CN112811472B - 一种铁酸钙气体传感材料、制备方法和应用 - Google Patents

一种铁酸钙气体传感材料、制备方法和应用 Download PDF

Info

Publication number
CN112811472B
CN112811472B CN202110030373.3A CN202110030373A CN112811472B CN 112811472 B CN112811472 B CN 112811472B CN 202110030373 A CN202110030373 A CN 202110030373A CN 112811472 B CN112811472 B CN 112811472B
Authority
CN
China
Prior art keywords
cafe
gas
formaldehyde
sensing material
shows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110030373.3A
Other languages
English (en)
Other versions
CN112811472A (zh
Inventor
郭威威
雒润东
黄苓莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN202110030373.3A priority Critical patent/CN112811472B/zh
Publication of CN112811472A publication Critical patent/CN112811472A/zh
Application granted granted Critical
Publication of CN112811472B publication Critical patent/CN112811472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种铁酸钙气体传感材料、制备方法和应用,该气体传感材料为纳米立方体结构。制备方法是将氯化钙、氯化铁按摩尔数比为1∶2加入到乙醇和蒸馏水的混合溶液中,磁力搅拌至少20分钟;转入反应釜,加热温度为140~180℃,保温12小时以上;反应结束后,冷却到室温,经固液分离、干燥、研磨。铁酸钙气体传感材料通过简单的一步水热法合成,形貌结构独特,呈纳米立方体结构,用于检测还原性气体(甲醛、甲苯、氢气、一氧化碳、二氧化硫、氨气、丙酮),对甲醛表现出最优良的气敏性能,应用于气体检测技术领域。

Description

一种铁酸钙气体传感材料、制备方法和应用
技术领域
本发明属于气体检测技术领域,具体涉及一种甲醛传感材料和该材料的制备方法。
背景技术
甲醛是一种致癌致畸气体,即使在低浓度的情况下,也会导致严重的健康问题。因此,开发一种有效检测甲醛浓度的气体传感材料对人类健康和室内环境保护都至关重要。
CaFe2O4(铁酸钙)是一种p型三元金属氧化物半导体材料,具有优异的导电性、电子流动性、光学性能和窄禁带宽度等特点。CaFe2O4在光催化、电化学和光电化学等领域已经表现出出色的应用。
根据文献“Orthorhombic CaFe2O4: A promising p-type gas sensor[J]”, A. Šutka, M. Kodu, R. Pärna, R. Saar, I. Juhnevica, R. Jaaniso, V. Kisand, Sens.Actuators B Chem. 224 (2016) 260-265. (“正交CaFe2O4是一种很有前途的p型气体传感器”,安德里斯·苏特卡,Sensors and Actuators B: Chemical,第224期,第260-265页,2016年)记载:Šutka等人用溶胶自动燃烧法合成了CaFe2O4粉末,CaFe2O4在200°C下对100ppm乙醇表现出高响应(41.5)。
文献“Visible Light-Driven p-Type Semiconductor Gas Sensors Based onCaFe2O4 Nanoparticles[J]”,Qomaruddin, O. Casals, A. Šutka, T. Granz, A. Waag,H. S. Wasisto, J. D. Prades, C. Fàbrega, Sensors 20 (2020). (“基于 CaFe2O4纳米粒子的可见光驱动p型半导体气体传感器”,乔马鲁丁,Sensors,第20期,2020年),记载:Qomaruddin等人用溶胶凝胶自动燃烧法合成了纳米粒子结构的CaFe2O4,该CaFe2O4纳米粒子保持了各向异性形状,其粒径大小不均匀,分布范围广。
尽管CaFe2O4材料的气敏特性在气体传感器领域已经有了研究,但是,不同形貌结构的CaFe2O4用于检测各种还原性气体的气敏特性研究还远远不够。
发明内容
针对现有技术存在的问题,本发明所要解决的技术问题就是提供一种铁酸钙气体传感材料,它能有效检测甲醛浓度。本发明还提供一种铁酸钙气体传感材料的制备方法和应用。
为了解决上述技术问题,本发明采用如下技术方案:
本发明提供的一种铁酸钙气体传感材料为纳米立方体结构。
本发明提供的一种制备铁酸钙气体传感材料方法,包含以下步骤:
步骤1、将氯化钙、氯化铁按摩尔数比为1∶2加入到乙醇和蒸馏水的混合溶液中,磁力搅拌至少20分钟,直到氯化钙、氯化铁完全溶解到溶液中;
步骤2、将步骤1所得均匀混合溶液转入反应釜,加热温度为140~180℃,保温12小时以上;
步骤3、反应结束后,使反应釜冷却到室温;
步骤4、将步骤3所得产物进行固液分离、干燥、研磨,得到纳米立方体结构铁酸钙粉末。
本发明还提供上述的铁酸钙气体传感材料用于检测甲醛浓度。
与现有的CaFe2O4材料相比,本发明的优点是:
通过简单的一步水热法成功制备CaFe2O4材料;该CaFe2O4呈现出独特的纳米立方体结构;用于检测还原性气体(甲醛、甲苯、氢气、一氧化碳、二氧化硫、氨气、丙酮),对甲醛表现出最优良的气敏性能。
附图说明
本发明的附图说明如下:
图1为CaFe2O4的XRD图谱;
图2为CaFe2O4的XPS图谱;
(a)为CaFe2O4的XPS 全谱图;(b)为CaFe2O4的XPS Ca 2p光谱;
(c)为CaFe2O4的XPS Fe 2p光谱;(d)为CaFe2O4的XPS O 1s光谱;
图3为CaFe2O4的N2吸附-解吸等温线图;
图4为CaFe2O4的SEM图像和TEM图像;
(a-c)为CaFe2O4 纳米立方体的SEM图像,
(d-f)为CaFe2O4 纳米立方体的 TEM图像;
图5为CaFe2O4基气体传感器的制作流程图和测试***图;
图6为CaFe2O4基气体传感器在不同工作温度下(100℃~400℃)下对30 ppm甲醛的最佳工作温度;
图7为CaFe2O4基气体传感器在最佳工作温度下对30 ppm不同目标气体(甲苯、氢气、甲醛、一氧化碳、二氧化硫、氨气和丙酮)的灵敏度;
图8为CaFe2O4基气体传感器在最佳温度下对1~40 ppm甲醛气体的动态响应恢复曲线;
图9(a)为CaFe2O4基气体传感器在300℃对30 ppm甲醛的5个周期响应-恢复曲线;(b)为CaFe2O4基气体传感器在30天内、300℃对30 ppm甲醛的灵敏度;
图10为CaFe2O4基气体传感器在300℃、不同湿度下对30 ppm甲醛的灵敏度:
(a)30% RH,(b)50% RH,(c)70% RH;
图11为CaFe2O4样品的紫外-可见光吸收光谱;
图12为CaFe2O4样品的光致发光光谱;
图13为CaFe2O4样品的红外光谱。
具体实施方式
下面结合附图和实施例对本发明作进一步说明:
实施例1(氯化钙:氯化铁=1∶1)
将1 mmol氯化钙、1 mmol氯化铁加入到离子水中(10 ml)和乙醇(30 ml)的混合溶液中,磁力搅拌20分钟以上;将上述均匀混合溶液转入50 ml反应釜,加热温度为140℃保温24小时,反应结束后,使反应釜自然冷却到室温,经固液分离、烘干、研磨,得到样品1。
实施例2(氯化钙:氯化铁=1∶2)
将1 mmol氯化钙、2 mmol氯化铁加入到离子水中(10 ml)和乙醇(30 ml)的混合溶液中,磁力搅拌20分钟以上;将上述均匀混合溶液转入50 ml反应釜,加热温度为180℃保温12小时,反应结束后,使反应釜自然冷却到室温,经固液分离、烘干、研磨,得到样品2。
实施例3(氯化钙:氯化铁=1∶3)
将1 mmol氯化钙、3mmol氯化铁加入到离子水中(10 ml)和乙醇(30 ml)的混合溶液中,磁力搅拌20分钟以上;将上述均匀混合溶液转入50 ml反应釜,加热温度为160℃保温18小时,反应结束后,使反应釜自然冷却到室温,经固液分离、烘干、研磨,得到样品3。
样品表征
通过X射线衍射(XRD,Max-1200,日本)、扫描电子显微镜(SEM,JEOL model JSM-6490)、透射电子显微镜(TEM,JEM-2010)、N2 吸附-解析仪(ASAP 2020,美国)、UV(UV-2700)和X射线光电子光谱(XPS,Thermo ESCALAB 250,美国)对样品的晶相、形貌结构、比表面积和化学成分进行了表征。
图1为3个样品的XRD图谱,图1中可以看出,样品2的主要衍射峰2θ=24.36°,33.24°, 35.72°, 40.30°, 49.60°, 54.50°, 57.74°, 62.52°, 64.0°和 71.9°分别对应CaFe2O4的(220), (320), (201), (131), (401), (260), (600), (170), (261)和 (322)晶面(JCPDS:32-0168)。此外,没有观察到其他杂质峰,表明CaFe2O4样品的高纯度;而样品1的主要衍射峰表现为β-FeOOH(JCPDS:42-1315),不是CaFe2O4物质;样品3的主要衍射峰则表现为CaFe2O4、CaFe5O7、Fe2O3的混合物,为不纯CaFe2O4样品。结果表明,(实施例2)氯化钙:氯化铁=1∶2为最佳摩尔比。
XPS光谱用于表征CaFe2O4样品的组成元素和化学价。如图2(a)所示,实施例2所制备的CaFe2O4样品2的光谱具有Ca,Fe,O,和C峰。图2(b)为CaFe2O4的XPS Ca 2p光谱,在348.70 eV 和 352.30 eV处的两个峰,分别对应于Ca 2p3/2 和 Ca 2p1/2,表明Ca的化学价为+2。图2(c)为CaFe2O4的XPS Fe 2p光谱,在711.30 eV 和 725.00 eV处的两个峰,分别对应于Ca 2p3/2 and Ca 2p1/2,表明Fe的化学价为+3。图2(d)为CaFe2O4的XPS O 1s光谱,在530.50 eV 和 532.38 eV分别显示了两种不同类型的氧气,即晶格氧和表面吸附氧。XPS分析结果与XRD分析结果一致,表明通过简单的一步水热法成功的合成了CaFe2O4材料。
图3为CaFe2O4的N2吸附-解吸等温线图;在图3中,CaFe2O4材料为第IV类型等温线,且等温线上滞后回环的形状为H3型线,表明样品中有介孔存在。
图4为CaFe2O4材料的SEM和TEM。在图4(a)可以看出,成功地合成了大范围的、大小均匀的、具有规则结构的CaFe2O4。在图4(b)中,CaFe2O4呈现出纳米立方体结构,其平均边长为470纳米。CaFe2O4纳米立方体松散地堆叠在一起且粒度分散,这样能产生许多便捷的路径,有利于目标气体的吸附脱附。在图4(c)可以看出CaFe2O4纳米立方体表面粗糙并且分布着一些孔。这种独特的纳米立方体结构和表面特征,将会暴露更多的活性反应位点,从而获得高灵敏度。在图4(d-f)中,可以看到CaFe2O4纳米立方体的边缘黑白分明,说明CaFe2O4样品的边缘具有多孔结构,这与N2吸附-解吸等温线和SEM的结果分析一致。
图5为CaFe2O4基气体传感器的制备流程图和测试***图。图5(a)为CaFe2O4基气体传感器的制备流程图,采用刷涂法制备CaFe2O4基气体传感器:首先,将一定量的CaFe2O4样品添加到去离子水中以形成均匀浆液,并将浆液均匀的涂在氧化铝基片上的Ag-Pd叉形电极表面上,然后将制备的气敏元件放在300℃的老化台上老化1 h,老化结束后测试该材料的气敏性能。
图5(b)为测试***图,采用CGS-1TP智能气敏分析***(中国北京艾利特公司)测 试CaFe2O4基气体传感器的性能,该***由冷却循环***,测试***,温度控制***和数据采 集***组成,首先将气敏元件放在控温平台中央,并调整探针位置,设定工作温度。当气敏 元件电阻稳定时,采集气敏元件在空气中的电阻
Figure DEST_PATH_IMAGE001
,随后注入目标气体到测试室,当气敏 元件电阻稳定时,获得气敏元件在目标气体中的电阻
Figure 268826DEST_PATH_IMAGE002
,从而定义样品的灵敏度
Figure DEST_PATH_IMAGE003
。响应和恢复时间定义为测试气体进入和移除后响应变化达到稳定值的90%所需的时间。
如图6所示,测试CaFe2O4基气体传感器在不同工作温度下(100℃~400℃)下对30ppm甲醛的灵敏度:CaFe2O4基气体传感器的灵敏度随着工作温度(100~300℃)的增加而增大,在300℃时达到最大响应值(16.50),然后当温度超过300℃时,灵敏度逐渐下降。因此,CaFe2O4基气体传感器的最佳工作温度和最大灵敏度值分别为300 ℃和16.50。
图7为CaFe2O4基气体传感器在最佳工作温度下对30 ppm不同目标气体的灵敏度。从图7可以看出,CaFe2O4基气体传感器对甲醛具有最高的灵敏度(16.50),对C7H8 (1.44),H2(1.30),CO (1.53),SO2 (1.79),NH3 (2.15)和C3H6O (4.24)的灵敏度都很低(均不超过5),表明CaFe2O4基气体传感器对甲醛具有良好的选择性。
图8为CaFe2O4基气体传感器在最佳温度下对1~40 ppm甲醛气体的动态响应恢复曲线,测试方式为:在100s时注射1 ppm甲醛,在300s时释放到空气中;在400s时又注射5 ppm甲醛,在600s时释放到空气中;在700s时又注射10 ppm甲醛,随后依次进行。CaFe2O4基气体传感器对1~40 ppm甲醛的灵敏度分别对应为3.4(1 ppm),5.7(5 ppm),8.8(10 ppm),10.39(15 ppm),11.52(20 ppm),14.57(25 ppm),16.50(30 ppm),18.06(35 ppm)和20.75(40ppm)。明显地,CaFe2O4基气体传感器的灵敏度随着HCHO浓度的增加而增大。
图9(a)为CaFe2O4基气体传感器在300℃对30 ppm甲醛的5个周期响应-恢复曲线,测试方式:通5次甲醛气体、再换5次空气。从图9(a)可以看出:经过连续5个周期后,灵敏度仍保持初始响应-恢复幅度,表明CaFe2O4基气体传感器对HCHO具有良好的重复性。图9(b)为CaFe2O4基气体传感器在30天内、300℃对30 ppm甲醛的灵敏度,可以看出:30天后,CaFe2O4基气体传感器的灵敏度误差小于5%,表明CaFe2O4基气体传感器的高稳定性。
图10为CaFe2O4基气体传感器在300℃、不同湿度下对30 ppm甲醛的灵敏度:(a)30%RH,(b)50% RH,(c)70% RH,测试步骤:在100s时注射甲醛气体,300s时释放到空气中,400s时结束采集。在图10(a-c)中,CaFe2O4基气体传感器对30 ppm HCHO的灵敏度和响应恢复时间分别为:16.50和153 s-54 s(30% RH),15.59和159 s-64 s(50% RH),13.76和171 s-69 s(70% RH)。可以看出,CaFe2O4基气体传感器的灵敏度和响应恢复时间变化微小,证明了CaFe2O4具有出色的耐湿性。
图11为CaFe2O4样品的紫外-可见光吸收曲线。如图11所示,通过截线法可以得到 CaFe2O4样品的最大吸收波长(722 nm),根据最大吸收波长,可以估算能带宽度(
Figure 123649DEST_PATH_IMAGE004
),这表明材料具有可见光活性。
图12为CaFe2O4样品的光致发光光谱(光致发光光谱主要用来说明电子-空穴的复合率程度),可以看出,荧光主要出现在400~450 nm,荧光强度较低,表明CaFe2O4样品的电子-空穴复合速率低,即载流子的分离效率高。
图13为CaFe2O4样品的红外光谱,位于3600-3300 cm-1和1650~1590 cm-1处的峰,表明-OH基团的存在和吸收的H2O分子;位于590-540 cm-1和500~460cm-1的峰是CaFe2O4的Fe-O和Ca-O振动的特征峰;位于2347 cm-1处的反对称拉伸模式表明存在溶解的二氧化碳。
结合气敏性能可以得到:本发明的CaFe2O4材料有良好的气敏性能,一是因为本发明的CaFe2O4材料具有独特的纳米立方体结构和表面特征,暴露了更多的活性反应位点,提高了CaFe2O4的灵敏度;CaFe2O4纳米立方体松散地堆叠在一起且粒度分散,提供了许多利于气体扩散和吸附/脱附的通道,提高了CaFe2O4的响应恢复特性;二是因为CaFe2O4较窄的禁带宽度和较低的电子-空穴复合率,有利于电子的跃迁和迁移,从而拥有更多的氧空位,提高了材料的气敏性能。
综上所述,采用简单的一步水热法成功地制备了纳米立方体结构的CaFe2O4气体传感材料,该材料应用于气敏传感器中检测甲醛气体,结果表明:在300℃的最佳温度下,CaFe2O4纳米立方体材料对30ppm甲醛具有较高的灵敏度(16.50),快速的响应恢复时间(153s-54 s),为甲醛气敏传感器的候选材料。

Claims (2)

1.一种铁酸钙气体传感材料的制备方法,其特征是,包含以下步骤:
步骤1、将氯化钙、氯化铁按摩尔数比为1∶2加入到乙醇和蒸馏水的混合溶液中,磁力搅拌至少20分钟,直到氯化钙、氯化铁完全溶解到溶液中;
步骤2、将步骤1所得均匀混合溶液转入反应釜,加热温度为140~180℃,保温12小时以上;
步骤3、反应结束后,使反应釜冷却到室温;
步骤4、将步骤3所得产物进行固液分离、干燥、研磨,得到纳米立方体结构铁酸钙粉末。
2.一种使用权利要求1所述制备方法得到的铁酸钙气体传感材料用于检测甲醛浓度。
CN202110030373.3A 2021-01-11 2021-01-11 一种铁酸钙气体传感材料、制备方法和应用 Active CN112811472B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110030373.3A CN112811472B (zh) 2021-01-11 2021-01-11 一种铁酸钙气体传感材料、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110030373.3A CN112811472B (zh) 2021-01-11 2021-01-11 一种铁酸钙气体传感材料、制备方法和应用

Publications (2)

Publication Number Publication Date
CN112811472A CN112811472A (zh) 2021-05-18
CN112811472B true CN112811472B (zh) 2022-11-18

Family

ID=75869890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110030373.3A Active CN112811472B (zh) 2021-01-11 2021-01-11 一种铁酸钙气体传感材料、制备方法和应用

Country Status (1)

Country Link
CN (1) CN112811472B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804189B (zh) * 2022-04-11 2023-05-05 重庆工商大学 一种ZnO/CaFe2O4气敏传感复合材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645530A (zh) * 2004-11-12 2005-07-27 清华大学 一种合成系列单分散铁酸盐纳米磁珠的方法
WO2008154716A1 (en) * 2007-06-21 2008-12-24 FACULDADES CATÓLICAS, SOCIEDADE CIVIL MANTENEDORA DA PUC Rio Alkaline and terrous-alkaline transition metal oxide micro- and submicro-materials, and hydrothermic process for obtaining the same
CN104326510A (zh) * 2014-10-21 2015-02-04 新疆大学 一种多铁性铁酸铋立方纳米颗粒的制备方法
CN106824207A (zh) * 2017-01-22 2017-06-13 安徽工业大学 一种pn型CaFe2O4@a‑Fe2O3异质结复合光催化剂及其制备方法和应用
CN108543536A (zh) * 2018-03-14 2018-09-18 西安建筑科技大学 一种钒酸铋-铁酸钙复合光催化剂、制备方法及其应用
CN110759385A (zh) * 2018-07-25 2020-02-07 中国科学院金属研究所 一种铁酸铋纳米立方块材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009045177A1 (en) * 2007-10-05 2009-04-09 Agency For Science, Technology And Research Methods of forming a nanocrystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645530A (zh) * 2004-11-12 2005-07-27 清华大学 一种合成系列单分散铁酸盐纳米磁珠的方法
WO2008154716A1 (en) * 2007-06-21 2008-12-24 FACULDADES CATÓLICAS, SOCIEDADE CIVIL MANTENEDORA DA PUC Rio Alkaline and terrous-alkaline transition metal oxide micro- and submicro-materials, and hydrothermic process for obtaining the same
CN104326510A (zh) * 2014-10-21 2015-02-04 新疆大学 一种多铁性铁酸铋立方纳米颗粒的制备方法
CN106824207A (zh) * 2017-01-22 2017-06-13 安徽工业大学 一种pn型CaFe2O4@a‑Fe2O3异质结复合光催化剂及其制备方法和应用
CN108543536A (zh) * 2018-03-14 2018-09-18 西安建筑科技大学 一种钒酸铋-铁酸钙复合光催化剂、制备方法及其应用
CN110759385A (zh) * 2018-07-25 2020-02-07 中国科学院金属研究所 一种铁酸铋纳米立方块材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
铁酸铜尖晶石催化甲醛氧化的性能研究;丁俊彦等;《新能源进展》;20200630;第8卷(第3期);178-183 *
锂离子电池用CuFe2O4立方颗粒负极材料的合成及其电化学性能;钟采妮等;《有色金属科学与工程》;20200630;第11卷(第3期);59-64 *

Also Published As

Publication number Publication date
CN112811472A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
Ren et al. Conductometric NO2 gas sensors based on MOF-derived porous ZnO nanoparticles
Rai et al. Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application
Qin et al. Three-dimensionally ordered macroporous La1− xMgxFeO3 as high performance gas sensor to methanol
Han et al. Flower-like In 2 O 3 hierarchical nanostructures: Synthesis, characterization, and gas sensing properties
Balamurugan et al. Enhanced H2S sensing performance of a p-type semiconducting PdO-NiO nanoscale heteromixture
Zhang et al. Highly selective ppb-level H2S sensor based on the walnut-like Bi2MoO6 at low temperature
Chen et al. Highly enhanced gas-sensing properties of indium-doped mesoporous hematite nanowires
Li et al. The effects of Zr-doping on improving the sensitivity and selectivity of a one-dimensional α-MoO 3-based xylene gas sensor
Fu et al. Synthesis of uniform porous NiO nanotetrahedra and their excellent gas-sensing performance toward formaldehyde
CN113740390B (zh) 一种镍掺杂氧化铟纳米颗粒及其制备方法与应用
CN112811472B (zh) 一种铁酸钙气体传感材料、制备方法和应用
Hu et al. Enhanced room temperature NO2 sensing performance based on N-doped carbon nanosheets@ ZnO nanoplates by morphology transition and white light illumination
CN115724462A (zh) 一种CeO2复合TiO2氢敏材料及制备方法
Yao et al. Gold–tin co-sensitized ZnO layered porous nanocrystals: Enhanced responses and anti-humidity
Liu et al. Enhanced ethanol sensors based on MOF-derived ZnO/Co3O4 bimetallic oxides with high selectivity and improved stability
Shingange et al. LaBO3 (B= Fe, Co) nanofibers and their structural, luminescence and gas sensing characteristics
Hassan et al. Temperature-driven n-to p-type transition of a chemiresistive NiO/CdS-CdO NO2 gas sensor
Li et al. Synthesis of porous SnO2 nanocubes via selective leaching and enhanced gas-sensing properties
Choi et al. Optimization of the Pt nanoparticle size and calcination temperature for enhanced sensing performance of Pt-decorated In 2 O 3 nanorods
CN114414634B (zh) 一种铁掺杂的羟基锡酸钴气体传感器材料及其制备方法
CN114804189B (zh) 一种ZnO/CaFe2O4气敏传感复合材料及制备方法
CN112897588B (zh) 一种铁酸钙复合铁酸锌气体传感材料、制备方法和应用
Zhang et al. UV-Activated ZnO–NiO heterojunction sensor for ethanol gas detection at low working temperature
Wang et al. Construction of ZnCo 2 O 4 decorated ZnO heterostructure materials for sensing triethylamine with dramatically enhanced performance
CN115010169A (zh) 一种稀土元素修饰的氧化铟气敏材料的制备方法、产品及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Guo Weiwei

Inventor after: Luo Rundong

Inventor after: Huang Lianli

Inventor before: Guo Weiwei

Inventor before: Huang Lianli

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant