CN112740537A - 永磁同步电机的mtpa控制方法、装置、***及设备 - Google Patents

永磁同步电机的mtpa控制方法、装置、***及设备 Download PDF

Info

Publication number
CN112740537A
CN112740537A CN202080003723.0A CN202080003723A CN112740537A CN 112740537 A CN112740537 A CN 112740537A CN 202080003723 A CN202080003723 A CN 202080003723A CN 112740537 A CN112740537 A CN 112740537A
Authority
CN
China
Prior art keywords
value
permanent magnet
magnet synchronous
synchronous motor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080003723.0A
Other languages
English (en)
Other versions
CN112740537B (zh
Inventor
王宇
沈文
王二峰
吴轩钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Invt Electric Co Ltd
Original Assignee
Shenzhen Invt Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Invt Electric Co Ltd filed Critical Shenzhen Invt Electric Co Ltd
Publication of CN112740537A publication Critical patent/CN112740537A/zh
Application granted granted Critical
Publication of CN112740537B publication Critical patent/CN112740537B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本申请公开了一种永磁同步电机的MTPA控制方法、装置、***及电子设备,该方法包括:实时获取转速调节器输出的转矩电流给定值;按照预设轨迹规划公式实时计算d轴和q轴电流给定值;预设轨迹规划公式基于在MTPA条件下d轴与q轴电流给定值间的二次函数关系,通过预先对永磁同步电机进行旋转参数辨识而生成;将d轴和q轴电流给定值实时输出至电流环,以便基于电流环输出的d轴和q轴电压给定值控制永磁同步电机实现MTPA运行。本申请基于与电机实际运行状况更接近的轨迹规划公式进行MTPA轨迹规划,能实现对电机电感的自饱和与交叉饱和不敏感的节能运行,且算法复杂度低,计算耗时少,不会降低电机的动态响应速率。

Description

永磁同步电机的MTPA控制方法、装置、***及设备
技术领域
本申请涉及同步电机控制技术领域,特别涉及一种永磁同步电机的MTPA控制方法、装置、***及电子设备。
背景技术
永磁同步电机的转子磁场由永磁体提供,电机运行过程中的损耗主要包括定子铜耗和定、转子铁耗。由于铁耗的大小难以准确估计且受诸多其他因素影响,因此通常通过定子铜耗最小化以近似实现电机的能耗最优控制。定子铜耗的最小化即相同电流幅值大小下电机的输出转矩最大,所以这种能耗最优控制被称作最大转矩电流比(Maximum TorquePer Ampere,MTPA)控制。
MTPA控制实现方法包括有在线方法和离线方法两类。其中,离线方法主要为基于转矩测量的标定法,该方法多用于电动汽车中的电机驱动,其准确度很高,但标定过程十分繁琐,不适用于工业变频驱动。
MTPA控制的在线实现方法有搜索法、解析计算法等。一般地,搜索法可对MTPA运行点进行在线搜索,搜索精度高,但是计算量较大、耗时长,电机的动态响应特性易受到影响。解析计算法虽然收敛速度相对较快,但在电机运行中易受参数摄动尤其是电感的自饱和与交叉磁饱和的影响,导致计算轨迹与真实轨迹有较大差距,精确度不高。
鉴于此,提供一种解决上述技术问题的方案,已经是本领域技术人员所亟需关注的。
发明内容
本申请的目的在于提供一种永磁同步电机的MTPA控制方法、装置、***及电子设备,以便以较低的算法复杂度实现MTPA轨迹规划,保证电机的节能运行不受参数摄动影响,且不影响电机的动态响应速率。
为解决上述技术问题,一方面,本申请公开了一种永磁同步电机的MTPA控制方法,包括:
实时获取转速调节器输出的转矩电流给定值;
基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,通过预先对所述永磁同步电机进行旋转参数辨识而生成;
将所述d轴电流给定值和所述q轴电流给定值实时输出至电流环,以便基于所述电流环输出的d轴电压给定值和q轴电压给定值控制所述永磁同步电机实现MTPA运行。
可选地,所述预设轨迹规划公式限定了所述d轴电流给定值与所述q轴电流给定值的平方项呈负比例相关。
可选地,所述负比例的系数为-k;所述预设轨迹规划公式的生成过程包括如下步骤:
选取电流幅值相同的若干个电流状态点(id *,iq *);
逐次以各所述电流状态点为起始状态点,控制所述永磁同步电机以所述起始状态点的转矩从零速加速至预设转速阈值,并记录每次的加速时长tacc
将各所述起始状态点在id */(iq *)2-tacc二维平面坐标系中的离散分布拟合为连续凹函数;
确定所述凹函数极值点处id */(iq *)2的取值x;
对极值点x取倒数得到轨迹规划参数k。
可选地,所述选取电流幅值相同的若干个电流状态点,包括:
选取电流幅值均等于额定电流幅值的若干个电流状态点。
可选地,对于作为起始状态点的每个所述电流状态点,所述控制所述永磁同步电机以所述起始状态点的转矩从零速加速至预设转速阈值,包括:
实时获取所述永磁同步电机的实际转速值;
判断所述实际转速值是否大于所述预设转速阈值;
若否,则将所述起始状态点设定的d轴电流给定值和q轴电流给定值输出至电流环,以控制所述永磁同步电机恒转矩加速运行;
若是,则将所述转速调节器输出的d轴电流给定值和q轴电流给定值输出至电流环,以控制所述永磁同步电机稳速运行在预设转速阈值。
可选地,所述实时获取转速调节器输出的转矩电流给定值,包括:
实时获取所述永磁同步电机的实际转速值;
对转速给定值与所述实际转速值的差值进行比例积分调节以获取所述转矩电流给定值。
可选地,所述实时获取所述永磁同步电机的实际转速值,包括:
基于编码器实时检测所述永磁同步电机的转子磁场位置角;或者,基于无速度观测器算法,根据电压值和电流值实时计算所述转子磁场位置角;
对所述转子磁场位置角进行微分和低通滤波以获取所述实际转速值。
又一方面,本申请公开了一种永磁同步电机的MTPA控制装置,包括:
转速调节模块,用于根据转速给定和反馈值确定转矩电流给定值;
MTPA轨迹规划模块,用于基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,所述二次函数的参数通过预先对所述永磁同步电机进行旋转参数辨识而生成;
电流调节模块,用于根据所述d轴电流给定值和所述q轴电流给定值,基于电流调节器计算输出d轴电压给定值和q轴电压给定值,以控制所述永磁同步电机实现MTPA运行。
又一方面,本申请公开了一种永磁同步电机的MTPA控制***,包括:
控制单元,用于转速和电流调节,包括:基于转速调节器,根据转速给定和反馈值计算转矩电流给定;基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;基于电流调节器,根据所述d轴电流给定与反馈值和所述q轴电流给定与反馈值,计算并输出d轴电压给定值和q轴电压给定值;
其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,所述二次函数的参数通过预先对所述永磁同步电机进行旋转参数辨识而生成;
调制单元,用于根据所述控制单元输出的给定电压,通过SVPWM调制生成开关驱动脉冲;
功率变换器单元,用于根据所述调制单元的输出脉冲驱动所述永磁同步电机。
又一方面,本申请还公开了一种电子设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序以实现如上所述的任一种永磁同步电机的MTPA控制方法的步骤。
本申请所提供的永磁同步电机的MTPA控制方法、装置、***及电子设备所具有的有益效果是:本申请基于运行测试和参数辨识构建了与电机实际运行状况更为接近的轨迹规划公式,在对永磁同步电机进行在线MTPA轨迹规划时,不仅避免了电感自饱和、交叉磁饱和的影响,提高了规划轨迹的精度,而且算法复杂度低、计算耗时少,不会降低电机转速调节的动态响应速率。
附图说明
为了更清楚地说明现有技术和本申请实施例中的技术方案,下面将对现有技术和本申请实施例描述中需要使用的附图作简要的介绍。当然,下面有关本申请实施例的附图描述的仅仅是本申请中的一部分实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图,所获得的其他附图也属于本申请的保护范围。
图1为本申请实施例公开的一种永磁同步电机的MTPA控制方法的流程图;
图2为本申请实施例公开的又一种永磁同步电机的MTPA控制方法的控制框图;
图3为本申请实施例公开的一种永磁同步电机的MTPA真实轨迹与理论计算轨迹的偏移示意图;
图4为本申请实施例公开的一种MTPA轨迹规划公式的计算过程示意图图;
图5为本申请实施例公开的一种构建预设轨迹规划公式的方法流程图;
图6为本申请实施例公开的四个预设电流状态点的示意图;
图7为本申请实施例公开的一种对应于图6的加速时间分布示意图;
图8为本申请实施例公开的一种对应于图6的加速转矩分布示意图;
图9为本申请实施例公开的一种电机旋转参数辨识过程中的两种运行模式的选择示意图;
图10为本申请实施例公开的一种进行电机旋转参数辨识的***框图;
图11为本申请实施例公开的一种永磁同步电机的MTPA控制装置的结构框图;
图12为本申请实施例公开的一种永磁同步电机的MTPA控制***的结构框图;
图13为本申请实施例公开的一种电子设备的结构框图。
具体实施方式
本申请的核心在于提供一种永磁同步电机的MTPA控制方法、装置、***及电子设备,以便以较低的算法复杂度实现MTPA轨迹规划,保证电机的节能运行不受参数摄动影响,且不影响电机的动态响应速率。
为了对本申请实施例中的技术方案进行更加清楚、完整地描述,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行介绍。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。永磁同步电机(Permanent Magnetic Synchronous Machine,PMSM)是利用永磁体建立励磁磁场的同步电机。得益于高机电能量转换效率、高动态响应速率、及高稳态转速精度等特点,永磁同步电机在工业传动领域的应用范围逐渐拓宽,包括起重机,刮板机,造纸机等场合。
永磁同步电机由定子、转子和端盖等部件构成。其定子产生旋转磁场,转子用永磁材料制成。定子由叠片叠压而成以减少电动机运行时产生的铁耗,其中装有三相交流绕组,称作电枢。转子可以制成实心的形式,也可以由叠片压制而成,其上装有永磁体材料。
当三相电流通入永磁同步电机定子的三相对称绕组中时,电流产生的磁动势合成一个幅值大小不变的旋转磁动势。由于其幅值大小不变,这个旋转磁动势的轨迹便形成一个圆,称为圆形旋转磁动势。
由于永磁同步电机的转速恒为同步转速,因此转子主磁场和定子圆形旋转磁动势产生的旋转磁场保持相对静止。两个磁场相互作用,在定子与转子之间的气隙中形成一个合成磁场,它与转子主磁场发生相互作用,产生了一个推动或者阻碍电机旋转的电磁转矩。因气隙合成磁场与转子主磁场位置关系的不同,永磁同步电机既可以运行于电动机状态也可以运行于发电机状态。
当气隙合成磁场滞后于转子主磁场时,产生的电磁转矩与转子旋转方向相反,这时电机处于发电状态;相反,当气隙合成磁场超前于转子主磁场时,产生的电磁转矩与转子旋转方向相同,这时电机处于电动状态。转子主磁场与气隙合成磁场之间的夹角称为功率因数角。
矢量控制技术是诞生于上世纪70年代初的一种永磁同步电机的控制方式。永磁同步电机的矢量控制***参照了直流电机的控制策略,利用坐标变换将采集到的电机三相定子电流、磁链等矢量按照转子磁链这一旋转矢量的方向分解成两个分量,一个沿着转子磁链方向,称为直轴(d轴)励磁电流;另一个正交于转子磁链方向,称为交轴(q轴)转矩电流。根据不同的控制目标调节励磁电流和转矩电流,进而实现对速度和转矩的精确控制,使控制***获得良好的稳态和动态响应特性。
最大转矩电流比即MTPA控制方式是永磁同步电机矢量控制中常见的一种运行状态优化控制方法。当永磁同步电机长期处于重载运行状态时,该控制方法可实现效果显著的节能运行。而针对于现有技术中的MTPA控制方法所存在的计算量大、耗时长、受参数摄动影响等缺陷,本申请提供了一种永磁同步电机的MTPA控制方案,可有效解决上述技术问题。
参见图1所示,本申请实施例公开了一种永磁同步电机的MTPA控制方法,主要包括:
S101:实时获取转速调节器输出的转矩电流给定值。
S102:基于转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值。
其中,预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,通过预先对永磁同步电机进行旋转参数辨识而生成。
S103:将d轴电流给定值和q轴电流给定值实时输出至电流环,以便基于电流环输出的d轴电压给定值和q轴电压给定值控制永磁同步电机实现MTPA运行。
首先需要说明的是,永磁同步电机的控制***一般采用常规的双闭环控制结构。其中,内环为电流环,外环为转速环。转速环通过对转速给定值与检测反馈得到的电机实际转速值进行作差比较而构成闭环,依据差值大小来计算输出,以此来实现对转速给定值的跟踪。转速环的计算结果传入电流环,电流环依据该计算结果,按照所采用的矢量控制算法进行控制和计算,将相应的计算结果输出至电机的驱动电路。
在此双闭环控制结构的基础上,本申请在转速环输出结果至电流环之前,进行了MTPA轨迹在线规划。对照参见图2,图2为本申请实施例公开的一种永磁同步电机的MTPA控制方法的控制框图。
其中,ωr *为转速给定值;ωr为实际转速值;iq_t *为转矩电流给定值;
Figure BDA0002865812680000071
包括d轴电流给定值
Figure BDA0002865812680000072
和q轴电流给定值
Figure BDA0002865812680000073
id,q包括d轴反馈电流id和q轴反馈电流iq;ud,q *包括d轴电压给定值ud *和q轴电压给定值uq *;us *为SVPWM的调控电压;udc为功率变换器单元的母线电压;iv,w包括功率变换器单元输出的v相电流iv和w相电流iw;iα,β包括α轴反馈电流id和β轴反馈电流iq;θr为电机的转子磁场位置角。
具体地,本申请利用预设轨迹规划公式对电流给定值进行了在线规划:根据转速环输出的转矩电流给定值,规划出对应的d轴电流给定值和q轴电流给定值,作为电流给定输出至电流环,以便电流环基于电流给定计算输出对应的电压给定至电机驱动电路,从而控制电机实现MTPA运行。
电压给定包括d轴电压给定值和q轴电压给定值,基于电压给定值进行两相同步旋转坐标系(dq坐标系)下到两相静止坐标系(αβ坐标系)的变换后,可进行SVPWM调制,以生成输出SVPWM调制脉冲信号至功率变换单元,进而驱动永磁同步电机运行。
其中,需要强调的是,本申请中所进行的MTPA轨迹规划,具体是基于一个计算量小的预设轨迹规划公式而实现的,由此方法实现简单,不会降低电机控制的动态响应速率。
具体地,根据永磁同步电机的线性化电磁模型,可推得理想情况下MTPA运行下电流轨迹(id_mtpa,iq_mtpa)满足条件:
Figure BDA0002865812680000081
其中,id_mtpa为d轴电流;iq_mtpa为q轴电流;ψPM为永磁体磁链,Ld为d轴电感,Lq为q轴电感。
但是,申请人发现在电机的实际运行过程中,由于电感自饱和、交叉磁饱和的影响,实际条件下的MTPA轨迹曲线相比上式会发生偏移,具体可对照参见图3。
由此本申请并未采用上述基于模型推理得到的公式。相反,申请人进一步发现,偏移后的MTPA轨迹曲线可近似拟合为d轴电流与q轴电流的二次函数。由此,本申请通过进行电机的实际运行测试,对该近似二次函数进行参数自学习,从而获得了与电机实际MTPA轨迹更为接近的预设轨迹规划公式。
可见,本申请所提供的永磁同步电机的MTPA控制方法,基于运行测试和参数辨识构建了与电机实际运行状况更为接近的轨迹规划公式,在对永磁同步电机进行在线MTPA轨迹规划时,不仅避免了电感自饱和、交叉磁饱和的影响,提高了规划轨迹的精度,而且算法复杂度低、计算耗时少,不会降低电机转速调节的动态响应速率。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,实时获取转速环输出的转矩电流给定值,包括:
实时获取永磁同步电机的实际转速值;
对转速给定值与实际转速值的差值进行比例积分计算以获取转矩电流给定值。
具体地,PI调节是工业控制中的一种常用控制方法,本实施例通过设置相应的调节参数可实现对电机转速的稳态无差控制。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,实时获取永磁同步电机的实际转速值,包括:
基于编码器实时检测永磁同步电机的转子磁场位置角;或者,基于无速度观测器算法,根据电压值和电流值实时计算转子磁场位置角;
对转子磁场位置角进行微分和低通滤波以获取实际转速值。
具体地,本申请所提供的永磁同步电机的MTPA控制方法不仅适用于有位置传感器的闭环矢量控制方式,还可以基于无速度观测器算法,适用于无位置传感器的开环矢量控制方式。本领域技术人员可根据实际情况自行选择。并且,如图2所示,为了提高数据精确度,可将微分结果进一步进行低通滤波处理,以便基于滤波后的实际转速值进行转速反馈调节。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,所述预设轨迹规划公式限定了d轴电流给定值与q轴电流给定值的平方项呈负比例相关。当然容易理解的是,还需要对d轴电流给定值给出合理的限幅。
例如,预设轨迹规划公式可具体为:
Figure BDA0002865812680000091
其中,
Figure BDA0002865812680000095
为d轴电流给定值;
Figure BDA0002865812680000096
为q轴电流给定值;k为轨迹规划参数;Imax为电机的最大允许运行电流幅值。则,-k即为
Figure BDA0002865812680000097
Figure BDA0002865812680000098
的负比例系数。
具体地,本实施例给出了预设轨迹规划公式的具体表达式,即不含一次项和常数项的二次函数,对应地,图2中进行MTPA轨迹规划时可采用如图4所示的计算结构。
其中需要说明的是,如图4所示还可进一步对
Figure BDA0002865812680000099
项进行滤波处理。此外,如图4所示还需要对
Figure BDA00028658126800000910
进行限幅处理:为了避免负向磁阻转矩输出,
Figure BDA00028658126800000911
的上限设为0;为了避免电机过流,依据电机的最大允许运行电流幅值Imax
Figure BDA00028658126800000912
的下限设为
Figure BDA0002865812680000092
由此,当依据公式的计算值大于0时,便将
Figure BDA00028658126800000913
取值为0;当依据公式的计算值小于
Figure BDA0002865812680000093
时,便将
Figure BDA00028658126800000914
取值为
Figure BDA0002865812680000094
参见图5,本申请还公开了进行电机的旋转参数辨识的具体过程,以实现对轨迹规划参数k的自学习,从而构建预设轨迹规划公式。
如图5所示,作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,预设轨迹规划公式的生成过程包括如下步骤:
S201:选取电流幅值相同的若干个电流状态点(id *,iq *)。
以选四个电流状态点P1、P2、P3、P4为例,对照参见图6。图6中这四个电流状态点均分布在同一电流幅值所在的圆周上。而在P1~P4中,因不同的d轴电流、q轴电流组合情况,其各自对应的电机输出的转矩Te的大小各不相同,图6给出了一种可能的转矩大小差异情况:
T2>T3>T1>T4
容易理解的是,该四点均为在同一电流幅值所在的圆周上随意选取的点,而在电流幅值相同条件下,取得转矩最大值的点未必是该四点中的某个点。例如,图6中,取得转矩最大的点为该四点之外的另一个点Popt
S202:逐次以各电流状态点为起始状态点,控制永磁同步电机以起始状态点的转矩从零速加速至预设转速阈值,并记录每次的加速时长tacc
容易理解的是,起始状态点对应的转矩越大,电机加速至预设转速阈值所需花费的加速时长越短。因此,图6中四点的加速时长tacc大小差异情况是:
t2<t3<t1<t4
S203:将各起始状态点在id */(iq *)2-tacc二维平面坐标系中的离散分布拟合为连续凹函数。
S204:确定该凹函数的极值点处id */(iq *)2的取值x。
S205:根据k=1/x计算得到轨迹规划参数k。
具体地,申请人发现,在以不同电流状态点(或者说其对应的转矩)进行同一加速过程测试时,所需花费的加速时长与id */(iq *)2呈凹函数关系。而函数的极值点即为在相同电流幅值条件下的最优电流状态点,即MTPA状态点Popt,并且极值点在id */(iq *)2坐标轴的取值x即为轨迹规划参数k的倒数——1/k。
由此,为了解算出轨迹规划参数,本申请在选取多个电流状态点进行电机加速过程测试,并记录下各点所需的加速时长tacc后,以id */(iq *)2大小为横坐标轴,以tacc为纵坐标轴建立坐标系,将各个电流状态点下的加速时长的离散分布按照凹函数进行曲线拟合,并进一步通过对拟合函数进行解析求极值的方法或者利用拟合函数的对称性近似估计的方法求解该凹函数的极值点横坐标x,进而得到轨迹规划参数k。
以图6中四点为例,该四点在id */(iq *)2-tacc二维平面坐标系中的二次函数拟合曲线如图7所示。
实际上,除了加速时长以外,不同电流状态点对应的转矩Te大小与id */(iq *)2呈凸函数关系,具体可对照参见图8。容易理解的是,实际应用中加速时长更易测量,本领域技术人员可自行选择。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,选取电流幅值相同的若干个电流状态点,包括:选取电流幅值均等于额定电流幅值的若干个电流状态点。
具体地,理论上,为精确获取全负载运行范围内的MTPA参考轨迹,可通过上述自学习过程辨识出在不同电流幅值下的轨迹规划参数k的取值。但是,考虑到MTPA控制主要在电机的重载和满载运行下效果更明显,,同时也为了缩短轨迹参数自学习的持续时间,本实施例仅对额定电流幅值下的MTPA轨迹参数k进行自学习。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,对于作为起始状态点的每个电流状态点,控制永磁同步电机以起始状态点的转矩从零速加速至预设转速阈值,包括:
实时获取永磁同步电机的实际转速值;
判断实际转速值是否大于预设转速阈值;
若否,则将起始状态点设定的d轴电流给定值和q轴电流给定值输出至电流环,以控制永磁同步电机恒转矩加速运行;
若是,则将转速调节器输出的d轴电流给定值和q轴电流给定值输出至电流环,以控制永磁同步电机稳速运行在预设转速阈值。
具体地,为了避免在电机运行测试过程中出现电机飞车的问题,本申请设定了两种运行模式,可对照参见图9。在电机转速未达到预设转速阈值期间,采用模式1,即加速运行模式;当电机达到预设转速阈值后,采用模式0,即恒速运行模式。恒速运行一段时间后即可逐渐减速至零以便进行下一电流状态点的电机加速运行测试。
对照参见图10,图10为本申请实施例公开的一种进行电机旋转辨识运行的***框图。在模式1即加速运行模式下,转速环不启用,电流环给定为作为起始状态点的电流状态点,电机以起始状态点产生的转矩加速运行;在模式0即恒速运行模式下,转速环启用,以便电机以预设转速阈值稳速运行,而电流环给定为转速调节器输出的电流给定值。
其中,作为一个具体实施例,该预设转速阈值可具体为电机的额定转速。
参见图11所示,本申请实施例公开了一种永磁同步电机的MTPA控制装置,主要包括:
转速调节模块301,用于根据转速给定和反馈值确定转矩电流给定值;
MTPA轨迹规划模块302,用于基于转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,该二次函数的参数通过预先对永磁同步电机进行旋转参数辨识而生成;
电流调节模块303,用于根据d轴电流给定值和q轴电流给定值,用于基于电流调节器计算输出d轴电压给定值和q轴电压给定值,以控制永磁同步电机实现MTPA运行。
可见,本申请实施例所公开的永磁同步电机的MTPA控制装置,基于运行测试和参数辨识构建了与电机实际运行状况更为接近的轨迹规划公式,在对永磁同步电机进行在线MTPA轨迹规划时,不仅避免了电感自饱和、交叉磁饱和的影响,提高了规划轨迹的精度,而且算法复杂度低、计算耗时少,不会降低电机转速调节的动态响应速率。
关于上述永磁同步电机的MTPA控制装置的具体内容,可参考前述关于永磁同步电机的MTPA控制方法的详细介绍,这里就不再赘述。
参见图12所示,本申请实施例公开了一种永磁同步电机的MTPA控制***,主要包括:
调制单元401,用于根据控制单元403输出的给定电压,通过SVPWM调制生成开关驱动脉冲;
功率变换器单元402,用于根据调制单元401的输出脉冲驱动永磁同步电机;
控制单元403,用于基于转速调节器,根据转速给定和反馈值计算转矩电流给定值;基于转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;基于电流调节器,根据d轴电流给定与反馈值和q轴电流给定与反馈值,计算并输出d轴电压给定值和q轴电压给定值;
其中,预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,该二次函数的参数通过预先对永磁同步电机进行旋转参数辨识而生成。
可见,本申请实施例所公开的永磁同步电机的MTPA控制***,基于运行测试和参数辨识构建了与电机实际运行状况更为接近的轨迹规划公式,在对永磁同步电机进行在线MTPA轨迹规划时,不仅避免了电感自饱和、交叉磁饱和的影响,提高了规划轨迹的精度,而且算法复杂度低、计算耗时少,不会降低电机转速调节的动态响应速率。
关于上述永磁同步电机的MTPA控制***的具体内容,可参考前述关于永磁同步电机的MTPA控制方法的详细介绍,这里就不再赘述。
参见图13所示,本申请实施例公开了一种电子设备,包括:
存储器501,用于存储计算机程序;
处理器502,用于执行所述计算机程序以实现如上所述的任一种永磁同步电机的MTPA控制方法的步骤。
关于上述电子设备的具体内容,可参考前述关于永磁同步电机的MTPA控制方法的详细介绍,这里就不再赘述。
本申请中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的设备而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需说明的是,在本申请文件中,诸如“第一”和“第二”之类的关系术语,仅仅用来将一个实体或者操作与另一个实体或者操作区分开来,而不一定要求或者暗示这些实体或者操作之间存在任何这种实际的关系或者顺序。此外,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请所提供的技术方案进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请的保护范围内。

Claims (10)

1.一种永磁同步电机的MTPA控制方法,其特征在于,包括:
实时获取转速调节器输出的转矩电流给定值;
基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,通过预先对所述永磁同步电机进行旋转参数辨识而生成;
将所述d轴电流给定值和所述q轴电流给定值实时输出至电流环,以便基于所述电流环输出的d轴电压给定值和q轴电压给定值控制所述永磁同步电机实现MTPA运行。
2.根据权利要求1所述的永磁同步电机的MTPA控制方法,其特征在于,所述预设轨迹规划公式限定了所述d轴电流给定值与所述q轴电流给定值的平方项呈负比例相关。
3.根据权利要求2所述的永磁同步电机的MTPA控制方法,其特征在于,所述负比例的系数为-k;所述预设轨迹规划公式的生成过程包括如下步骤:
选取电流幅值相同的若干个电流状态点(id *,iq *);
逐次以各所述电流状态点为起始状态点,控制所述永磁同步电机以所述起始状态点的转矩从零速加速至预设转速阈值,并记录每次的加速时长tacc
将各所述起始状态点在id */(iq *)2-tacc二维平面坐标系中的离散分布拟合为连续凹函数;
确定所述凹函数极值点处id */(iq *)2的取值x;
对极值点x取倒数得到轨迹规划参数k。
4.根据权利要求3所述的永磁同步电机的MTPA控制方法,其特征在于,所述选取电流幅值相同的若干个电流状态点,包括:
选取电流幅值均等于额定电流幅值的若干个电流状态点。
5.根据权利要求3所述的永磁同步电机的MTPA控制方法,其特征在于,对于作为起始状态点的每个所述电流状态点,所述控制所述永磁同步电机以所述起始状态点的转矩从零速加速至预设转速阈值,包括:
实时获取所述永磁同步电机的实际转速值;
判断所述实际转速值是否大于所述预设转速阈值;
若否,则将所述起始状态点设定的d轴电流给定值和q轴电流给定值输出至电流环,以控制所述永磁同步电机恒转矩加速运行;
若是,则将所述转速调节器输出的d轴电流给定值和q轴电流给定值输出至电流环,以控制所述永磁同步电机稳速运行在预设转速阈值。
6.根据权利要求1至5任一项所述的永磁同步电机的MTPA控制方法,其特征在于,所述实时获取转速调节器输出的转矩电流给定值,包括:
实时获取所述永磁同步电机的实际转速值;
对转速给定值与所述实际转速值的差值进行比例积分调节以获取所述转矩电流给定值。
7.根据权利要求6所述的永磁同步电机的MTPA控制方法,其特征在于,所述实时获取所述永磁同步电机的实际转速值,包括:
基于编码器实时检测所述永磁同步电机的转子磁场位置角;或者,基于无速度观测器算法,根据电压值和电流值实时计算所述转子磁场位置角;
对所述转子磁场位置角进行微分和低通滤波以获取所述实际转速值。
8.一种永磁同步电机的MTPA控制装置,其特征在于,包括:
转速调节模块,用于根据转速给定和反馈值确定转矩电流给定值;
MTPA轨迹规划模块,用于基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,所述二次函数的参数通过预先对所述永磁同步电机进行旋转参数辨识而生成;
电流调节模块,用于根据所述d轴电流给定值和所述q轴电流给定值,基于电流调节器计算输出d轴电压给定值和q轴电压给定值,以控制所述永磁同步电机实现MTPA运行。
9.一种永磁同步电机的MTPA控制***,其特征在于,包括:
控制单元,用于转速和电流调节,包括:基于转速调节器,根据转速给定和反馈值计算转矩电流给定;基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;基于电流调节器,根据所述d轴电流给定与反馈值和所述q轴电流给定与反馈值,计算并输出d轴电压给定值和q轴电压给定值;
其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,所述二次函数的参数通过预先对所述永磁同步电机进行旋转参数辨识而生成;
调制单元,用于根据所述控制单元输出的给定电压,通过SVPWM调制生成开关驱动脉冲;
功率变换器单元,用于根据所述调制单元的输出脉冲驱动所述永磁同步电机。
10.一种电子设备,其特征在于,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序以实现如权利要求1至7任一项所述的永磁同步电机的MTPA控制方法的步骤。
CN202080003723.0A 2020-12-24 2020-12-24 永磁同步电机的mtpa控制方法、装置、***及设备 Active CN112740537B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138982 WO2022133892A1 (zh) 2020-12-24 2020-12-24 永磁同步电机的mtpa控制方法、装置、***及设备

Publications (2)

Publication Number Publication Date
CN112740537A true CN112740537A (zh) 2021-04-30
CN112740537B CN112740537B (zh) 2023-02-17

Family

ID=75609537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080003723.0A Active CN112740537B (zh) 2020-12-24 2020-12-24 永磁同步电机的mtpa控制方法、装置、***及设备

Country Status (2)

Country Link
CN (1) CN112740537B (zh)
WO (1) WO2022133892A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320919A (zh) * 2021-12-31 2022-04-12 青岛海尔空调电子有限公司 一种空调器及其压缩机控制方法
EP4274089A1 (en) * 2022-05-05 2023-11-08 Rockwell Automation Technologies, Inc. Efficiency optimization of maximum torque per amps control for synchronous motors
CN117424505A (zh) * 2023-12-19 2024-01-19 上海精泰技术有限公司 同步磁阻电机的控制方法、设备及介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184801B (zh) * 2022-09-13 2022-11-29 苏州瑞纳电气科技有限公司 一种共轴高速永磁同步电机互馈测试***
CN116027672B (zh) * 2023-03-28 2023-06-09 山东大学 基于神经网络的模型预测控制方法
CN116039341B (zh) * 2023-03-28 2023-06-30 浙江零跑科技股份有限公司 一种电机加热方法、计算机设备、可读存储介质及电动车
CN117543507B (zh) * 2023-11-09 2024-06-18 湖南众联鑫创动力科技有限公司 一种用于瞬时过载的盘式无铁芯永磁电机控制方法
CN117543905B (zh) * 2024-01-05 2024-03-22 深圳市英士达机电技术开发有限公司 一种集成型闭环步进电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857160A (zh) * 2012-09-20 2013-01-02 西北工业大学 一种基于多线拟合的变励磁同步电机mtpa控制方法
CN103780191A (zh) * 2014-01-24 2014-05-07 浙江大学 开绕组永磁同步电机串联补偿矢量控制***及控制方法
CN104767448A (zh) * 2014-01-02 2015-07-08 Abb技术有限公司 用于电动三相变速电机的控制***和方法
JP2016100982A (ja) * 2014-11-21 2016-05-30 スマック株式会社 モータ制御装置
CN109194229A (zh) * 2018-09-27 2019-01-11 北京理工大学 一种基于转矩闭环的永磁同步电机mtpa控制***及方法
CN110429889A (zh) * 2019-08-07 2019-11-08 北京航空航天大学 一种幅度可调的方波注入最大转矩电流比电机控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8410737B2 (en) * 2011-02-28 2013-04-02 Deere & Company Device and method for generating an initial controller lookup table for an IPM machine
CN104037794A (zh) * 2014-06-19 2014-09-10 国家电网公司 一种飞轮储能***及其控制方法
CN106452243B (zh) * 2016-10-26 2018-11-30 珠海格力电器股份有限公司 永磁同步电机的弱磁控制***、方法、冰箱控制器及冰箱
CN107332485B (zh) * 2017-07-14 2020-09-11 阳光电源股份有限公司 一种永磁同步电机的弱磁控制方法及控制器
CN107896080B (zh) * 2017-12-14 2019-11-19 成都雅骏新能源汽车科技股份有限公司 内嵌式永磁同步电机mtpa曲线拟合方法及控制***
CN111884552B (zh) * 2020-07-02 2021-11-02 华中科技大学 基于电压反馈的永磁同步电机弱磁优化控制方法及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857160A (zh) * 2012-09-20 2013-01-02 西北工业大学 一种基于多线拟合的变励磁同步电机mtpa控制方法
CN104767448A (zh) * 2014-01-02 2015-07-08 Abb技术有限公司 用于电动三相变速电机的控制***和方法
CN103780191A (zh) * 2014-01-24 2014-05-07 浙江大学 开绕组永磁同步电机串联补偿矢量控制***及控制方法
JP2016100982A (ja) * 2014-11-21 2016-05-30 スマック株式会社 モータ制御装置
CN109194229A (zh) * 2018-09-27 2019-01-11 北京理工大学 一种基于转矩闭环的永磁同步电机mtpa控制***及方法
CN110429889A (zh) * 2019-08-07 2019-11-08 北京航空航天大学 一种幅度可调的方波注入最大转矩电流比电机控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马宏革: "永磁同步电机最大转矩电流比控制方法研究", 《维特电机》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320919A (zh) * 2021-12-31 2022-04-12 青岛海尔空调电子有限公司 一种空调器及其压缩机控制方法
EP4274089A1 (en) * 2022-05-05 2023-11-08 Rockwell Automation Technologies, Inc. Efficiency optimization of maximum torque per amps control for synchronous motors
CN117424505A (zh) * 2023-12-19 2024-01-19 上海精泰技术有限公司 同步磁阻电机的控制方法、设备及介质
CN117424505B (zh) * 2023-12-19 2024-03-12 上海精泰技术有限公司 同步磁阻电机的控制方法、设备及介质

Also Published As

Publication number Publication date
CN112740537B (zh) 2023-02-17
WO2022133892A1 (zh) 2022-06-30

Similar Documents

Publication Publication Date Title
CN112740537B (zh) 永磁同步电机的mtpa控制方法、装置、***及设备
Zhang et al. A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle
Yousefi-Talouki et al. Sensorless direct flux vector control of synchronous reluctance motors including standstill, MTPA, and flux weakening
CN107046387B (zh) 一种永磁同步电机的变pid参数电流环启动方法
EP2760127A2 (en) Method of controlling an AC machine and controller for controlling an AC machine
CN102647134B (zh) 一种永磁同步电机无角度传感器的效率优化控制方法
Kronberg Design and simulation of field oriented control and direct torque control for a permanent magnet synchronous motor with positive saliency
CN111245328B (zh) 查表法结合调节器的永磁同步电机控制方法
CN109194218B (zh) 直流偏置型混合励磁电机的控制装置、控制方法及***
Nishad et al. Induction motor control using modified indirect field oriented control
JP4402600B2 (ja) 同期電動機の駆動システム及び同期電動機の駆動方法
Hussain et al. Review of vector control strategies for three phase induction motor drive
Foo et al. Robust constant switching frequency-based field-weakening algorithm for direct torque controlled reluctance synchronous motors
JP6199776B2 (ja) 電動機の駆動装置
CN109861605B (zh) 一种永磁同步电机无差拍转矩预测控制方法
JPH08275599A (ja) 永久磁石同期電動機の制御方法
Jukic et al. Comparison of torque estimation methods for interior permanent magnet wind power generator
Zhao et al. Low-speed sensorless control with reduced copper losses for saturated PMSynRel machines
CN110535390A (zh) 一种永磁同步电机mtpa控制与fw控制的切换方法
Qiu et al. Torque-angle-based direct torque control for interior permanent-magnet synchronous motor drivers in electric vehicles
Dang et al. Model Predictive Direct Torque Control for PMSM Drives in M–T Frame
CN113489407B (zh) 一种电机的控制方法、装置、电机、存储介质及处理器
Huang et al. An approach to improve the torque performance of IPMSM by considering cross saturation applied for hybrid electric vehicle
Jing et al. Optimization of speed loop control technology for permanent magnet synchronous motor servo system
Fujii et al. Influence of parameter variations on operating characteristics of MTPF control for DTC-based PMSM drive system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant