CN112811890A - 低温烧结低介电常数微波陶瓷材料及其制备方法 - Google Patents

低温烧结低介电常数微波陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN112811890A
CN112811890A CN202110077928.XA CN202110077928A CN112811890A CN 112811890 A CN112811890 A CN 112811890A CN 202110077928 A CN202110077928 A CN 202110077928A CN 112811890 A CN112811890 A CN 112811890A
Authority
CN
China
Prior art keywords
low
dielectric
temperature
ceramic material
microwave ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110077928.XA
Other languages
English (en)
Inventor
段冰
尚华
邵腾强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yibin Redstar Electronics Co ltd
Original Assignee
Yibin Redstar Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yibin Redstar Electronics Co ltd filed Critical Yibin Redstar Electronics Co ltd
Priority to CN202110077928.XA priority Critical patent/CN112811890A/zh
Publication of CN112811890A publication Critical patent/CN112811890A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低温烧结低介电常数微波陶瓷材料及其制备方法,属于信息功能材料技术领域。所述低温烧结低介电常数微波陶瓷材料原料组分按质量百分比为:2MgO‑2Al2O3‑5SiO275‑95%,SiO21‑8%,Yb2O31‑8%,Ca2(OH)2CO33‑15%;所述制备方法包括配料、预烧混合、造粒成型、排胶、烧结等工艺;本发明通过添加烧结助剂和活性剂来调控微波陶瓷的烧结温度,同时使陶瓷材料具有低的介电常数、较小的温度频率漂移系数,制备工艺简单,制备成本低,具有很强的实用性。

Description

低温烧结低介电常数微波陶瓷材料及其制备方法
技术领域
本发明属于信息功能材料技术领域,涉及一种微波介质陶瓷材料,具体涉及一种低温烧结低介电常数微波陶瓷材料及其制备方法。
背景技术
近年来我国移动通信产业实现了跨越式发展,目前正在发展第五代移动通信技术(5G),介质波导滤波器是由特殊的微波陶瓷材料制作而成。通过把陶瓷材料成型烧制成特殊形状,表面进行金属化覆盖,并在介质块上设置若干耦合窗口实现能量传输。表面良好金属化可以将能量屏蔽在陶瓷内部,选用不同介电常数的陶瓷材料可以灵活地调整滤波器体积,从而实现5G时代对滤波器的高性能和小型集成化等需求。
随着现代通信不断向高频段扩展,信号延迟现象越来越显著,高频下***的损耗和发热量增加、稳定性变差。为适应现代微波通信向高频化的发展趋势,需开发低介电常数(εr)、高品质因数(Q)和近零谐振频率温度系数(τf)微波介质材料。低εr能减小材料与电极之间的交互耦合损耗,并提高信号传输速率,高Q(低介电损耗)有利于提高器件工作频率的可选择性,近零τf有助于提高器件的频率温度稳定特性。目前,大多数高频用低εr、高Q值微波介质材料固有烧结温度都比较高(T≥1300℃),且具有较大负τf值,无法满足技术要求。因此,研究开发新型高性能(低εr、高Q和近零τf)微波介质材料是当前信息功能材料领域研究的热点,也是未来通信事业发展的必然要求。
硅酸铝镁是一种常用的微波介质陶瓷,介电常数在9左右,具有很低的介电损耗,良好的谐振频率温度系数,非常适合用于微波器件。然而硅酸铝镁陶瓷烧结温度较高,在1400℃左右。同时近年来,对低介电常数微波陶瓷需求也越来越多,基于此,本发明基于硅酸铝镁体系,掺杂活性剂、烧结助剂以及低介电常数材料来降低整体烧结温度,同时获得低介、低损的微波陶瓷。
发明内容
本发明所要解决的技术问题是现有低介电常数、低介电损耗的微波介电陶瓷烧结温度较高的问题。
本发明解决其技术问题所采用的技术方案是:低温烧结低介电常数微波陶瓷材料,其原料组分按质量百分比为:2MgO-2Al2O3-5SiO2 75-95%,SiO2 1-8%,Yb2O3 1-8%,Ca2(OH)2CO3 3-15%。
进一步的是,上述低温烧结低介电常数微波陶瓷材料,其原料组分按质量百分比为:2MgO-2Al2O3-5SiO2 80-90%,SiO2 2-5%,Yb2O3 2-5%,Ca2(OH)2CO3 6-10%。
上述低温烧结低介电常数微波陶瓷材料,介电常数εr为5.1-5.4,谐振频率温度系数τf为-26.7-(-24.2),Q*f值为10555-11341。
上述低温烧结低介电常数微波陶瓷材料的制备方法,包括如下步骤:
a.配料:将分析纯的MgO、Al2O3、SiO2烘干后,按化学式2MgO-2Al2O3-5SiO2中的化学计量比称取后球磨处理,得到混合物干粉;
b.预压预烧:将步骤b得到的混合物干粉预压成紧密的粉体,然后以1000-1150℃的温度预烧2-10h后研磨过筛,得到2MgO-2Al2O3-5SiO2
c.配料:根据低温烧结低介电常数微波陶瓷材料的原料组分称取SiO2、Yb2O3、Ca2(OH)2CO3和步骤b得到的2MgO-2Al2O3-5SiO2后混合,得到混合料;
d.预烧混合:将步骤c得到的混合料以800-950℃的温度预烧2-10h后球磨处理,得到预烧干粉;
e.造粒成型:将步骤d得到的预烧干粉造粒,然后干压成型,得到素坯;
f.排胶:将步骤e得到的素坯排胶处理,得到成型素坯;
g.烧结:将步骤f得到的成型素坯置于承烧板上,用步骤d得到的预烧干粉覆盖成型素坯,然后用坩埚盖于上方,将承烧板放入烧结炉中以1-5℃/min的升温速率升温至1100-1170℃,保温2-10h后随炉自然冷却得到低温烧结低介电常数微波陶瓷材料。
上述步骤a和d中,球磨处理指在乙醇中以ZrO2球为媒介行星球磨24-48h,再烘干。
上述步骤e中,造粒使用预烧干粉质量的5%-12%的聚乙烯醇溶液,所述聚乙烯醇溶液溶质质量分数为5%-10%。
上述步骤a中,烘干温度为120-150℃,烘干时间为5-10h。
上述步骤f中,排胶处理指以1-3℃/min的升温速率升温至500-650℃,保温2-5h后随炉自然冷却。
上述步骤b中,预压压力为100-300Mpa。
上述步骤e中,干压成型压力为100-300Mpa。
本发明的有益效果是:本发明提供一种低温烧结低介电常数微波陶瓷材料,通过添加SiO2、Yb2O3、Ca2(OH)2CO3等烧结助剂和活性剂来调控微波介质陶瓷的烧结温度和介电性能。
其中向硅酸铝镁体系陶瓷中加入适量的SiO2可以增加陶瓷材料的孔隙率,大量气孔的存在能降低材料的介电性能,同时SiO2材料本身具有较低的介电常数,因此本发明添加SiO2可有效降低微波陶瓷介电常数。但添加SiO2含量过多时,介电常数反而会增大,因此加入质量百分比为2-5%的SiO2为宜。
本发明同时复合添加SiO2、Yb2O3、Ca2(OH)2CO3,其中Ca2(OH)2CO3受热分解为CaO,CaO和Yb2O3都是烧结助剂;而SiO2由于具有高的表面能,其熔点和烧结温度均降低而形成液相,液相SiO2与烧结助剂有利于物质迁移和颗粒重排,从而促进了复合材料的烧结,以较低的烧结温度完成硅酸铝镁陶瓷的烧结。
本发明提供的低温烧结低介电常数微波陶瓷材料的制备方法使原硅酸铝镁陶瓷与SiO2、Yb2O3、Ca2(OH)2CO3等烧结助剂和活性剂充分融合,采用较低的烧结温度完成硅酸铝镁体系陶瓷的烧结,得到低温烧结低介电常数微波陶瓷材料,制备工艺简单,制备成本低,具有强的实用性。
附图说明
图1为本发明低温烧结低介电常数微波陶瓷材料实施例1的X射线衍射图谱;
图2为本发明低温烧结低介电常数微波陶瓷材料实施例1的扫描电镜图;
图3为本发明低温烧结低介电常数微波陶瓷材料实施例2的X射线衍射图谱;
图4为本发明低温烧结低介电常数微波陶瓷材料实施例2的扫描电镜图。
具体实施方式
本发明的技术方案,具体可以按照以下方式实施。
低温烧结低介电常数微波陶瓷材料,其原料组分按质量百分比为:2MgO-2Al2O3-5SiO2 75-95%,SiO2 1-8%,Yb2O3 1-8%,Ca2(OH)2CO3 3-15%。
为了使产品效果更好更稳定,因此优选的是,上述低温烧结低介电常数微波陶瓷材料,其原料组分按质量百分比为:2MgO-2Al2O3-5SiO2 80-90%,SiO2 2-5%,Yb2O3 2-5%,Ca2(OH)2CO3 6-10%。
上述低温烧结低介电常数微波陶瓷材料的制备方法,包括如下步骤:
a.配料:将分析纯的MgO、Al2O3、SiO2烘干后,按化学式2MgO-2Al2O3-5SiO2中的化学计量比称取后球磨处理,得到混合物干粉;
b.预压预烧:将步骤b得到的混合物干粉预压成紧密的粉体,然后以1000-1150℃的温度预烧2-10h后研磨过筛,得到2MgO-2Al2O3-5SiO2
c.配料:根据低温烧结低介电常数微波陶瓷材料的原料组分称取SiO2、Yb2O3、Ca2(OH)2CO3和步骤b得到的2MgO-2Al2O3-5SiO2后混合,得到混合料;
d.预烧混合:将步骤c得到的混合料以800-950℃的温度预烧2-10h后球磨处理,得到预烧干粉;
e.造粒成型:将步骤d得到的预烧干粉造粒,然后干压成型,得到素坯;
f.排胶:将步骤e得到的素坯排胶处理,得到成型素坯;
g.烧结:将步骤f得到的成型素坯置于承烧板上,用步骤d得到的预烧干粉覆盖成型素坯,然后用坩埚盖于上方,将承烧板放入烧结炉中以1-5℃/min的升温速率升温至1100-1170℃,保温2-10h后随炉自然冷却。
上述步骤a和d中,球磨处理指在乙醇中以ZrO2球为媒介行星球磨24-48h,再烘干。
上述步骤e中,造粒使用预烧干粉质量的5%-12%的聚乙烯醇溶液,所述聚乙烯醇溶液溶质质量分数为5%-10%。
上述步骤a中,烘干温度为120-150℃,烘干时间为5-10h。
上述步骤f中,排胶处理指以1-3℃/min的升温速率升温至500-650℃,保温2-5h后随炉自然冷却。
上述步骤b中,预压压力为100-300Mpa。
上述步骤e中,干压成型压力为100-300Mpa。
下面通过实际的例子对本发明的技术方案和效果做进一步的说明。
实施例1
低温烧结低介电常数微波陶瓷材料,其原料组分按质量百分比为:2MgO-2Al2O3-5SiO2 80%,SiO2 2%,Yb2O3 2%,Ca2(OH)2CO3 6%。
低温烧结低介电常数微波陶瓷材料的制备方法,包括如下步骤:
a.配料:将分析纯的MgO、Al2O3、SiO2在120℃下烘干5h,按化学式2MgO-2Al2O3-5SiO2中的化学计量比称取后在乙醇中以ZrO2球为媒介行星球磨24h,烘干后得到混合物干粉;
b.预压预烧:将步骤b得到的混合物干粉在100Mpa下预压成紧密的粉体,然后以1000℃的温度预烧2h后研磨过筛,得到2MgO-2Al2O3-5SiO2
c.配料:根据低温烧结低介电常数微波陶瓷材料的原料组分称取SiO2、Yb2O3、Ca2(OH)2CO3和步骤b得到的2MgO-2Al2O3-5SiO2后混合,得到混合料;
d.预烧混合:将步骤c得到的混合料以800℃的温度预烧2h后以ZrO2球为媒介行星球磨24h,烘干后得到预烧干粉;
e.造粒成型:将步骤d得到的预烧干粉加入预烧干粉质量的5%的聚乙烯醇溶液进行造粒,其中聚乙烯醇溶液溶质质量分数为5%,然后在100Mpa下干压成型,得到素坯;
f.排胶:将步骤e得到的素坯置于中温炉中以1℃/min的升温速率升温至500℃排胶,保温2h后,随炉自然冷却,得到成型素坯;
g.烧结:将步骤f得到的成型素坯置于氧化铝基板上,用步骤d得到的预烧干粉覆盖成型素坯,然后用坩埚盖于上方,将氧化铝基板放入烧结炉中以1℃/min的升温速率升温至1100℃,保温2h后随炉自然冷却,得到低温烧结低介电常数微波陶瓷。
对实施例1得到的低温烧结低介电常数微波陶瓷性能进行测试,结果如表1所示。
表1实施例1微波陶瓷性能测试结果
谐振频率(f) 介电常数(ε<sub>r</sub>) 品质因子(Q) 温度频率系数(τf) Q*f
15.6GHz 5.1 727 -26.7 11341
从表1可知,本发明的低温烧结低介电常数微波陶瓷介电常数小,介电损耗良好,有较小负τf值,性能良好。图1为本发明实例1的X射线衍射图谱,图2为本发明实例1的扫描电镜图,从图中可知本发明的低温烧结低介电常数微波陶瓷主晶相为硅酸镁,且陶瓷材料微观组织致密。
实施例2
低温烧结低介电常数微波陶瓷材料,其原料组分按质量百分比为:2MgO-2Al2O3-5SiO2 90%,SiO2 5%,Yb2O3 5%,Ca2(OH)2CO3 10%。
低温烧结低介电常数微波陶瓷材料的制备方法,包括如下步骤:
a.配料:将分析纯的MgO、Al2O3、SiO2在150℃下烘干10h,按化学式2MgO-2Al2O3-5SiO2中的化学计量比称取后在乙醇中以ZrO2球为媒介行星球磨48h,烘干后得到混合物干粉;
b.预压预烧:将步骤b得到的混合物干粉在300Mpa下预压成紧密的粉体,然后以1150℃的温度预烧10h后研磨过筛,得到2MgO-2Al2O3-5SiO2
c.配料:根据低温烧结低介电常数微波陶瓷材料的原料组分称取SiO2、Yb2O3、Ca2(OH)2CO3和步骤b得到的2MgO-2Al2O3-5SiO2后混合,得到混合料;
d.预烧混合:将步骤c得到的混合料以950℃的温度预烧10h后以ZrO2球为媒介行星球磨48h,烘干后得到预烧干粉;
e.造粒成型:将步骤d得到的预烧干粉加入预烧干粉质量的12%的聚乙烯醇溶液进行造粒,其中聚乙烯醇溶液溶质质量分数为10%,然后在300Mpa下干压成型,得到素坯;
f.排胶:将步骤e得到的素坯置于中温炉中以3℃/min的升温速率升温至650℃排胶,保温5h后,随炉自然冷却,得到成型素坯;
g.烧结:将步骤f得到的成型素坯置于氧化铝基板上,用步骤d得到的预烧干粉覆盖成型素坯,然后用坩埚盖于上方,将氧化铝基板放入烧结炉中以5℃/min的升温速率升温至1170℃,保温10h后随炉自然冷却,得到低温烧结低介电常数微波陶瓷。
对实施例2得到的低温烧结低介电常数微波陶瓷性能进行测试,结果如表2所示。
表2实施例2微波陶瓷性能测试结果
谐振频率(f) 介电常数(ε<sub>r</sub>) 品质因子(Q) 温度频率系数(τf) Q*f
15.1GHz 5.4 699 -24.2 10555
从表2可知,本发明的低温烧结低介电常数微波陶瓷介电常数小,介电损耗良好,有较小负τf值,性能良好。图3为本发明实例2的X射线衍射图谱,图4为本发明实例2的扫描电镜图,从图中可知本发明的低温烧结低介电常数微波陶瓷主晶相为硅酸镁,且陶瓷材料微观组织致密。
使用本发明的制备方法制备的低温烧结低介电常数微波陶瓷,通过添加SiO2、Yb2O3、Ca2(OH)2CO3掺杂粉料,能够降低陶瓷烧结温度,同时使陶瓷材料具有低的介电常数、较小的温度频率漂移系数,制备工艺简单,制备成本低,具有很强的实用性。

Claims (10)

1.低温烧结低介电常数微波陶瓷材料,其特征在于,其原料组分按质量百分比为:2MgO-2Al2O3-5SiO275-95%,SiO21-8%,Yb2O31-8%,Ca2(OH)2CO33-15%。
2.根据权利要求1所述的低温烧结低介电常数微波陶瓷材料,其特征在于,其原料组分按质量百分比为:2MgO-2Al2O3-5SiO280-90%,SiO22-5%,Yb2O32-5%,Ca2(OH)2CO36-10%。
3.根据权利要求1或2所述的低温烧结低介电常数微波陶瓷材料,其特征在于:介电常数εr为5.1-5.4,谐振频率温度系数τf为-26.7-(-24.2),Q*f值为10555-11341。
4.如权利要求1-3任一项所述的低温烧结低介电常数微波陶瓷材料的制备方法,其特征在于包括如下步骤:
a.配料:将分析纯的MgO、Al2O3、SiO2烘干后,按化学式2MgO-2Al2O3-5SiO2中的化学计量比称取后球磨处理,得到混合物干粉;
b.预压预烧:将步骤b得到的混合物干粉预压成紧密的粉体,然后以1000-1150℃的温度预烧2-10h后研磨过筛,得到2MgO-2Al2O3-5SiO2
c.配料:根据低温烧结低介电常数微波陶瓷材料的原料组分称取SiO2、Yb2O3、Ca2(OH)2CO3和步骤b得到的2MgO-2Al2O3-5SiO2后混合,得到混合料;
d.预烧混合:将步骤c得到的混合料以800-950℃的温度预烧2-10h后球磨处理,得到预烧干粉;
e.造粒成型:将步骤d得到的预烧干粉造粒,然后干压成型,得到素坯;
f.排胶:将步骤e得到的素坯排胶处理,得到成型素坯;
g.烧结:将步骤f得到的成型素坯置于承烧板上,用步骤d得到的预烧干粉覆盖成型素坯,然后用坩埚盖于上方,将承烧板放入烧结炉中以1-5℃/min的升温速率升温至1100-1170℃,保温2-10h后随炉自然冷却得到低温烧结低介电常数微波陶瓷材料。
5.根据权利要求4所述的低温烧结低介电常数微波陶瓷材料的制备方法,其特征在于:步骤a和d中,球磨处理指在乙醇中以ZrO2球为媒介行星球磨24-48h,再烘干。
6.根据权利要求4所述的低温烧结低介电常数微波陶瓷材料的制备方法,其特征在于:步骤e中,造粒使用预烧干粉质量的5%-12%的聚乙烯醇溶液,所述聚乙烯醇溶液溶质质量分数为5%-10%。
7.根据权利要求4所述的低温烧结低介电常数微波陶瓷材料的制备方法,其特征在于:步骤a中,烘干温度为120-150℃,烘干时间为5-10h。
8.根据权利要求4所述的低温烧结低介电常数微波陶瓷材料的制备方法,其特征在于:步骤f中,排胶处理指以1-3℃/min的升温速率升温至500-650℃,保温2-5h后随炉自然冷却。
9.根据权利要求4所述的低温烧结低介电常数微波陶瓷材料的制备方法,其特征在于:步骤b中,预压压力为100-300Mpa。
10.根据权利要求4所述的低温烧结低介电常数微波陶瓷材料的制备方法,其特征在于:步骤e中,干压成型压力为100-300Mpa。
CN202110077928.XA 2021-01-20 2021-01-20 低温烧结低介电常数微波陶瓷材料及其制备方法 Pending CN112811890A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110077928.XA CN112811890A (zh) 2021-01-20 2021-01-20 低温烧结低介电常数微波陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110077928.XA CN112811890A (zh) 2021-01-20 2021-01-20 低温烧结低介电常数微波陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112811890A true CN112811890A (zh) 2021-05-18

Family

ID=75858709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110077928.XA Pending CN112811890A (zh) 2021-01-20 2021-01-20 低温烧结低介电常数微波陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112811890A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115959898A (zh) * 2022-12-12 2023-04-14 大富科技(安徽)股份有限公司 微波介质陶瓷材料及其制备方法、微波介质陶瓷器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888314A (en) * 1985-07-16 1989-12-19 Center National De La Recherche Scientifique (C.N.R.S.) Low-temperature sinterable cordierite type ceramic powder, preparation process and ceramic composition produced by sintering this powder
JPH0238389A (ja) * 1988-07-26 1990-02-07 Matsushita Electric Works Ltd セラミック焼結体
JP2004203684A (ja) * 2002-12-26 2004-07-22 Kyocera Corp 誘電体磁器組成物およびそれを用いた誘電体共振器、非放射性誘電体線路並びに高周波用配線基板
CN107555992A (zh) * 2017-09-27 2018-01-09 广东国华新材料科技股份有限公司 一种微波介质陶瓷材料及其制备方法
CN107867828A (zh) * 2016-09-28 2018-04-03 中国科学院宁波材料技术与工程研究所 一种Al2O3陶瓷材料的制备方法及其作为微波陶瓷窗材料的应用
CN111423225A (zh) * 2020-05-12 2020-07-17 电子科技大学 一种堇青石微波介质陶瓷材料及其制备方法
CN111517771A (zh) * 2020-04-03 2020-08-11 电子科技大学 一种微波介质陶瓷材料及其制备方法
CN111574212A (zh) * 2020-04-28 2020-08-25 电子科技大学 一种低温烧结低介微波陶瓷材料及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888314A (en) * 1985-07-16 1989-12-19 Center National De La Recherche Scientifique (C.N.R.S.) Low-temperature sinterable cordierite type ceramic powder, preparation process and ceramic composition produced by sintering this powder
JPH0238389A (ja) * 1988-07-26 1990-02-07 Matsushita Electric Works Ltd セラミック焼結体
JP2004203684A (ja) * 2002-12-26 2004-07-22 Kyocera Corp 誘電体磁器組成物およびそれを用いた誘電体共振器、非放射性誘電体線路並びに高周波用配線基板
CN107867828A (zh) * 2016-09-28 2018-04-03 中国科学院宁波材料技术与工程研究所 一种Al2O3陶瓷材料的制备方法及其作为微波陶瓷窗材料的应用
CN107555992A (zh) * 2017-09-27 2018-01-09 广东国华新材料科技股份有限公司 一种微波介质陶瓷材料及其制备方法
CN111517771A (zh) * 2020-04-03 2020-08-11 电子科技大学 一种微波介质陶瓷材料及其制备方法
CN111574212A (zh) * 2020-04-28 2020-08-25 电子科技大学 一种低温烧结低介微波陶瓷材料及制备方法
CN111423225A (zh) * 2020-05-12 2020-07-17 电子科技大学 一种堇青石微波介质陶瓷材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115959898A (zh) * 2022-12-12 2023-04-14 大富科技(安徽)股份有限公司 微波介质陶瓷材料及其制备方法、微波介质陶瓷器件
CN115959898B (zh) * 2022-12-12 2024-03-15 大富科技(安徽)股份有限公司 微波介质陶瓷材料及其制备方法、微波介质陶瓷器件

Similar Documents

Publication Publication Date Title
US10899669B2 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
CN100393666C (zh) 环保低温烧结微波介质陶瓷材料及其制备方法
CN110563463B (zh) 一种低介微波介质陶瓷材料及其ltcc材料
CN100537473C (zh) 一种低介电常数低温烧结微波介质陶瓷及其制备方法
CN100457678C (zh) 一种介电可调的陶瓷材料及其制备方法
CN113087507A (zh) 低介硅酸镁微波介质陶瓷材料及其制备方法
CN111592348A (zh) 一种具有优异温度稳定性的低介电常数微波介质陶瓷及其制备方法
WO2019113973A1 (zh) 一种介质陶瓷材料及其制备方法
CN113511890B (zh) 一种基于发泡法的焦磷酸锆多孔陶瓷材料及其制备方法
CN111548148A (zh) 一种微波介质瓷料、制备方法以及用途
CN104016664A (zh) 一种低介电常数微波陶瓷材料的制备方法
CN111517789A (zh) 一种低介电微波介质陶瓷材料及其制备方法
CN104671784A (zh) 温度稳定型高品质因数微波介电陶瓷Nd2La2W3O15及其制备方法
CN111517771A (zh) 一种微波介质陶瓷材料及其制备方法
CN106007673A (zh) 高品质因数温度稳定型超低介电常数微波介电陶瓷Ca3Y2Ge3O12
CN110885243A (zh) 一种低介电常数铝酸盐微波介质陶瓷材料及其制备方法
CN112811890A (zh) 低温烧结低介电常数微波陶瓷材料及其制备方法
CN106747435A (zh) 一种温度稳定的芯‑壳结构微波介质陶瓷的制备方法
CN111187062B (zh) 一种CaSnSiO5-K2MoO4基复合陶瓷微波材料及其制备方法
CN104446376B (zh) 超低介电常数微波介电陶瓷Li2TiB4O9及其制备方法
CN112079631B (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN105777078A (zh) 低损耗温度稳定型超低介电常数微波介电陶瓷Mg3Y2Ge3O12
CN104761258A (zh) 一种低温烧结锆酸钙微波介质陶瓷的方法
CN114736012A (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518

RJ01 Rejection of invention patent application after publication