CN112857995A - 基于纳米压痕技术的锂离子电池电极力学性能测试评价方法 - Google Patents

基于纳米压痕技术的锂离子电池电极力学性能测试评价方法 Download PDF

Info

Publication number
CN112857995A
CN112857995A CN202110029029.2A CN202110029029A CN112857995A CN 112857995 A CN112857995 A CN 112857995A CN 202110029029 A CN202110029029 A CN 202110029029A CN 112857995 A CN112857995 A CN 112857995A
Authority
CN
China
Prior art keywords
lithium ion
battery
ion battery
mechanical property
pole piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110029029.2A
Other languages
English (en)
Inventor
栾伟玲
陈莹
吴森明
陈浩峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202110029029.2A priority Critical patent/CN112857995A/zh
Priority to US17/301,894 priority patent/US11555860B2/en
Publication of CN112857995A publication Critical patent/CN112857995A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种基于纳米压痕技术的锂离子电池电极力学性能测试方法,包括以下步骤:将组装好的锂离子电池与电化学测试设备相连,设定不同的测试工况,使电池进行循环充放电实验,得到电池容量衰减曲线;将电池拆解并把电极取出;将循环后极片以及初始未循环极片表面分别刮下些许粉末平铺于不同的冷镶模具中,将冷镶溶液倒入模具;待液体完全固化冷却将样品分别从模具中取出;将样品表面抛光处理后进行力学性能检测并分析电极的力学性能衰退规律。

Description

基于纳米压痕技术的锂离子电池电极力学性能测试评价方法
技术领域
本发明属于锂离子电池电极材料纳米力学性能测试领域,具体涉及基于纳米压痕技术的 电池电极机械性能研究方法,用于分析锂离子电池电极的力学性能衰退规律。该方法可在锂 离子电池进行电化学测试后对电极材料进行纳米压痕测试,从而获得不同工况下电极材料的 机械力学性能。
背景技术
锂离子电池因其高能量密度、低自放电率、无记忆效应、高安全性等优点,广泛应用于 电子产品以及新能源汽车领域。在锂离子电池充放电过程中,随着锂离子的嵌入脱出,电极 材料的活性物质结构会发生变化,进而引起体积的膨胀和收缩,从而影响电极的机械性能, 这也是电池容量衰退的主要原因之一。
由于电极活性物质的颗粒尺寸为微米尺度,其力学性能的微观表征不能采用常规的力学 试验方法,需要借助纳米压痕技术。纳米压痕方法是在上世纪九十年代由Oliver和Pharr等 人提出,该方法是一种微区域、微损伤的测试方法,能在微米尺度的样品上进行测试,测试 得到的载荷位移数据经过分析计算能得到材料的微观力学性能参数值,如杨氏模量和硬度, 这对于锂离子电池电极性能衰退的机理具有重要的意义。
对于电池电极的力学性能测试,已有学者进行了相关研究。Zhao团队对多晶三元正极材 料进行了一系列的纳米压痕实验,他们研究了循环次数对电极材料的杨氏模量以及硬度的影 响(R.Xu,H.Sun,L.Vasconcelos,K.Zhao.Mechanical and StructuralDegradation of LiNixMnyCozO2 Cathode in Li-Ion Batteries:An Experimental Study[J].Journal of The Electrochemical Society,2017,164(13):A3333-A3341)。该方法将不同循环次数后的正极(包含 活性物质层和集流体)嵌入树脂中制样抛光处理,可以测试得到电极材料的力学性能。由于 电极活性物质层较薄,且纳米压痕技术对于样品表面的平整度和粗糙度要求较高,该方法制 样测试较为困难,很难广泛应用。
发明内容
本发明针对背景技术提出的问题,提出了一种基于纳米压痕技术锂离子电池电极力学性 能测试评价方法。该方法较为简单有效,可以获得不同工况下电极材料的机械力学性能。
本发明是通过以下技术方案实现的:
基于纳米压痕技术锂离子电池电极力学性能测试评价方法,其特征在于,所述包括以下 步骤:
(1)锂离子电池电化学循环测试:
S1.将组装好的锂离子电池与电化学测试设备相连,使待测试的锂电池处于预设的测试工 况中,进行预设循环次数的充放电,获得电池容量衰减曲线;
(2)电池拆解及电极取出:将步骤(1)S1中得到的电池置于充满氩气的手套箱内进行拆 解,并将极片取出,用碳酸二甲酯清洗极片不少于三次,并将极片置于室温真空干燥箱中不 少于3h;
(3)纳米压痕样品制备:
S2.将丙烯酸树脂或环氧树脂与固化剂以1:0.8的质量比混合搅拌均匀;
S3.将步骤(2)所得的极片以及初始未进行充放电测试的极片表面分别刮下粉末平铺于 不同的冷镶模具中,将S2中溶液倒入模具,待液体完全固化冷却;
S4.将S3所得样品分别从模具中取出,样品表面先后用粒度为3μm、1μm金刚石抛光剂 以及0.05μm的二氧化硅抛光剂进行抛光处理使样品表面光滑,最后用异丙醇清洗样品;
(4)样品的力学性能检测:将步骤(3)S4所得样品置于纳米压痕仪中,在光镜下寻找活性 物质颗粒并进行标记,使用Berkovich压头,根据Oliver-Pharr方法执行纳米压痕测试,得到 样品标记微区域的杨氏模量E和硬度H;
(5)评价电极的力学性能衰退规律:从步骤(4)的力学性能测试得到,初始未循环充放电 的极片杨氏模量和硬度分别为E0和H0,循环充放电后极片的杨氏模量和硬度分别为Ec和Hc, 计算杨氏模量衰减率为ED=(E0-EC)/E0,硬度衰减率为HD=(H0-HC)/H0,进一步将衰减率与所 对应的电化学循环次数(即充放电次数)进行双参数对数拟合:y=a*ln(x+b),可得到锂离子 电池电极的性能衰退规律,其中x是电化学循环次数,y是杨氏模量衰减率或硬度衰减率,a、 b是拟合参数。
步骤(1)所述的锂离子电池为扣式电池,所用到的正负极材料,电解液,隔膜等皆为市售 材料,正极材料包括尖晶石结构材料,橄榄石结构材料,层状结构材料以及富锂材料,正极 材料的厚度范围为10-40μm,电解质包括聚氧乙烯及其衍生物体系的聚合物固态电解质或以 六氟磷酸锂为溶质和有机溶剂为溶剂的液态电解质,负极材料为锂片,碳负极材料以及硅碳 负极材料中的一种。
所述液态电解质的有机溶剂为选自碳酸二甲酯,碳酸乙烯酯,碳酸丙烯酯,碳酸二乙酯 以及碳酸甲乙酯中的一种或几种。
步骤(2)所述的充满氩气的手套箱水氧浓度低于0.1mg/L。
步骤(3)所述的固化剂为脂肪胺、脂环映以及聚酰胺。
有益效果
本发明提供了一种基于纳米压痕技术锂离子电池电极力学性能的测试评价方法。可以对 不同工况电化学循环后的锂离子电池电极进行材料微观结构观测并得到活性颗粒的力学性能 参数,可用于分析锂离子电池电极的性能衰退规律,并为电池的电化学力学耦合模拟提供输 入参数。
采用本发明的方法,除了适用于锂离子电池电极力学性能研究,也适用于其它类似材料 的力学性能测定。
附图说明
图1是本发明基于纳米压痕技术测试评价锂离子电池电极力学性能的流程图;
图2是本发明的锂离子电池容量随循环次数的衰减曲线;
图3是本发明的纳米压痕测试样品微区域测试微观形貌图;
图4是本发明的纳米压痕测试样品中活性颗粒的杨氏模量和硬度随电化学循环次数的关 系图;
图5是本发明的纳米压痕测试样品中活性颗粒的杨氏模量衰减率与电化学循环次数的关 系拟合曲线。
具体实施方式
以下结合说明书附图及具体实施示例,对本发明进一步阐述说明,但并不限制本发明专 利的保护范围。
实施实例:基于纳米压痕技术的锂离子电池电极力学性能测试评价方法,具体包括以下 步骤;
锂离子电池组装:用三元单晶正极NCM523,Li负极,六氟磷酸锂电解液,Celgard-2500 隔膜等材料在充满氩气的手套箱(水氧浓度低于0.1mg/L)内组装多个CR-2025扣式电池,并 在手套箱内静置6h;
锂离子电池电化学循环测试:将电池取出与电化学测试设备相连,在恒电位2.8-4.3V电 压窗口下进行充放电倍率为1C的电化学循环测试,设置不同电池的循环次数为25,50,75以 及100次,得到电池容量随循环次数的衰减曲线如图2所示,说明上述不同电池电化学性能 基本保持一致。
电池拆解及电极取出:将循环充放电完成后的电池置于充满氩气的手套箱内进行拆解, 并用镊子将极片取出,用碳酸二甲酯清洗极片三次,并将极片置于室温真空干燥箱中3h;
纳米压痕样品制备:将循环后极片以及初始未进行循环测试的极片表面分别刮下些许粉 末平铺于不同的冷镶模具中,将丙烯酸树脂粉末与脂肪胺固化剂以1:0.8的质量比混合搅拌 均匀分别倒入模具,待液体完全固化冷却后将样品分别从模具中取出,样品表面先后用粒度 为3μm,1μm金刚石抛光剂以及0.05μm的二氧化硅抛光剂进行抛光处理使样品表面光滑如 镜面,最后用异丙醇清洗样品,完成纳米压痕样品制备如图3所示;
样品的力学性能检测:将样品分别置于纳米压痕仪中,在光镜下寻找活性物质颗粒并进 行标记,使用Berkovich压头,根据Oliver-Pharr方法执行纳米压痕测试,如图4所示,得 到样品标记微区域的杨氏模量E和硬度H;
电极的力学性能衰退规律分析:将未循环极片以及循环25,50,75,100次后极片的力 学数据进行分析,得到极片杨氏模量和硬度与电化学循环次数的关系图如图4所示,初始极 片与循环后极片的杨氏模量分别为E0和Ec,计算杨氏模量衰减率为ED=(E0-EC)/E0,进一步 将衰减率与所对应的电化学循环次数进行双参数对数拟合:y=a*ln(x+b),可得到锂离子电池 电极的性能衰退规律:y=0.07*ln(x+1.12)如图5所示;
结果表明随着电化学循环的进行,单晶NMC颗粒的力学性能显著下降,弹性模量随循 环充放电次数的减少而减小,获得的NMC单晶力学性能随循环次数的定量变化规律为电池 电极后续电化学力学行为的建模分析提供了重要输入参数,并对NMC材料在循环期间的损 伤积累进行了评价。

Claims (5)

1.一种基于纳米压痕技术锂离子电池电极力学性能测试评价方法,其特征在于,所述包括以下步骤:
(1)锂离子电池电化学循环测试:
S1.将组装好的锂离子电池与电化学测试设备相连,使待测试的锂电池处于预设的测试工况中,进行预设循环次数的充放电,获得电池容量衰减曲线;
(2)电池拆解及电极取出:将步骤(1)S1中得到的电池置于充满氩气的手套箱内进行拆解,并将极片取出,用碳酸二甲酯清洗极片不少于三次,并将极片置于25℃真空干燥箱中不少于3h;
(3)纳米压痕样品制备:
S2.将丙烯酸树脂或环氧树脂与固化剂以1:0.8的质量比混合搅拌均匀;
S3.将步骤(2)所得的极片以及初始未进行充放电测试的极片表面分别刮下粉末平铺于不同的冷镶模具中,将S2中溶液倒入模具,待液体完全固化冷却;
S4.将S3所得样品分别从模具中取出,样品表面先后用粒度为3μm、1μm金刚石抛光剂以及0.05μm的二氧化硅抛光剂进行抛光处理使样品表面光滑,最后用异丙醇清洗样品;
(4)样品的力学性能检测:将步骤(3)S4所得样品置于纳米压痕仪中,在光镜下寻找活性物质颗粒并进行标记,使用Berkovich压头,根据Oliver-Pharr方法执行纳米压痕测试,得到样品标记微区域的杨氏模量E和硬度H;
(5)评价电极的力学性能衰退规律:从步骤(4)的力学性能测试得到,初始未循环充放电的极片杨氏模量和硬度分别为E0和H0,循环充放电后极片的杨氏模量和硬度分别为Ec和Hc,计算杨氏模量衰减率为ED=(E0-EC)/E0,硬度衰减率为HD=(H0-HC)/H0,进一步将衰减率与所对应的电化学循环次数进行双参数对数拟合:y=a*ln(x+b),得到锂离子电池电极的性能衰退规律,其中x是电化学循环次数,y是杨氏模量衰减率或硬度衰减率,a、b是拟合参数。
2.如权利要求1所述的电池电极力学性能测试评价方法,其特征在于,步骤(1)所述的锂离子电池为扣式电池,所用的正负极材料、电解液、隔膜皆为市售品,正极材料为尖晶石结构材料,橄榄石结构材料,层状结构材料以及富锂材料中的一种,正极材料的厚度范围为10-40μm;电解质包括聚氧乙烯及其衍生物体系的聚合物固态电解质或以六氟磷酸锂为溶质和有机溶剂为溶剂的液态电解质,负极材料为锂片,碳负极材料以及硅碳负极材料中的一种。
3.如权利要求1所述的电池电极力学性能测试评价方法,其特征在于,步骤(2)所述的充满氩气的手套箱水氧浓度低于0.1mg/L。
4.如权利要求1所述的电池电极力学性能测试评价方法,其特征在于,步骤(3)所述的固化剂为脂肪胺、脂环映以及聚酰胺。
5.如权利要求2所述的电池电极力学性能测试评价方法,其特征在于,所述液态电解质的有机溶剂为选自碳酸二甲酯,碳酸乙烯酯,碳酸丙烯酯,碳酸二乙酯以及碳酸甲乙酯中的一种或几种。
CN202110029029.2A 2021-01-08 2021-01-08 基于纳米压痕技术的锂离子电池电极力学性能测试评价方法 Pending CN112857995A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110029029.2A CN112857995A (zh) 2021-01-08 2021-01-08 基于纳米压痕技术的锂离子电池电极力学性能测试评价方法
US17/301,894 US11555860B2 (en) 2021-01-08 2021-04-19 Method for testing and evaluating mechanical performance of lithium ion battery electrode based on nano-indentation technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110029029.2A CN112857995A (zh) 2021-01-08 2021-01-08 基于纳米压痕技术的锂离子电池电极力学性能测试评价方法

Publications (1)

Publication Number Publication Date
CN112857995A true CN112857995A (zh) 2021-05-28

Family

ID=76002233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110029029.2A Pending CN112857995A (zh) 2021-01-08 2021-01-08 基于纳米压痕技术的锂离子电池电极力学性能测试评价方法

Country Status (2)

Country Link
US (1) US11555860B2 (zh)
CN (1) CN112857995A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018736A (zh) * 2021-11-14 2022-02-08 荆州文物保护中心 一种丝织品文物健康状况评估方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682346A (zh) * 2012-08-29 2014-03-26 住友电木株式会社 负极材料、负极活性物质、负极以及碱金属离子电池
CN107976347A (zh) * 2017-11-07 2018-05-01 合肥国轩高科动力能源有限公司 一种用于ncm正极材料径向元素分布表征的断面样品制备方法
US20190204194A1 (en) * 2018-01-04 2019-07-04 Purdue Research Foundation Apparatus to measure mechanical properties of electrodes during electrochemical reactions and method of using the same
CN111693736A (zh) * 2020-06-22 2020-09-22 湘潭大学 一种用于原子力显微镜表征的锂离子电池电极片的截面样品及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772063B (zh) * 2016-11-21 2018-03-20 华中科技大学 一种监测锂离子电池荷电状态和健康状态的方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682346A (zh) * 2012-08-29 2014-03-26 住友电木株式会社 负极材料、负极活性物质、负极以及碱金属离子电池
CN107976347A (zh) * 2017-11-07 2018-05-01 合肥国轩高科动力能源有限公司 一种用于ncm正极材料径向元素分布表征的断面样品制备方法
US20190204194A1 (en) * 2018-01-04 2019-07-04 Purdue Research Foundation Apparatus to measure mechanical properties of electrodes during electrochemical reactions and method of using the same
CN111693736A (zh) * 2020-06-22 2020-09-22 湘潭大学 一种用于原子力显微镜表征的锂离子电池电极片的截面样品及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
RONG XU ET AL.: "Mechanical and Structural Degradation of LiNixMnyCozO2 Cathode in Li-Ion Batteries: An Experimental Study", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *
戴翠英: "锂离子电池充放电过程中电极变形原位表征及力化耦合性能研究", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅱ辑》 *
杨平 等: "透水混凝土的抗冻性能研究", 《宁夏工程技术》 *
杨志明: "《计算方法及其matlab实现》", 31 August 2009 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018736A (zh) * 2021-11-14 2022-02-08 荆州文物保护中心 一种丝织品文物健康状况评估方法

Also Published As

Publication number Publication date
US11555860B2 (en) 2023-01-17
US20220221522A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
Luo et al. In-situ measurements of mechanical and volume change of LiCoO2 lithium-ion batteries during repeated charge–discharge cycling by using digital image correlation
Sauerteig et al. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries
CN107356877B (zh) 一种可实现锂离子电池循环寿命快速预测的方法
Zhu et al. The diffusion induced stress and cracking behaviour of primary particle for Li-ion battery electrode
Li et al. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling
Heubner et al. Electrochemical single-particle measurements of electrode materials for Li-ion batteries: Possibilities, insights and implications for future development
Liu et al. Effect of low-temperature aging on the safety performance of lithium-ion pouch cells under mechanical abuse condition: A comprehensive experimental investigation
CN107831444A (zh) 一种锂离子电池健康状态估计方法
CN117236264B (zh) 一种预测应力诱导锂离子电池容量衰减的方法
Zhu et al. Numerical analysis of the cyclic mechanical damage of Li-ion battery electrode and experimental validation
Dai et al. Effects of cycle times and C-rate on mechanical properties of copper foil and adhesive strength of electrodes in commercial LiCoO2 LIBs
Li et al. In-situ measurements of mechanical property and stress evolution of commercial graphite electrode
CN112698208A (zh) 原位测量锂电池材料杨氏模量和偏摩尔体积的***和方法
Li et al. Revealing the mechanism of stress rebound during discharging in lithium-ion batteries
CN112857995A (zh) 基于纳米压痕技术的锂离子电池电极力学性能测试评价方法
Wang et al. Coupled effect of SOC and SOH on tensile behaviors of lithium-ion battery electrodes
Yu et al. Experimental measurement of stress evolution in silicon carbide composite electrode during electrochemical cycling
CN102323249A (zh) 一种粘接剂粘结性能的定性分析方法
Legerstee et al. Scanning probe microscopy facility for operando study of redox processes on lithium ion battery electrodes
CN116539618A (zh) 一种基于深度学习的锂离子电池活性材料损伤程度测试方法
CN114384112A (zh) 一种锂离子电池电极表面sei膜的检测方法
CN108039479A (zh) 一种用于锂电池的阴极材料及其制备方法
Li et al. Real time characterization of the current collector's role on the electro-chemo-mechanical coupling performance of Si composite electrode
McMeeking et al. The role of solid mechanics in electrochemical energy systems such as lithium-ion batteries
Hong et al. Changes of adhesion properties for negative electrode and positive electrode under wet conditions and different states of charge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination