B (zh) * 2014-08-01 2017-11-07 南方科技大学 一种飞秒激光双光子聚合微纳加工***及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037967A (en) * 1996-12-18 2000-03-14 Etec Systems, Inc. Short wavelength pulsed laser scanner
CN202199931U (zh) * 2011-06-15 2012-04-25 中科中涵激光设备(福建)股份有限公司 一种基于声光效应加工微圆孔的激光扫描装置
CN103592803A (zh) * 2013-11-13 2014-02-19 华中科技大学 基于声光偏转器的多色激光束动态补偿同步扫描方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Directional Assembly of ZnO Nanowires via Three-Dimensional Laser Direct Writing;Jing Long etc.;《NANO LETTERS》;20200601(第20期);全文 *
Polarized second-harmonic generation optical microscopy for laser-directed assembly of ZnO nanowires;Ruiqing Wang et al.;《Optics Letters》;20190930;第44卷(第17期);全文 *

Also Published As

Publication number Publication date
CN112859538A (zh) 2021-05-28
US11982945B2 (en) 2024-05-14
US20220221796A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
CN112859538B (zh) 一种基于声光偏转器的双光子聚合激光直写加工***
CN111458776B (zh) 一种飞秒光丝干涉直写啁啾体光栅制备方法及装置
US20200081237A1 (en) Light-Scanning Microscope with Simplified Optical System, More Particularly with Variable Pupil Position
JP5890536B2 (ja) 角度分散を補償する装置及び方法
KR20000068681A (ko) 적응제어렌즈를 사용한 현미경
CN113515017B (zh) 一种基于aod扫描的双光束高速激光直写方法与装置
CN110174769A (zh) 光照射装置及方法、具备光照射装置的光加工装置及方法
JP2008250303A (ja) シート光を発生するための光学装置
KR102253566B1 (ko) 저 잡음, 높은 안정성, 심 자외선, 연속파 레이저
CN105807412A (zh) 一种基于自由曲面整形的全内反射显微方法与装置
US20140009811A1 (en) Flat Field Telecentric Scanner With Diffraction Limited Performance
CN113960892B (zh) 可连续像旋转调制的高速并行激光直写光刻的方法与装置
CN112859534A (zh) 一种基于边缘光抑制阵列的并行直写装置和方法
JP5101393B2 (ja) レーザ顕微鏡
US20240176244A1 (en) Method and apparatus for direct writing photoetching by parallel interpenetrating super-resolution high-speed laser
EP3918397B1 (en) Apparatus and method for manipulating a focus of excitation light on or in a sample and microscope
CN113985708A (zh) 可连续像旋转调制的超分辨高速并行激光直写方法与装置
CN113059807B (zh) 基于均匀活性光片的高轴向分辨率三维打印方法和装置
CN113834515B (zh) 一种高时空分辨双光子激光直写原位红外探测装置与方法
CN113900079A (zh) 一种用于全光超快成像的补偿校正装置及方法
CN113909698B (zh) 一种并行穿插高速激光直写光刻的方法与装置
KR20210020451A (ko) 레이저 가공 장치 및 레이저 가공 방법
CN218156776U (zh) 大气湍流模拟器
CN111596464B (zh) 一种调控聚焦光斑三维方向强度的装置和方法
JP7244888B1 (ja) 光変調装置及び集光装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant