CN112830778A - 一种快速烧结固态电解质的方法以及由此得到的致密固态电解质及其应用 - Google Patents

一种快速烧结固态电解质的方法以及由此得到的致密固态电解质及其应用 Download PDF

Info

Publication number
CN112830778A
CN112830778A CN202110069737.9A CN202110069737A CN112830778A CN 112830778 A CN112830778 A CN 112830778A CN 202110069737 A CN202110069737 A CN 202110069737A CN 112830778 A CN112830778 A CN 112830778A
Authority
CN
China
Prior art keywords
solid electrolyte
sheet
sintering
carbon
carbon papers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110069737.9A
Other languages
English (en)
Inventor
王建强
彭程
高江辉
林俊
张诗雨
姜文
隋金凤
程李威
金孟媛
王昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Applied Physics of CAS
Original Assignee
Shanghai Institute of Applied Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Applied Physics of CAS filed Critical Shanghai Institute of Applied Physics of CAS
Priority to CN202110069737.9A priority Critical patent/CN112830778A/zh
Publication of CN112830778A publication Critical patent/CN112830778A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明涉及一种快速烧结固态电解质的方法,其包括将固态电解质纳米粉末压制成片材;提供具有彼此间隔开的两片碳纸的快速烧结装置,将片材夹持在碳纸之间,给碳纸通电使碳纸在电流作用下产生焦耳热以通过调节碳纸的温度进行烧结,得到致密固态电解质。本发明还提供一种根据上述方法得到的致密固态电解质。本发明又提供一种上述致密固态电解质在熔盐电池中的应用。根据本发明的快速烧结固态电解质的方法,通过廉价的碳纸在电流作用下产生焦耳热,短时间内大量聚集的焦耳热可以通过热辐射和热传导的方式对固态电解质片材进行快速烧结,加快固态电解质的高通量筛选的进度。

Description

一种快速烧结固态电解质的方法以及由此得到的致密固态电 解质及其应用
技术领域
本发明涉及固态电解质,更具体地涉及一种快速烧结固态电解质的方法以及由此得到的致密固态电解质及其应用。
背景技术
固态电解质代表性的应用就是在燃料电池中,可燃性气体在高温状态下可以直接转化为电能,转化率远高于传统的火力发电,并且对环境友好。随着计算机水平的发展,计算机模拟已经远超实验进度,加快固态电解质实验进程是目前科研工作的重要任务。
常规电炉烧结固态电解质的过程要经历数小时或数十小时,放电等离子烧结设备价格昂贵,闪速烧结通常需要昂贵的Pt电极,同时闪速烧结条件取决于材料本身的电学属性,没有普适性,也限制了它在材料性能未知时用于高通量处理的实用性。光子烧结温度通常达不到烧结固态电解质的温度。快速退火炉只能提供高达1200℃的烧结温度,且商业设备昂贵,对于普通实验室,高端快烧设备很难配备,而常规电炉烧结使用时间较长。
综上所述,发展搭建简单和烧结快速的方法是很必要的,目前存在一些快烧装置,但都因价格昂贵或者温度不够而无法在固态电解质烧结上推广使用。
发明内容
为了解决上述现有技术中的固态电解质的烧结温度不够或无法推广等问题,本发明提供一种快速烧结固态电解质的方法以及由此得到的致密固态电解质及其应用。
本发明提供一种快速烧结固态电解质的方法,其包括步骤:S1,将固态电解质纳米粉末压制成片材;S2,提供具有彼此间隔开的两片碳纸的快速烧结装置,将片材夹持在碳纸之间,给碳纸通电使碳纸在电流作用下产生焦耳热以通过调节碳纸的温度进行烧结,得到致密固态电解质。
优选地,固态电解质为氧化钇稳定的氧化锆或氧化铈。在优选的实施例中,固态电解质为8YSZ。
优选地,在步骤S1中,将固态电解质纳米粉末放入压片模具中,缓慢加压至400MPa~600MPa得到片材。在优选的实施例中,0.09g的8YSZ纳米粉末放入直径为5mm的压片模具,缓慢加压至500MPa后静置约30秒得到片材。应该理解,该压片操作应该在压片模具的安全使用范围内尽量使用大压力,以促进固态电解质纳米粉末充分接触以形成片材。
优选地,片材的厚度在2mm以内。
优选地,快速烧结装置还包括外罩、支撑板、电极和电源,其中,外罩提供一个密闭空间,支撑板在密闭空间内固定安装,碳纸的两端分别固定安装在电极之间并承载在支撑板上,电源在外罩外通过电缆连接电极以向碳纸提供电流。
优选地,电源为低压直流电源。
优选地,外罩为石英玻璃罩,支撑板为石英板。应该理解,石英玻璃罩和石英板的石英材料的耐热性好,同时透光率高,大量的热辐射不会被吸收,有利于结构稳定,不会被高温破坏。
优选地,片材的直径小于碳纸宽度的2/3,以防止片材受热不均。
优选地,调节碳纸的温度介于固态电解质熔点的2/3和熔点之间,确保片材保持块状的同时快速烧结。
优选地,调节碳纸温度为1786℃~2680℃进行烧结。应该理解,1786℃~2680℃的温度范围介于纯氧化锆熔点的2/3和熔点之间,确保片材保持块状的同时快速烧结。在优选的实施例中,用时25秒将碳纸的温度调节到2400℃,然后维持碳纸温度2400℃烧结30秒,得到致密固态电解质。
本发明还提供一种根据上述方法得到的致密固态电解质。
本发明又提供一种上述致密固态电解质在熔盐电池中的应用。
根据本发明的快速烧结固态电解质的方法,通过廉价的碳纸在电流作用下产生焦耳热,短时间内大量聚集的焦耳热可以通过热辐射和热传导的方式对固态电解质片材进行快速烧结,加快固态电解质的高通量筛选的进度。总之,根据本发明的快速烧结固态电解质的方法,烧结所用的快速烧结装置价格低廉,实施简单,不需要严格培训就能使用,碳纸提供的烧结温度高,能够满足固态电解质的烧结要求,而且时间短,速度快,例如平均升温速率约为每秒96摄氏度,整个烧结过程可以在一分钟内完成,大大地提高了固态电解质烧结的效率,具有很好的应用前景。
附图说明
图1是根据本发明的一个优选实施例的快速烧结固态电解质的方法所使用的快速烧结装置的结构示意图;
图2是根据本发明的一个优选实施例的快速烧结固态电解质的方法得到的致密固态电解质的SEM图;
图3是根据本发明的一个优选实施例的快速烧结固态电解质的方法得到的致密固态电解质的照片;
图4是根据本发明的一个优选实施例的快速烧结固态电解质的方法得到的致密固态电解质的阻抗测试数据图。
具体实施方式
下面结合附图,给出本发明的较佳实施例,并予以详细描述。
将质量为0.09g的8YSZ纳米粉末放入直径为5mm压片模具中,缓慢加压至500MPa,静置约30秒得到1mm厚的片材6。
提供如图1所示的快速烧结装置,其包括石英玻璃罩1、石英板2、碳纸3、电极4和电源5,其中,石英玻璃罩1提供一个密闭空间,石英板2在密闭空间内固定安装,彼此间隔开的两片碳纸3的两端分别固定安装在电极4之间并承载在石英板2上,电源5在石英玻璃罩1外通过电缆连接电极4以向碳纸3提供电流。
将片材6夹持在碳纸3之间,将电源5打开,用时25秒逐渐增加电流至碳纸的温度约为2400℃,维持碳纸的温度2400℃烧结30秒得到致密固态电解质。
如图2所示,根据本发明的快速烧结固态电解质的方法得到的烧结后的固态电解质具有致密的结构。如图3所示,根据本发明的快速烧结固态电解质的方法得到的致密固态电解质并没有因为烧结的升降温速率太大而破碎。如图4所示,根据本发明的快速烧结固态电解质的方法得到的致密固态电解质的电阻在约为1.8欧姆(阻抗为复数Z(ω)=ZRe-jZIm,横坐标为实部,纵坐标为虚部,数据拟合与横轴交点在1.8左右),可以在熔盐电池中使用。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

1.一种快速烧结固态电解质的方法,其特征在于,该方法包括步骤:
S1,将固态电解质纳米粉末压制成片材;
S2,提供具有彼此间隔开的两片碳纸的快速烧结装置,将片材夹持在碳纸之间,给碳纸通电使碳纸在电流作用下产生焦耳热以通过调节碳纸的温度进行烧结,得到致密固态电解质。
2.根据权利要求1所述的方法,其特征在于,固态电解质为氧化钇稳定的氧化锆或氧化铈。
3.根据权利要求1所述的方法,其特征在于,将固态电解质纳米粉末放入压片模具中,缓慢加压至400MPa~600MPa得到片材。
4.根据权利要求1所述的方法,其特征在于,片材的厚度在2mm以内。
5.根据权利要求1所述的方法,其特征在于,快速烧结装置还包括外罩、支撑板、电极和电源,其中,外罩提供一个密闭空间,支撑板在密闭空间内固定安装,碳纸的两端分别固定安装在电极之间并承载在支撑板上,电源在外罩外通过电缆连接电极以向碳纸提供电流。
6.根据权利要求5所述的方法,其特征在于,外罩为石英玻璃罩,支撑板为石英板。
7.根据权利要求1所述的方法,其特征在于,片材的直径小于碳纸宽度的2/3,以防止片材受热不均。
8.根据权利要求1所述的方法,其特征在于,调节碳纸的温度介于固态电解质熔点的2/3和熔点之间,确保片材保持块状的同时快速烧结。
9.一种根据权利要求1-8中任一项所述的方法得到的致密固态电解质。
10.一种根据权利要求9所述的致密固态电解质在熔盐电池中的应用。
CN202110069737.9A 2021-01-19 2021-01-19 一种快速烧结固态电解质的方法以及由此得到的致密固态电解质及其应用 Pending CN112830778A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110069737.9A CN112830778A (zh) 2021-01-19 2021-01-19 一种快速烧结固态电解质的方法以及由此得到的致密固态电解质及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110069737.9A CN112830778A (zh) 2021-01-19 2021-01-19 一种快速烧结固态电解质的方法以及由此得到的致密固态电解质及其应用

Publications (1)

Publication Number Publication Date
CN112830778A true CN112830778A (zh) 2021-05-25

Family

ID=75928904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110069737.9A Pending CN112830778A (zh) 2021-01-19 2021-01-19 一种快速烧结固态电解质的方法以及由此得到的致密固态电解质及其应用

Country Status (1)

Country Link
CN (1) CN112830778A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247962A (zh) * 2021-06-26 2021-08-13 深圳中科精研科技有限公司 电池正极材料及快速合成电池正极材料的方法
CN114516752A (zh) * 2021-12-23 2022-05-20 内蒙古工业大学 一种多孔硅酸钙陶瓷及其超快速制备方法
CN114907100A (zh) * 2022-05-19 2022-08-16 中国科学院长春应用化学研究所 一种Ba基质子导体电解质的瞬时合成工艺
CN116040628A (zh) * 2022-12-23 2023-05-02 中国人民解放军军事科学院防化研究院 一种快速制备高石墨化多孔炭的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027033A1 (en) * 2001-06-29 2003-02-06 Seabaugh Matthew M. Nano-composite electrodes and method of making the same
WO2014003591A1 (en) * 2012-06-29 2014-01-03 Lneg - Laboratório Nacional De Energia E Geologia Process for manufacturing a solid oxide fuel cell electrolyte using microwave sintering
WO2020236767A1 (en) * 2019-05-17 2020-11-26 University Of Maryland, College Park High temperature sintering systems and methods
CN112153764A (zh) * 2020-09-28 2020-12-29 中国农业大学 一种可用于制备陶瓷材料的快速加热方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027033A1 (en) * 2001-06-29 2003-02-06 Seabaugh Matthew M. Nano-composite electrodes and method of making the same
WO2014003591A1 (en) * 2012-06-29 2014-01-03 Lneg - Laboratório Nacional De Energia E Geologia Process for manufacturing a solid oxide fuel cell electrolyte using microwave sintering
WO2020236767A1 (en) * 2019-05-17 2020-11-26 University Of Maryland, College Park High temperature sintering systems and methods
CN112153764A (zh) * 2020-09-28 2020-12-29 中国农业大学 一种可用于制备陶瓷材料的快速加热方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247962A (zh) * 2021-06-26 2021-08-13 深圳中科精研科技有限公司 电池正极材料及快速合成电池正极材料的方法
CN114516752A (zh) * 2021-12-23 2022-05-20 内蒙古工业大学 一种多孔硅酸钙陶瓷及其超快速制备方法
CN114907100A (zh) * 2022-05-19 2022-08-16 中国科学院长春应用化学研究所 一种Ba基质子导体电解质的瞬时合成工艺
CN116040628A (zh) * 2022-12-23 2023-05-02 中国人民解放军军事科学院防化研究院 一种快速制备高石墨化多孔炭的方法

Similar Documents

Publication Publication Date Title
CN112830778A (zh) 一种快速烧结固态电解质的方法以及由此得到的致密固态电解质及其应用
Jiang et al. Understanding the flash sintering of rare‐earth‐doped ceria for solid oxide fuel cell
Sarkar et al. Anode‐supported tubular micro‐solid oxide fuel cell
US20050089739A1 (en) Process for solid oxide fuel cell manufacture
Suzuki et al. Current collecting efficiency of micro tubular SOFCs
Shen et al. Co-sintering anode and Y2O3 stabilized ZrO2 thin electrolyte film for solid oxide fuel cell fabricated by co-tape casting
Jin et al. Effect of contact area and depth between cell cathode and interconnect on stack performance for planar solid oxide fuel cells
CN110606751B (zh) 一种石墨烯辅助室温闪烧陶瓷材料的方法
RU2016105829A (ru) Способ формирования твердооксидных топливных элементов с металлической опорой
Hu et al. Electrophoretic Deposition of Gadolinium‐doped Ceria as a Barrier Layer on Yttrium‐stabilized Zirconia Electrolyte for Solid Oxide Fuel Cells
Suzuki et al. Fabrication and characterization of micro tubular SOFCs for advanced ceramic reactors
CN105789652A (zh) 薄型单体热电池的制备方法
Jia et al. Performance and electrochemical analysis of solid oxide fuel cells based on LSCF‐YSZ nano‐electrode
Solovyev et al. Fabrication and performance investigation of three-cell SOFC stack based on anode-supported cells with magnetron sputtered electrolyte
CN103985888B (zh) 陶瓷膜燃料电池用连接材料薄膜和电解质薄膜的制备方法
CN114094123A (zh) 阳极/电解质半电池、阳极支撑型固体氧化物燃料电池及其制法
JP2010061829A (ja) 固体酸化物形燃料電池の運転方法
CN110423114B (zh) 一种陶瓷电解质材料及其制备方法
Hua et al. Preparation of nanoscale composite LSCF/GDCS cathode materials by microwave sintering for intermediate-temperature SOFC applications
Bagishev et al. Layer-by-Layer Formation of the NiO/CGO Composite Anode for SOFC by 3D Inkjet Printing Combined with Laser Treatment
CN114512697A (zh) 一种激光熔融固体氧化物燃料电池电解质层的制备方法
Wu et al. Electrochemical impedance measurement and analysis of anodic concentration polarization for pressurized solid oxide fuel cells
Mohebbi et al. Effect of current density, temperature, and contact paste on flash sintered 8YSZ
CN114907100B (zh) 一种Ba基质子导体电解质的瞬时合成工艺
CN105047973A (zh) 固体氧化物燃料电池电解质薄膜的离心制备法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210525

WD01 Invention patent application deemed withdrawn after publication