CN110759385A - 一种铁酸铋纳米立方块材料及其制备方法和应用 - Google Patents

一种铁酸铋纳米立方块材料及其制备方法和应用 Download PDF

Info

Publication number
CN110759385A
CN110759385A CN201810824399.3A CN201810824399A CN110759385A CN 110759385 A CN110759385 A CN 110759385A CN 201810824399 A CN201810824399 A CN 201810824399A CN 110759385 A CN110759385 A CN 110759385A
Authority
CN
China
Prior art keywords
bismuth ferrite
bismuth
ferrite nano
nano
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810824399.3A
Other languages
English (en)
Other versions
CN110759385B (zh
Inventor
李琦
杨炜沂
马慧琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201810824399.3A priority Critical patent/CN110759385B/zh
Publication of CN110759385A publication Critical patent/CN110759385A/zh
Application granted granted Critical
Publication of CN110759385B publication Critical patent/CN110759385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种铁酸铋纳米立方块材料及其制备方法和应用,属于纳米材料制备、太阳能利用与环境保护技术领域。具体为采用湿化学的方法,通过设计铁酸铋结晶生长过程中所处的反应环境来调整铁酸铋的相结构跟微观形貌。本发明在较为温和的反应条件下成功合成了具有菱形相结构单相铁酸铋纳米材料,解决了采用传统湿化学合成法制备铁酸铋材料时容易产生杂相的难题,制备获得的铁酸铋纳米晶体尺寸在200nm‑300nm之间,呈现出立方块形貌,能够吸收可见光波段的太阳光,可用作一种光催化材料应用于环境中有机污染物的净化。

Description

一种铁酸铋纳米立方块材料及其制备方法和应用
技术领域
本发明涉及纳米材料制备、太阳能利用与环境保护技术领域,具体涉及一种铁酸铋纳米立方块材料及其制备方法和应用。
背景技术
铁酸铋是唯一的一个铁电居里温度和反铁磁奈尔转变温度远高于室温的材料,铁电居里温度(TC=825℃)和反铁磁奈尔温度(TN=370℃),能够实现室温铁电与反铁磁共存的同时,又伴随着磁/电偶极子强耦合特性的材料,可以实现用电场控制磁化。其在磁存储介质方面有着极其重要的应用前景,可能成为一种集铁电材料和铁磁材料优点于一身的新型记忆材料而备受关注。同时,铁酸铋的剩余极化强度(Pr)可达到90~100μC/cm2,已经接近实际应用的典型铁电材料锆钛酸铅的性能,这使得铁酸铋成为无铅铁电体的重要候选材料之一。对铁酸铋的研究已经成为多铁性材料研究领域的一个热点,吸引着众多科学家投身到铁酸铋材料体系的合成及其多铁物理机制的研究领域。
此外,铁酸铋由于Fe3+的部分填满,对于菱形相单晶、菱形相多晶、赝立方钙钛矿结构的禁带宽度在2.2eV到2.7eV之间,在室温下大多表现为直接带隙,可以有效的吸收太阳光谱中的可见光,有望作为一种光催化材料而应用于太阳能的利用领域。但是,现有的研究表明,钙钛矿结构的铁酸铋材料的合成及稳定存在的温度范围较窄,组分中铋元素较为活泼,在高温下易挥发、在液相中容易水解,因此单相的铁酸铋材料制备过程较难控制、工艺区间较窄,合成的产物中常会含有Bi2Fe4O9、Bi25FeO40等杂相,从而影响其性能以及进一步走向应用。因此,寻找一种工艺简单、操作简便的单相铁酸铋材料的制备方法有着重要的科学意义和现实意义。
发明内容
针对现有技术中存在的上述不足之处,本发明的目的在于提供一种单相铁酸铋多铁纳米立方块材料制备方法以及其在光催化材料中的应用,采用湿化学的方法,通过设计铁酸铋结晶生长过程中所处的反应环境来调整铁酸铋的相结构跟微观形貌,以获得尺寸均一、分散性良好的单相铁酸铋纳米材料,该铁酸铋材料不仅可用作一种光催化材料应用于太阳能的利用领域,同时还能作为一种模型材料用于铁酸铋多铁性的研究。
为实现上述目的,本发明所采用的技术方案如下:
一种铁酸铋纳米立方块材料,该材料为单相菱形结构的铁酸铋晶体,晶粒尺寸在200-300nm之间,呈现立方块的形貌。
所述材料禁带宽度为2.2-2.5eV,能够吸收太阳光谱中紫外与可见波段的光能。
所述铁酸铋纳米立方块材料的制备方法,包括如下步骤:
(1)配置碱液:将碱充分溶解于醇水混合液中获得碱液,碱在醇水混合液中的加入量为0.1-0.1075g/mL;所述的醇水混合液为去离子水与无水乙醇的混合溶液,其中水与无水乙醇的体积比例为1:15-1:10。
(2)配置金属离子溶液:将氯化铋和氯化铁加入浓硝酸中,获得铋盐与铁盐的硝酸溶液,即所述金属离子溶液;其中:氯化铋与浓硝酸的比例为(0.2207-0.414)g:1mL;BiCl3与FeCl3的摩尔比例为1:1;所述浓硝酸指的是市售浓硝酸,质量分数约为65-68%;所述氯化铋和氯化铁不含结晶水。
(3)在搅拌条件下,将步骤(2)所得金属离子溶液逐滴加入步骤(1)所得碱液中,搅拌0.5-1h后获得反应前驱体溶液;所述金属离子溶液与碱液的体积比例为1:15-1:16。
(4)将步骤(3)得到的反应前驱体溶液在180-200℃保温6-12h后,自然冷却到室温;
(5)将步骤(4)冷却后所获得的沉淀经反复离心和洗涤后,在60℃的烘箱中干燥8-12小时,即得到所述铁酸铋纳米立方块材料。
所述铁酸铋纳米立方块材料直接应用于太阳光照射下环境中有机污染物的降解。
本发明的设计思想如下:
单相的铁酸铋材料较难制备,合成的产物中含有Bi2Fe4O9、Bi25FeO40等杂相,本发明是将金属离子溶液加入到碱液中,搅拌后所得反应前驱体溶液发生水热反应后,合成所述的单相铁酸铋多铁材料。在制备过程中,通过调整碱性溶剂中去离子水和乙醇的比例,改变溶剂的极性和溶质的溶解度,合成单相的铁酸铋;金属铋盐在去离子水中容易发生水解,生成次氯酸铋,因此通过加入浓硝酸来抑制其水解;一般铁酸铋的水热合成需要在强碱条件下进行,因此加入NaOH调节其pH。
本发明的优点在于:
1.本发明通过调整碱液中去离子水和乙醇的比例,改变溶剂的极性和溶质的溶解度,合成单相的铁酸铋。
2.本发明利用自生成的NaCl“笼”限制纳米颗粒生长,得到尺寸较小的铁酸铋纳米材料。
3.本发明工艺流程简单、操作简便,能耗低,产量大,适合大批量生产。
4.本发明合成的铁酸铋尺寸均一,形貌规整,具有特殊的立方块形貌,且未使用表面活性剂,有利于洗涤,排除表面活性剂对其性能可能产生的不利影响。
5.本发明的铁酸铋禁带宽度较小,约2.2-2.5eV,可以有效吸收可见光,且价带位置较低,具有很高的光催化氧化活性。
附图说明
图1为所制备的纳米级铁酸铋晶体结构表征;其中:(a)实施例1为所制备的纳米级铁酸铋晶体结构表征,XRD图;(b)对比例1为所制备的纳米级铁酸铋晶体结构表征,XRD图。
图2为所制备的纳米级铁酸铋晶体的SEM图。
图3为实施例1制备的纳米级铁酸铋紫外-可见光吸收曲线。
图4为实施例1制备的纳米级铁酸铋在可见光激发下,不同处理时间亚甲基蓝的残留量与时间的关系图。
具体实施方式
以下结合附图和实施例详述本发明。
以下实施例中,所用浓硝酸的浓度为68wt%,BiCl3、FeCl3通过搅拌的方式完全溶解;BiCl3、FeCl3都不含结晶水,以减少结晶水对溶剂比例的影响。
实施例1
本实施例单相铁酸铋多铁材料的制备过程如下:
(1)5mL去离子水和75mL无水乙醇均匀混合后,加入8.6g的NaOH,搅拌1h,使NaOH完全溶解,得到碱性溶剂;
(2)称取1.1035g的BiCl3,向其中加入5ml浓硝酸,搅拌使氯化铋完全溶解后,加入0.5675g的FeCl3,充分搅拌后,得到BiCl3和FeCl3的金属离子溶液;
(3)在搅拌条件下,将步骤(2)中金属离子溶液逐滴加入到步骤(1)中的碱液中,搅拌0.5h后得到前驱体溶液;
(4)将步骤(3)得到的前驱体溶液转移到容积为100mL的聚四氟乙烯内衬的反应釜中,密封后放入烘箱在180℃保存6h;
(5)反应釜随炉冷却到室温后,将所获得的沉淀经反复离心,水洗、乙醇洗涤后在60℃的烘箱中干燥12小时,即得到纳米铁酸铋材料。
图1(a)为本实施例制备的铁酸铋纳米材料的xrd图,由图1(a)可以看出材料是单一相的铁酸铋晶体,没有任何杂相。
图2为本实施例制备的铁酸铋纳米材料SEM图,由图2可以看出所制备的铁酸铋晶体尺寸均一,分散性良好,呈现立方块的形貌。
图3为本实施例制备的铁酸铋纳米材料的光吸收谱图,由图3可以看出铁酸铋纳米材料在可见光的吸收区域表现了较强的光吸收性能。吸收带边在~570nm的位置,带隙约2.2eV。
图4为本实施例制备的铁酸铋纳米材料在可见光激发下,亚甲基蓝残留量与时间的关系图,由图4可以看出铁酸铋纳米材料对亚甲基蓝有良好的降解效果。
实施例2
本实施例单相铁酸铋多铁材料的制备过程如下:
(1)5mL去离子水和75mL无水乙醇均匀混合后,加入8.6g的NaOH,搅拌1h,使NaOH完全溶解,得到碱性溶剂;
(2)称取2.207g的BiCl3,向其中加入5ml浓硝酸,搅拌使氯化铋完全溶解后,加入1.135g的FeCl3,充分搅拌后,得到BiCl3和FeCl3的金属离子溶液;
(3)在搅拌条件下,将步骤(2)中金属离子溶液逐滴加入到步骤(1)中的碱液中,搅拌0.5h后得悬浊液;
(4)将步骤(3)得到的前驱体溶液转移到容积为100mL的聚四氟乙烯内衬的反应釜中,密封后放入烘箱在180℃保存6h;
(5)反应釜随炉冷却到室温后,将所获得的沉淀经反复离心,水洗、乙醇洗涤后在60℃的烘箱中干燥12小时,即得到纳米铁酸铋材料。
对比例1
本实施例单相铁酸铋多铁材料的制备过程如下:
(1)2mL去离子水和78mL无水乙醇均匀混合后,加入8.6g的NaOH,搅拌1h,使NaOH完全溶解,得到碱性溶剂;
(2)称取2.207g的BiCl3,向其中加入5ml浓硝酸,搅拌使氯化铋完全溶解后,加入1.135g的FeCl3,充分搅拌后,得到BiCl3和FeCl3的金属离子溶液;
(3)在搅拌条件下,将步骤(2)中金属离子溶液逐滴加入到步骤(1)中的碱液中,搅拌0.5h后得前驱体溶液;
(4)将步骤(3)得到的前驱体溶液转移到容积为100mL的聚四氟乙烯内衬的反应釜中,密封后放入烘箱在180℃保存6h;
(5)反应釜随炉冷却到室温后,将所获得的沉淀经反复离心,水洗、乙醇洗涤后在60℃的烘箱中干燥12小时,即得到纳米铁酸铋材料。
图1(b)为本实施例制备的铁酸铋纳米材料的xrd图,由图1(b)可以看出材料中除了存在BiFeO3以外还存在Bi、Bi2Fe4O9等杂相的峰。

Claims (8)

1.一种铁酸铋纳米立方块材料,其特征在于:该材料为单相菱形相的铁酸铋晶体,晶粒尺寸在200-300nm之间,呈现立方块的形貌。
2.根据权利要求1所述的铁酸铋纳米立方块材料,其特征在于:所述材料禁带宽度为2.2-2.5eV,能够吸收太阳光谱中紫外与可见波段的光能。
3.根据权利要求1或2所述的铁酸铋纳米立方块材料的制备方法,其特征在于,该方法包括如下步骤:
(1)配置碱液:将碱充分溶解于醇水混合液中获得碱液,碱在醇水混合液中的加入量为0.1-0.1075g/mL;
(2)配置金属离子溶液:将氯化铋和氯化铁加入浓硝酸中,获得铋盐与铁盐的硝酸溶液,即所述金属离子溶液;其中:氯化铋与浓硝酸的比例为(0.2207-0.414)g:1mL;BiCl3与FeCl3的摩尔比例为1:1;
(3)在搅拌条件下,将步骤(2)所得金属离子溶液逐滴加入步骤(1)所得碱液中,搅拌0.5-1h后获得反应前驱体溶液;
(4)将步骤(3)得到的反应前驱体溶液在180-200℃保温6-12h后自然冷却到室温;
(5)将步骤(4)冷却后所获得的沉淀经反复离心和洗涤后,在60℃的烘箱中干燥8-12小时,即得到所述铁酸铋纳米立方块材料。
4.根据权利要求3所述的铁酸铋纳米立方块材料的制备方法,其特征在于:步骤(1)中,所述的醇水混合液为去离子水与无水乙醇的混合溶液,其中水与无水乙醇的体积比例为1:15-1:10。
5.根据权利要求3所述的铁酸铋纳米立方块材料的制备方法,其特征在于:步骤(2)中,浓硝酸的质量分数为65-68%。
6.根据权利要求3所述的铁酸铋纳米立方块材料的制备方法,其特征在于:步骤(2)中氯化铋和氯化铁不含结晶水。
7.根据权利要求3所述的铁酸铋纳米立方块材料的制备方法,其特征在于:步骤(3)中,所述金属离子溶液与碱液的体积比例为1:15-1:16。
8.根据权利要求1所述的铁酸铋纳米立方块材料的应用,其特征在于:所述铁酸铋纳米立方块材料直接应用于太阳光照射下环境中有机污染物的降解。
CN201810824399.3A 2018-07-25 2018-07-25 一种铁酸铋纳米立方块材料及其制备方法和应用 Active CN110759385B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810824399.3A CN110759385B (zh) 2018-07-25 2018-07-25 一种铁酸铋纳米立方块材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810824399.3A CN110759385B (zh) 2018-07-25 2018-07-25 一种铁酸铋纳米立方块材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110759385A true CN110759385A (zh) 2020-02-07
CN110759385B CN110759385B (zh) 2021-10-15

Family

ID=69327015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810824399.3A Active CN110759385B (zh) 2018-07-25 2018-07-25 一种铁酸铋纳米立方块材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110759385B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811472A (zh) * 2021-01-11 2021-05-18 重庆工商大学 一种铁酸钙气体传感材料、制备方法和应用
CN113336271A (zh) * 2021-06-11 2021-09-03 浙江理工大学 一种微米级规则方条形Bi2Fe4O9多铁材料的制备方法、产品及应用
CN113336272A (zh) * 2021-06-11 2021-09-03 浙江理工大学 一种镂空方条形单相Bi2Fe4O9多铁材料的制备方法、产品及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850621A (zh) * 2006-05-26 2006-10-25 上海大学 氧化铋纳米粉体的制备方法
US20110020170A1 (en) * 2008-03-19 2011-01-27 Basf Se Metal nanoparticles stabilized with derivatized polyethyleneimines or polyvinylamines
WO2012094110A2 (en) * 2011-01-07 2012-07-12 Baker Hughes Incorporated Filtration of dangerous or undesirable contaminants
CN105329870A (zh) * 2015-12-14 2016-02-17 长沙理工大学 一种魔方状软铋矿磷酸铋粉体的制备方法
CN107626321A (zh) * 2017-10-08 2018-01-26 南京邮电大学 一种快速制备多种形貌BiFeO3光催化剂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850621A (zh) * 2006-05-26 2006-10-25 上海大学 氧化铋纳米粉体的制备方法
US20110020170A1 (en) * 2008-03-19 2011-01-27 Basf Se Metal nanoparticles stabilized with derivatized polyethyleneimines or polyvinylamines
WO2012094110A2 (en) * 2011-01-07 2012-07-12 Baker Hughes Incorporated Filtration of dangerous or undesirable contaminants
CN105329870A (zh) * 2015-12-14 2016-02-17 长沙理工大学 一种魔方状软铋矿磷酸铋粉体的制备方法
CN107626321A (zh) * 2017-10-08 2018-01-26 南京邮电大学 一种快速制备多种形貌BiFeO3光催化剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUN LI ET AL.: "Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors", 《JOURNAL OF PHYSICAL CHEMISTRY C》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811472A (zh) * 2021-01-11 2021-05-18 重庆工商大学 一种铁酸钙气体传感材料、制备方法和应用
CN112811472B (zh) * 2021-01-11 2022-11-18 重庆工商大学 一种铁酸钙气体传感材料、制备方法和应用
CN113336271A (zh) * 2021-06-11 2021-09-03 浙江理工大学 一种微米级规则方条形Bi2Fe4O9多铁材料的制备方法、产品及应用
CN113336272A (zh) * 2021-06-11 2021-09-03 浙江理工大学 一种镂空方条形单相Bi2Fe4O9多铁材料的制备方法、产品及应用
CN113336272B (zh) * 2021-06-11 2022-04-08 浙江理工大学 一种镂空方条形单相Bi2Fe4O9多铁材料的制备方法、产品及应用
CN113336271B (zh) * 2021-06-11 2022-06-28 浙江理工大学 一种微米级规则方条形Bi2Fe4O9多铁材料的制备方法、产品及应用

Also Published As

Publication number Publication date
CN110759385B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN110759385B (zh) 一种铁酸铋纳米立方块材料及其制备方法和应用
CN101890354B (zh) 一种铁酸铋光催化剂的制备方法
JP2014505651A (ja) ドーピング二酸化バナジウム粉体、分散液及びそれらの製造方法と応用
CN102925979B (zh) 一种钙钛矿钛酸铅单晶纳米片的制备方法
CN103894177B (zh) 一种具有光催化活性的稀土掺杂钛酸钾粉末的合成方法
CN103242042B (zh) 一种基于核壳结构三维微固相反应的多元氧化物纳米颗粒的制备方法
CN108689422B (zh) 一种大比表面积纳米氧化钆粉体的制备方法
CN109205655B (zh) 一种粒径为80-100nm的纳米氧化钆的制备方法
CN103570068B (zh) 一种铌铁矿结构ZnNb2O6纤维及其制备方法
CN109665537A (zh) 一种低温制备EuB6纳米立方体晶体的方法
CN104528799A (zh) 一种镁基稀土六铝酸盐超细粉体的制备方法
CN104150539B (zh) 一种纳米铁酸钇粉体的制备方法
CN103566925B (zh) 一种稀土掺杂介孔钒酸铋的制备方法
CN101591176A (zh) 一种合成Gd3Ga5O12(GGG)透明陶瓷纳米晶的方法
CN103449511A (zh) 一种钛酸锶亚微米晶体及其制备方法
CN105271321B (zh) 一种掺锌氧化镁纳米管的制备方法
CN108640158B (zh) 一种高纯度六角片状钡铁氧体的制备方法
Luo et al. Photoluminescence of europium-doped and europium/strontium-codoped sol–gel-prepared yttrium vanadate nanoparticles
KR20150088409A (ko) Gdc 및 lscf 복합분말의 제조 방법
Wang et al. Facile preparation, characterization and photocatalytic properties of multifunctional BiFeO3 nanocrystals
CN113336271B (zh) 一种微米级规则方条形Bi2Fe4O9多铁材料的制备方法、产品及应用
Jing et al. Magnetic Core–Shell Nano-TiO2/Al2O3/NiFe2O4 Microparticles with Enhanced Photocatalytic Activity
CN115140764A (zh) 一种层级结构的钙钛矿相钛酸铅、水热合成方法及应用
CN114477247A (zh) 一种微波诱导燃烧合成纳米氧化镁的方法
CN107140690A (zh) 一种改善铋铁钛类氧化物纳米粉体团聚的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant