CN112831640B - 一种屈服强度≥980MPa奥氏体不锈钢的生产方法 - Google Patents

一种屈服强度≥980MPa奥氏体不锈钢的生产方法 Download PDF

Info

Publication number
CN112831640B
CN112831640B CN202011624871.2A CN202011624871A CN112831640B CN 112831640 B CN112831640 B CN 112831640B CN 202011624871 A CN202011624871 A CN 202011624871A CN 112831640 B CN112831640 B CN 112831640B
Authority
CN
China
Prior art keywords
stainless steel
temperature
nitriding
annealing
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011624871.2A
Other languages
English (en)
Other versions
CN112831640A (zh
Inventor
万响亮
柯睿
甘晓龙
胡丞杨
吴开明
赵杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Dongjin Enterprise Management Group Co.,Ltd.
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202011624871.2A priority Critical patent/CN112831640B/zh
Publication of CN112831640A publication Critical patent/CN112831640A/zh
Application granted granted Critical
Publication of CN112831640B publication Critical patent/CN112831640B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

一种屈服强度≥980MPa奥氏体不锈钢的生产方法:对厚度为3mm的不锈钢热轧板在室温下进行冷轧,轧制道次不低于4道次;进行渗氮,渗氮温度控制在456~628℃;进行高温退火:退火温度在989~1113℃;在冷却速度为3~24℃/s下冷却至室温。本发明不仅金相组织为全奥氏体,且不锈钢板厚度在0.39~0.6mm,屈服强度在980~1290MPa,抗拉强度在1112~1452MPa,延伸率在13.0~15.5%;冷轧是在室温下进行,在保持体心立方的马氏体结构情况下进行渗氮使氮含量提到最高;高温退火使马氏体组织切变为全奥氏体组织的同时仍然保持超细结构。

Description

一种屈服强度≥980MPa奥氏体不锈钢的生产方法
技术领域
本发明涉及不锈钢的生产方法,具体涉及一种屈服强度≥980MPa奥氏体不锈钢的生产方法。
背景技术
奥氏体不锈钢占世界不锈钢总产量的70%以上,该钢具有良好的耐腐蚀性能和高的塑韧性。然而,其晶粒为粗大的面心立方结构,导致应力作用下极易发生变形,屈服强度仅为200-300MPa。随着世界资源消耗等问题日趋突出,急需开发超高强度的奥氏体不锈钢,通过薄规格的超高强度奥氏体不锈钢替代低强度级别的厚钢板,已成为发展趋势,也是社会发展的必然选择。
目前,能提高不锈钢强度的同时保持奥氏体结构及高的塑韧性和耐腐蚀性能的有效方法很少。间隙原子氮的固溶能有效提高奥氏体不锈钢强度的同时保持高的塑韧性和耐腐蚀性能,然而氮在奥氏体不锈钢冶炼时难以添加,且奥氏体不锈钢渗氮过程氮元素在面心立方结构中扩散非常慢,制备的加氮奥氏体不锈钢中氮含量大多为0.6%以下,加氮的奥氏体不锈钢屈服强度通常小于450MPa。
大冷变形结合退火工艺也是一种提高奥氏体不锈钢强度的有效方法,利用大冷变形产生形变马氏体,随后退火发生逆相变获得超细晶奥氏体不锈钢。细晶强化在提高强度的同时还能保持良好的塑韧性和耐腐蚀性能。然而,大冷变形结合退火工艺制备的不锈钢难以同时获得超高强度和全奥氏体结构。这是因为短时退火获得超细晶粒的不锈钢具有超高强度,但也保留部分马氏体结构;退火时间延长会促使马氏体完全逆转变为奥氏体,此时也导致晶粒逐渐长大,对应的屈服强度迅速下降,该方法获得的具有全奥氏体结构的细晶不锈钢屈服强度难以超过700MPa。屈服强度级别在900MPa以上、全奥氏体结构、高的塑韧性和耐腐蚀性能的不锈钢尚无法制备。
中国专利公开号为CN104451082的文献中,公开了《一种晶粒尺寸小于100nm的304奥氏体不锈钢的制备方法》。该文献中采用三阶段冷轧-退火工艺处理,25-35%的压下量进行冷轧,随后在800-900℃保温5-20min后,多次重复后制备了晶粒尺寸小于100nm的304不锈钢。该方法制备的不锈钢屈服强度为1100-1200MPa,抗拉强度为1250-1350MPa。但是该工艺在800-900℃保温5-20min后,仍然会有部分应变诱导马氏体组织残留,不能算全奥氏体结构。如果继续退火消除马氏体结构,这期间必然导致奥氏体晶粒粗大,屈服强度则会急剧下降,难以得到屈服强度大于980MPa的全奥氏体结构不锈钢。
中国专利公开号为CN103088283A的文献中,公开了《一种奥氏体不锈钢分段加压固溶氮化催渗方法》。该文献中对奥氏体不锈钢采用500-700℃氮化预处理5-10小时,随后升温到900-1200℃进行固溶氮化处理1-20小时,得到渗氮层厚度约为90-311微米的奥氏体不锈钢。然而,该工艺制备的产品并没有给出N含量、强度和塑性的数据。根据工艺可知渗氮前奥氏体不锈钢组织为粗大奥氏体晶粒,在500-700℃区间渗氮,氮在奥氏体结构中扩散系数太小导致钢中氮含量并不会太高;此外该方法还要对不锈钢在900-1200℃保温1-20小时,高温条件下长时间退火会导致奥氏体不锈钢晶粒尺寸异常粗大,材料的屈服强度和抗拉强度会急剧下降,难以得到屈服强度大于980MPa的全奥氏体结构不锈钢。
发明内容
本发明的目的在于解决现有技术存在的强度级别与不锈钢为全奥氏体组织不能同时满足要求,且强度级别低的不足,提供一种厚度在0.39~0.60mm,屈服强度在980~1290MPa,抗拉强度在1112~1452MPa,延伸率在13.0~15.5%的奥氏体不锈钢的生产方法。
实现上述目的的措施:
一种屈服强度≥980MPa奥氏体不锈钢的生产方法,其步骤:
1)对厚度为3mm的不锈钢热轧板在室温下进行冷轧,轧制道次不低于4道次,轧制至0.39~0.6mm厚度;每道次压下率控制在33~43%;
2)进行渗氮,渗氮温度控制在456~628℃,渗氮时间在22~60min,渗氮气氛为10%NH3+60%N2+30%H2混合气,混合气流量在1.6~2.3L/min;
3)进行高温退火:退火温度在989~1113℃,并在此温度下保温28~58秒;
4)进行冷却,在冷却速度为3~24℃/s下冷却至室温。
优选地:所述渗氮温度控制在496~592℃,渗氮时间在29~53min,混合气流量在1.8~2.1L/min。
优选地:所述高温退火温度控制在989~1016℃,退火时间在38~58秒。
本发明主要工艺的机理及作用
本发明之所以控制冷轧每道次压下率在33~43%,是由于控制冷轧过程中的压下率和冷轧后的厚度,若每道次压下率过小,难以得到由大量形变马氏体构成的冷轧板,导致后续退火过程中氮原子渗入量较低,且退火后难以得到超细晶粒的奥氏体不锈钢;若每道次压下率过大,易损伤设备;若每道次压下率不均衡,易导致冷轧板中产生的形变马氏体分布不均,在后续退火过程中不锈钢组织的部分区域易残留马氏体或者奥氏体晶粒粗大。
本发明之所以进行渗氮,且控制渗氮温度在456~628℃,渗氮时间在22~60min,渗氮气氛为10%NH3+60%N2+30%H2混合气,混合气流量在1.6~2.3L/min,优选地渗氮温度控制在496~592℃,渗氮时间在29~53min混合气流量在1.8~2.1L/min,是由于若渗氮采用低的温度,使得钢中氮的扩散系数较小,难以获得较高的渗氮量;若渗氮采用高的温度,可导致马氏体结构通过逆相变为奥氏体组织,奥氏体中氮扩散系数太小,导致氮难以渗入到钢中。若渗氮采用短的时间,马氏体和奥氏体中静态再结晶效果不明显;若渗氮采用长的时间,极易导致再结晶结束后发生晶粒长大,获得的晶粒迅速粗化。若渗氮气氛中NH3的体积百分含量小于10%,难以达到最佳渗氮效果;若渗氮气氛中NH3的体积百分含量大于10%,渗氮效果变化幅度不大,且不经济环保。这都不利于得到高的氮含量和超细奥氏体结构。恰当的渗氮工艺能使得奥氏体不锈钢得到高的氮含量。
本发明之所以进行高温退火,且温度控制在989~1113℃,退火时间在28~58秒,优选地退火温度控制在989~1016℃,退火时间在38~58秒,此温度段退火能使形变马氏体组织通过切变机制快速逆转变为超细奥氏体结构。若退火温度过低,难以通过切变机制快速转变为奥氏体;若退火温度过高或保温时间过长,极易导致获得的奥氏体晶粒迅速粗化。这都不利于得到组织为超细全奥氏体晶粒的钢板。
本发明与现有技术相比,其特点:不仅金相组织为全奥氏体,且不锈钢板厚度在0.39~0.6mm,屈服强度在980~1290MPa,抗拉强度在1112~1452MPa,延伸率在13.0~15.5%,还在于:
1.本发明所述的冷轧是在室温下进行,而目前国内外利用冷轧—退火工艺制备纳米级奥氏体不锈钢,冷轧大多是低温或者是超低温进行。本发明更易于工业化生产。
2.本发明采用中温渗氮工艺,在保持体心立方的马氏体结构情况下进行渗氮,中温阶段体心立方的马氏体结构中氮原子扩散系数大,扩散速度快,可将不锈钢中氮含量提到最高。
3.本发明所述的高温退火工艺,在中温渗氮过程中形变马氏体发生回复再结晶,减少马氏体晶粒内部的位错,形成大量的亚晶界,获得晶粒尺寸在亚微米级的超细结构;随后的高温退火使得马氏体组织切变为全奥氏体组织的同时仍然保持超细结构。
附图说明
图1为不锈钢经本发明渗氮后的组织形貌图;
图2为不锈钢经本发明高温退火后组织形貌图。
具体实施方式
下面结合具体实施例对本发明进行进一步描述:
表1为本发明各实施例及对比例工艺主要参数控制列表;
表2为本发明各实施例及对比例力学性能检测情况列表。
本发明各实施例均按照以下步骤生产:
1)对不锈钢热轧板在室温下进行冷轧,轧制道次不低于4道次,轧制至0.39~0.6mm厚度;每道次压下率控制在33~43%;
2)进行渗氮,渗氮温度控制在456~628℃,渗氮时间在22~60min,渗氮气氛为10%NH3+60%N2+30%H2混合气,混合气流量在1.6~2.3L/min;
3)进行高温退火:退火温度在989~1113℃,并在此温度下保温28~58秒;
4)进行冷却,在冷却速度为3~24℃/s下冷却至室温。
表1本发明各实施例及对比例工艺主要参数控制列表
Figure BDA0002879061920000051
表2本发明各实施例及对比例力学性能检测情况列表
Figure BDA0002879061920000052
Figure BDA0002879061920000061
由上述表2可以看出,本发明实施例中的奥氏体不锈钢热轧板坯经过一系列轧制热处理,由本发明实施例1~6中产品相对于不同冷轧压下量的对比例7和改变退火温度工艺的对比例8和退火时间工艺的对比例9,在屈服强度、抗拉强度方面均具有良好的表现,尤其是屈服强度、抗拉强度等明显高于对比例,本发明实施例1~6中产品的屈服强度为980~1290MPa,抗拉强度为1112~1452MPa,延伸率为13.0~15.5%,成品厚度为0.39~0.48mm。
本发明的实施例仅为最佳例举,并非对技术方案的限定性实施。

Claims (3)

1.一种屈服强度≥980MPa奥氏体不锈钢的生产方法,其步骤:
1)对厚度为3mm的不锈钢热轧板在室温下进行冷轧,轧制道次不低于4道次,轧制至0.39~0.6mm厚度;每道次压下率控制在33~43%;
2)进行渗氮,渗氮温度控制在456~628℃,渗氮时间在22~60min,渗氮气氛为10%NH3+60%N2+30%H2混合气 ,混合气流量在1.6~2.3L/min;
3)进行高温退火:退火温度在989~1113℃,并在此温度下保温28~58秒;
4)进行冷却,在冷却速度为3~24℃/s下冷却至室温。
2.如权利要求1所述的一种屈服强度≥980MPa奥氏体不锈钢的生产方法,其特征在于:所述渗氮温度控制在496~592℃,渗氮时间在29~53min,混合气流量在1.8~2.1L/min。
3.如权利要求1所述的一种屈服强度≥980MPa奥氏体不锈钢的生产方法,其特征在于:所述高温退火温度控制在989~1016℃。
CN202011624871.2A 2020-12-31 2020-12-31 一种屈服强度≥980MPa奥氏体不锈钢的生产方法 Active CN112831640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011624871.2A CN112831640B (zh) 2020-12-31 2020-12-31 一种屈服强度≥980MPa奥氏体不锈钢的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011624871.2A CN112831640B (zh) 2020-12-31 2020-12-31 一种屈服强度≥980MPa奥氏体不锈钢的生产方法

Publications (2)

Publication Number Publication Date
CN112831640A CN112831640A (zh) 2021-05-25
CN112831640B true CN112831640B (zh) 2022-10-21

Family

ID=75924404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011624871.2A Active CN112831640B (zh) 2020-12-31 2020-12-31 一种屈服强度≥980MPa奥氏体不锈钢的生产方法

Country Status (1)

Country Link
CN (1) CN112831640B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622074B (zh) * 2022-05-12 2022-08-05 中北大学 一种奥氏体不锈钢及其热处理工艺和热处理工艺的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1084226A (zh) * 1992-09-16 1994-03-23 大同酸素株式会社 奥氏体不锈钢制品的氮化方法
JP2006070313A (ja) * 2004-09-01 2006-03-16 Nisshin Steel Co Ltd 耐遅れ破壊性に優れる表面窒化高強度ステンレス鋼帯及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139359A (en) * 1961-06-12 1964-06-30 Jones & Laughlin Steel Corp Method of producing high strength thin steel
CN101648334A (zh) * 2008-08-15 2010-02-17 宝山钢铁股份有限公司 一种表面性能优良的奥氏体不锈钢冷轧板制造技术
CN106011681B (zh) * 2016-06-27 2018-04-20 武汉科技大学 一种提高316ln奥氏体不锈钢力学性能的方法
CN106048409A (zh) * 2016-06-27 2016-10-26 武汉科技大学 一种提高301ln奥氏体不锈钢力学性能的方法
CN110241364B (zh) * 2019-07-19 2021-03-26 东北大学 一种高强塑纳米/亚微米晶冷轧304不锈钢带及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1084226A (zh) * 1992-09-16 1994-03-23 大同酸素株式会社 奥氏体不锈钢制品的氮化方法
JP2006070313A (ja) * 2004-09-01 2006-03-16 Nisshin Steel Co Ltd 耐遅れ破壊性に優れる表面窒化高強度ステンレス鋼帯及びその製造方法

Also Published As

Publication number Publication date
CN112831640A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
CN110066964B (zh) 一种超高强度中锰钢及其温轧制备方法
CN104328360B (zh) 双相孪生诱导塑性超高强度汽车钢板及其制备工艺
EP0429094B1 (en) High strength low carbon steels, steel articles thereof and method for manufacturing the steels
KR20210095156A (ko) 높은 구멍확장비와 비교적 높은 연신율을 갖는 980MPa급 냉간압연 강판 및 그의 제조방법
US11401566B2 (en) High strength and high toughness stainless steel and processing method thereof
CN107127212A (zh) 超快速加热工艺生产高强塑积中锰冷轧钢板的方法
JP4189133B2 (ja) 普通低炭素鋼を低ひずみ加工・焼鈍して得られる超微細結晶粒組織を有する高強度・高延性鋼板およびその製造方法
CN103339279A (zh) 具有高机械耐受性和成形性的高锰含量钢的制造方法以及可由此获得的钢
JP4109619B2 (ja) 伸び、及び伸びフランジ性に優れた高強度鋼板
CN115141984A (zh) 一种高熵奥氏体不锈钢及其制备方法
JP2024511848A (ja) 引張強度≧590MPaの低炭素低合金高成形性二相鋼と溶融亜鉛めっき二相鋼及びその製造方法
CN112831640B (zh) 一种屈服强度≥980MPa奥氏体不锈钢的生产方法
CN112662931B (zh) 一种同时提高奥氏体钢强度和塑性的方法及其产品
CN113584267A (zh) 一种高碳纳米贝氏体钢组织的动态等温处理方法
CN112831639B (zh) 一种屈服强度≥700MPa奥氏体不锈钢的生产方法
JP2588421B2 (ja) 延性に優れた超高強度鋼材の製造方法
CN108411200B (zh) 一种高加工硬化率热轧q&p钢板及其制备方法
CN114480811B (zh) 一种具有梯度结构的高强塑积中锰钢及其制备方法
CN112662932B (zh) 一种twip钢及其制备方法
CN111394650A (zh) 具有优良成形性的高r值800MPa级冷轧钢及生产方法
CN115537677B (zh) 一种具有双峰组织高强高塑奥氏体高锰钢及生产方法
CN116732297B (zh) 一种含铌高强双相钢及其制备方法和应用
CN115491614B (zh) 一种强塑积大于60GPa·%奥氏体高锰钢及生产方法
CN114635018B (zh) 一种q345低碳钢增强增塑的方法
JPH1060540A (ja) 高炭素冷延鋼帯の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240717

Address after: Room 105, 289 Jiangdong Middle Road, Jianye District, Nanjing City, Jiangsu Province 210000

Patentee after: Nanjing Dongjin Enterprise Management Group Co.,Ltd.

Country or region after: China

Address before: 430081 No. 947 Heping Avenue, Qingshan District, Hubei, Wuhan

Patentee before: WUHAN University OF SCIENCE AND TECHNOLOGY

Country or region before: China