CN112736894A - 一种计及风电与电动汽车随机性的两阶段机组组合建模方法 - Google Patents

一种计及风电与电动汽车随机性的两阶段机组组合建模方法 Download PDF

Info

Publication number
CN112736894A
CN112736894A CN202011376386.8A CN202011376386A CN112736894A CN 112736894 A CN112736894 A CN 112736894A CN 202011376386 A CN202011376386 A CN 202011376386A CN 112736894 A CN112736894 A CN 112736894A
Authority
CN
China
Prior art keywords
unit
electric vehicle
wind power
stage
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011376386.8A
Other languages
English (en)
Inventor
王若谷
陈果
刘健
钱涛
孙宏丽
***
高欣
王辰曦
吴子豪
唐露甜
李高阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Xian Jiaotong University
Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Xian Jiaotong University
Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Xian Jiaotong University, Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202011376386.8A priority Critical patent/CN112736894A/zh
Publication of CN112736894A publication Critical patent/CN112736894A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Educational Administration (AREA)
  • Probability & Statistics with Applications (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种计及风电与电动汽车随机性的两阶段机组组合建模方法,包括:步骤一,对建立最终模型所需要的数据进行整理,包括:风电的预测数据,不可调度电动汽车充放电情况的历史数据,可调度电动汽车的出行以及规模数据,以及电力***相关参数;步骤二,利用风电预测数据生成风电出力多场景,并利用K‑means聚类分析法得到不可调度电动汽车的典型负荷曲线;步骤三,利用蒙特卡洛方法对可调度电动汽车的行为进行随机模拟,并生成EV充电聚集商的相应参数;步骤四,考虑风电出力多场景和可调度电动汽车的充电聚集商模式,以及不可调度电动汽车负荷,形成基于场景分析的考虑EV充电聚集商的二阶段随机机组组合模型;步骤五,根据实际数据并利用步骤四建立的二阶段随机机组组合模型,使用CPLEX求解器求解该MILP‑UC问题,并由求解结果确定机组组合和备用安排方案。

Description

一种计及风电与电动汽车随机性的两阶段机组组合建模方法
技术领域
本发明属于电力***技术领域,涉及一种计及风电与电动汽车随机性的两阶段机组组合建模方法。
背景技术
当今时代,风电等新能源和电动汽车的发展给国家能源产业和环境问题带来了巨大机遇。但同时,风电出力的随机性和间歇性以及电动汽车充电负荷的不确定性让传统的电力***调度方案不再适用,给电力***运行和调度带来了巨大的挑战。随着风电和电动汽车的并网规模的增大,其给电力***带来的负面影响也与日俱增。因此需要确定合理的调度方法,在考虑到风电与电动汽车影响的基础上,保证电力***的稳定可靠运行,尽量减少***的运行的成本。
目前对于风电出力不确定性建模方法来说,较为流行且可靠的是随机调度模型,相对于确定性调度和模糊调度等模型来说,其对风电的不确定性的描述更为客观与准确。而关于电动汽车建模方法,目前大多基于单个的电动汽车或者一组相同的电动汽车来建立模型,同时还有考虑充电聚集商模式的模型。后者相对前者来说,在保证问题规模并不很大的前提下,实现了电动汽车不再作为个体来与电力***交互,同属一个充电聚集商的电动汽车也不必被强制设定为相同。然而,目前同时使用较优方式来考虑风电和电动汽车不确定性的模型并不多见,充分并且同时考虑到两者不确定性的研究尚不成熟。
综上,在新能源快速发展和电动汽车保有率持续增加的背景下,基于场景分析并考虑电动汽车充电聚集商模式的随机调度模型能够充分考虑风电和电动汽车的充电需求不确定性,并为电力***的经济可靠运行提供调度方案,填补已有研究的不足。
发明内容
为了解决现有技术中存在的问题,本发明的目的在于提供一种计及风电与电动汽车随机性的两阶段机组组合建模方法,以填补现有相关调度模型的不足:充分考虑风电和电动汽车的充电需求不确定性,首先根据预测和历史数据生成风电多场景,并对可调度电动汽车的行为进行随机模拟,利用聚类分析得到不可调度电动汽车的典型负荷曲线。再建立EV充电聚集商模型和基于场景分析的二阶段随机机组组合模型。通过计算,为电力***的经济可靠运行提供机组组合和备用安排方案。
为了实现上述目的,本发明采用如下技术方案:一种计及风电与电动汽车随机性的两阶段机组组合建模方法,包括以下步骤:
步骤一:对建立模型所需要的数据进行整理,包括风电预测数据、不可调度电动汽车充放电情况的历史数据、可调度电动汽车的出行数据和规模数据、以及电力***相关参数;通过可调度电动汽车的出行数据得到其相应服从的概率分布,包括行驶距离的概率分布;
步骤二:利用步骤一得到的风电预测数据生成风电出力多场景;利用K-means聚类分析法对不可调度电动汽车充放电情况的历史数据处理得到不可调度电动汽车的典型负荷曲线;
步骤三:利用蒙特卡洛方法对步骤一得到的可调度电动汽车的出行数据和规模数据进行随机模拟,并生成可调度电动汽车的充电聚集商模式;
步骤四:根据步骤二生成的风电出力多场景和步骤三生成的可调度电动汽车的充电聚集商模式,以及步骤二得到的不可调度电动汽车的典型负荷曲线,以及电力***相关参数形成基于场景分析的考虑EV充电聚集商的二阶段随机机组组合模型。
进一步的,所述步骤四中,第一阶段考虑机组启停状态及其相关约束,第二阶段考虑多场景下的变量及相关约束,第一阶段所确定的机组启停状态在第二阶段中保持不变;通过对两个阶段约束的统筹考虑,综合求解得到机组的开停机计划,出力安排以及可调度电动汽车的安排,并且得到***的运行费用。
进一步的,所述步骤四中所述二阶段随机机组组合模型为:
Figure BDA0002808310090000031
Figure BDA0002808310090000032
Figure BDA0002808310090000033
分别是机组的启动和停机成本,下标i是机组的编号,
Figure BDA0002808310090000034
是场景下的机组出力,rit是机组预留的备用量,ρr为单位备用成本,Prs是场景s所对应的概率值,Fi()是机组的燃料成本曲线,ρe为失负荷损失系数,
Figure BDA0002808310090000035
为场景s下t时段***的失负荷量;ρh为单位弃风成本,
Figure BDA0002808310090000036
为场景s下t时段***的弃风量。
进一步的,所述步骤四中,第一阶段模型的相关约束包括功率平衡约束、机组出力及备用约束、机组启停成本约束、最小开停机时间约束、电动汽车相关约束和网络安全约束,其中具体求解步骤为:
功率平衡约束:
Figure BDA0002808310090000037
机组出力及备用约束:
pit+rit≤Pmax,i·vit (12)
pit+rit≤Pmax,i·vit (13)
Figure BDA0002808310090000038
机组启停成本约束:
Figure BDA0002808310090000039
Figure BDA00028083100900000310
Figure BDA00028083100900000311
Figure BDA00028083100900000312
其中,
Figure BDA00028083100900000313
Figure BDA00028083100900000314
分别是机组的启动和停机成本,下标i是机组的编号,
Figure BDA00028083100900000315
是场景下的机组出力,rit是机组预留的备用量,ρr为单位备用成本,Prs是场景s所对应的概率值,Fi()是机组的燃料成本曲线,ρe为失负荷损失系数,
Figure BDA0002808310090000041
为场景s下t时段***的失负荷量;ρh为单位弃风成本,
Figure BDA0002808310090000042
为场景s下t时段***的弃风量,
Figure BDA0002808310090000043
为风电出力的预测值,Ljt是除EV外的常规负荷的预测值,
Figure BDA0002808310090000044
是不可调度电动汽车对应的充电负荷,vit表示机组的启停状态,Pmax,i,Pmin,i分别表示第i台机组的最大和最小的输出功率,RUi,RDi分别为机组的上爬坡能力和下爬坡能力,
Figure BDA0002808310090000045
表示阶梯状启动成本曲线上第m级阶梯对应的启动成本,NDi则表示阶梯状启动成本曲线的分段总数,Ci表示机组的停机成本;
最小开停机时间约束:
Figure BDA0002808310090000046
Figure BDA0002808310090000047
Figure BDA0002808310090000048
Figure BDA0002808310090000049
Figure BDA00028083100900000410
Figure BDA00028083100900000411
电动汽车相关约束:
Figure BDA00028083100900000412
Figure BDA00028083100900000413
Figure BDA00028083100900000414
Figure BDA00028083100900000415
网络安全约束:
Figure BDA0002808310090000051
其中,Gi为运行初期机组i受到最小开机时间约束影响必须继续运行的时段数,Mi则是由于最小停机时间,机组必须初始停机时间,UTi和DTi分别是发电机组的最小开机时间和最小停机时间,T则是总调度时段,Fl是线路l的传输功率极限,πil是从机组i到线路l的功率分布因子,πwl是从风电站w到线路l的功率分布因子,同理,πjl和πkl也为相应的功率分布因子,式(25)和(26)是电动汽车的最大充放电功率约束,式(27)和(28)分别从充电聚集商的存储容量以及电动汽车的行车需求方面对充电聚集商的能量进行了约束。
进一步的,所述步骤四中,第二阶段模型约束包括功率平衡约束、机组出力与备用约束、机组燃料成本约束、机组爬坡约束和电动汽车相关约束,其中,具体的求解步骤为:
功率平衡约束:
Figure BDA0002808310090000052
Figure BDA0002808310090000053
机组出力与备用约束
Figure BDA0002808310090000054
Figure BDA0002808310090000055
Figure BDA0002808310090000056
机组燃料成本约束
Figure BDA0002808310090000059
机组爬坡约束
Figure BDA0002808310090000057
Figure BDA0002808310090000058
电动汽车相关约束
Figure BDA0002808310090000061
Figure BDA0002808310090000062
Figure BDA0002808310090000063
Figure BDA0002808310090000064
Figure BDA0002808310090000065
其中,
Figure BDA0002808310090000066
Figure BDA0002808310090000067
分别为二阶段的机组实际出力
Figure BDA0002808310090000068
相对于一阶段的机组预出力pit的上调量和下调量,gin(x)为燃料成本的分段线性函数,NLi为分段数,式(30)实际上表示的是各个场景下的功率平衡条件,并计及了极端场景中可能出现的弃风和失负荷现象,式(32)和(33)说明了允许各机组在第一阶段预留的备用范围内调整出力以满足电网运行要求,式(38)至(42)考虑了与第一阶段相同的约束条件,但此时的约束对应于每个实际场景。
进一步的,还包括步骤五,根据实际数据并利用步骤四建立的二阶段随机机组组合模型,使用CPLEX求解器求解该MILP-UC(机组组合问题的混合整数线性规划模型)问题,由求解结果确定机组组合和备用安排方案。
进一步的,所述步骤一中,电力***相关参数包括机组参数和负荷数据。
进一步的,所述步骤二中,在生成风电出力多场景时,假设风电出力在未来任一时刻服从正态分布,即
Figure BDA0002808310090000069
以风电出力的预测值
Figure BDA00028083100900000610
为数学期望,并根据实际情况估计相应的方差,据此通过蒙特卡洛模拟的方法抽样形成服从正态分布的随机序列;
在对不可调度电动汽车的出力进行聚类分析时,将每一个电动汽车的负荷曲线视为用于聚类分析的一个多维数据点,并对每一个数据点进行归一化处理,在计算过程中,点与点之间的距离采用欧几里得距离,即:
Figure BDA0002808310090000071
进一步的,所述步骤三中,生成EV充电聚集商的相应参数的具体模拟过程如下:
Figure BDA0002808310090000072
Figure BDA0002808310090000073
Figure BDA0002808310090000074
Figure BDA0002808310090000075
其中,
Figure BDA0002808310090000076
是每个时段接入EV充电聚集商的EV数量,
Figure BDA0002808310090000077
Figure BDA0002808310090000078
分别代表离开和到达EV充电聚集商的EV数量,k表示充电聚集商的编号,t为时间;x是表示EV行驶距离的随机变量,v表示EV的行驶速度;公式(2)和(3)是对EV充电聚集商管辖区内的电动汽车数量动态变化进行模拟,可计算得出EV充电聚集商的相应属性参数;其中
Figure BDA0002808310090000079
是EV充电聚集商每时段的最大存储容量,而
Figure BDA00028083100900000710
则是每时段的最大充放电功率,
Figure BDA00028083100900000711
是一个电动汽车的最大存储容量;设各电动汽车的种类相同,参数相同,则每辆电动汽车的最大存储容量为emax,最大充放电功率为pch,max
Figure BDA00028083100900000712
Figure BDA00028083100900000713
Figure BDA00028083100900000714
Figure BDA00028083100900000715
公式(6)至(9)是对EV充电聚集商管辖区内的电动汽车能量的动态变化进行模拟,其中,Ekt为每个时段接入EV充电聚集商电动汽车的存储能量,
Figure BDA00028083100900000716
Figure BDA00028083100900000717
分别是离开和到达EV充电聚集商电动汽车的存储能量;
Figure BDA00028083100900000718
Figure BDA00028083100900000719
分别为EV充电聚集商的充放电功率,ηcd分别是充放电效率,kh是当EV离开充电站时,其电池的存储能量需要达到的水平,
Figure BDA0002808310090000081
是电动汽车行车而消耗的能量,m是电动汽车每单位距离消耗的能量,dmax,dmin是电动汽车的最大和最小出行距离;
利用式(2)至式(9)实现对可调度电动汽车行为的随机模拟,并得到EV充电聚集商的相应参数,包括
Figure BDA0002808310090000082
Figure BDA0002808310090000083
相对于现有考虑两者不确定性的调度方法来说,本发明具有以下有益效果:本发明合理考虑了风电出力和电动汽车充电需求的不确定性特点,将风电的不确定性考虑为多场景,而将电动汽车分为可调度与不可调度两部分分别考虑,针对可调度电动汽车,通过随机模拟建立EV充电聚集商模型,而对于不可调度电动汽车,则利用聚类分析得到其典型负荷曲线,将其视为常规负荷的一部分。本发明综合考虑这些因素建立二阶段的随机调度模型能够更为全面地反映两者的不确定性,并为机组组合和备用安排提供方案。传统方法在应对风电不确定性时,往往会根据经验为各个机组安排确定的备用容量,这种情况下,很可能随着新能源出力的不同,而表现为备用过剩或者备用不足,从而造成***的可靠性与经济性的不足。而本发明中二阶段的随机调度模型所确定的机组组合和备用安排方案可以有效减少备用的冗余,使备用容量的安排更为经济合理。在保证可靠性的基础上,通过对机组和电动汽车的合理安排,可以有效地提高***对风电的消纳量并减少***的运行成本,有效减少风电出力和电动汽车不确定性为电力***调度带来的负面影响。
附图说明
图1为本发明的整体流程。
图2为EV充电聚集商原理说明图。
图3为实例电力***网架图。
图4为实例机组组合结果图。
图5为实例备用安排结果图。
图6为本发明的方法与传统的确定性备用模型的运行结果的对比图。
图7为本发明综合考虑风电出力和电动汽车不确定性与考虑风电不确定性的效果对比图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细描述。
本发明提供了一种计及风电与电动汽车随机性的两阶段机组组合建模方法,如图1所示,具体包括以下步骤:
步骤一:对建立最终模型所需要的数据进行整理,包括:风电的预测数据,不可调度电动汽车充放电情况的历史数据,可调度电动汽车的出行以及规模数据,以及电力***相关参数,如机组参数,负荷数据。通过电动汽车出行数据得到其相应服从的概率分布,如行驶距离的概率分布。
步骤二:利用风电预测数据生成风电出力多场景,并利用K-means聚类分析法处理不可调度电动汽车充放电情况的历史数据得到不可调度电动汽车的典型负荷曲线。
具体的,在生成场景时,假设风电出力在未来任一时刻服从正态分布,即
Figure BDA0002808310090000091
以新能源出力的预测值
Figure BDA0002808310090000092
为数学期望,并根据实际情况估计相应的方差,据此通过蒙特卡洛模拟的方法抽样形成服从正态分布的随机序列。
而对不可调度电动汽车的出力进行聚类分析时,将每一个电动汽车的负荷曲线视为用于聚类分析的一个多维数据点,并对每一个数据点进行归一化处理。在计算过程中,点与点之间的距离采用欧几里得距离,即:
Figure BDA0002808310090000093
步骤三:利用蒙特卡洛方法对可调度电动汽车的行为进行随机模拟,并生成EV充电聚集商的相应参数,具体的模拟过程如下:
Figure BDA0002808310090000101
Figure BDA0002808310090000102
Figure BDA0002808310090000103
Figure BDA0002808310090000104
其中,
Figure BDA0002808310090000105
是每个时段接入EV充电聚集商的EV数量,
Figure BDA0002808310090000106
Figure BDA0002808310090000107
分别代表离开和到达EV充电聚集商的EV数量,k表示充电聚集商的编号,t为时间。x是表示EV行驶距离的随机变量,v表示EV的行驶速度。公式(2)-(3)是对充电聚集商管辖区内的电动汽车数量动态变化进行模拟,可以进一步计算得出充电聚集商的相应属性参数。其中
Figure BDA0002808310090000108
是充电聚集商每时段的最大存储容量,而
Figure BDA0002808310090000109
则是每时段的最大充放电功率,
Figure BDA00028083100900001010
是一个电动汽车的最大存储容量。如果考虑各电动汽车的种类相同,参数相同,则每辆EV的最大存储容量为emax,最大充放电功率为pch,max
Figure BDA00028083100900001011
Figure BDA00028083100900001012
Figure BDA00028083100900001013
Figure BDA00028083100900001014
公式(6)-(9)是对充电聚集商管辖区内的电动汽车能量的动态变化进行模拟。其中,Ekt为每个时段接入EV充电聚集商电动汽车的存储能量,
Figure BDA00028083100900001015
Figure BDA00028083100900001016
分别是离开和到达EV充电聚集商EV的存储能量。
Figure BDA00028083100900001017
Figure BDA00028083100900001018
分别为充电聚集商的充放电功率。ηcd分别是充放电效率。kh是当EV离开充电站时,其电池的存储能量需要达到的水平。
Figure BDA00028083100900001019
是电动汽车行车而消耗的能量,m是电动汽车每单位距离消耗的能量,dmax,dmin是电动汽车的最大和最小出行距离。
利用式(2)~式(9)就可以实现对可调度电动汽车行为的随机模拟,并得到EV充电聚集商的相应参数,如
Figure BDA0002808310090000111
Figure BDA0002808310090000112
EV充电聚集商的工作原理如图2所示。
步骤四:考虑风电出力多场景和可调度电动汽车的充电聚集商模式,以及不可调度电动汽车负荷,形成基于场景分析的考虑EV充电聚集商的二阶段随机机组组合模型。具体的模型如下:
Figure BDA0002808310090000113
第一阶段模型约束为:
功率平衡约束:
Figure BDA0002808310090000114
机组出力及备用约束:
pit+rit≤Pmax,i·vit (12)
pit+rit≤Pmax,i·vit (13)
Figure BDA0002808310090000115
机组启停成本约束:
Figure BDA0002808310090000116
Figure BDA0002808310090000117
Figure BDA0002808310090000118
Figure BDA0002808310090000119
其中,
Figure BDA00028083100900001110
Figure BDA00028083100900001111
分别是机组的启动和停机成本,下标i是机组的编号,
Figure BDA00028083100900001112
是场景下的机组出力。rit是机组预留的备用量,ρr为单位备用成本。Prs是场景s所对应的概率值,Fi()则是机组的燃料成本曲线。ρe为失负荷损失系数,
Figure BDA0002808310090000121
为场景s下t时段***的失负荷量;ρh为单位弃风成本,
Figure BDA0002808310090000122
为场景s下t时段***的弃风量。
Figure BDA0002808310090000123
为风电出力的预测值,Ljt是除EV外的常规负荷的预测值,
Figure BDA0002808310090000124
是不可调度电动汽车对应的充电负荷。vit表示机组的启停状态,Pmax,i,Pmin,i分别表示第i台机组的最大和最小的输出功率,RUi,RDi分别为机组的上爬坡能力和下爬坡能力。
Figure BDA0002808310090000125
表示阶梯状启动成本曲线上第m级阶梯对应的启动成本,NDi则表示阶梯状启动成本曲线的分段总数,Ci表示机组的停机成本。
最小开停机时间约束:
Figure BDA0002808310090000126
Figure BDA0002808310090000127
Figure BDA0002808310090000128
Figure BDA0002808310090000129
Figure BDA00028083100900001210
Figure BDA00028083100900001211
电动汽车相关约束:
Figure BDA00028083100900001212
Figure BDA00028083100900001213
Figure BDA00028083100900001214
Figure BDA00028083100900001215
网络安全约束:
Figure BDA0002808310090000131
其中,Gi为运行初期机组i受到最小开机时间约束影响必须继续运行的时段数,Mi则是由于最小停机时间,机组必须初始停机时间。UTi和DTi分别是发电机组的最小开机时间和最小停机时间,T则是总调度时段。Fl是线路l的传输功率极限,πil是从机组i到线路l的功率分布因子,πwl是从风电站w到线路l的功率分布因子,同理,πjl和πkl也为相应的功率分布因子。式(25)(26)是电动汽车的最大充放电功率约束,式(27)(28)分别从充电聚集商的存储容量以及电动汽车的行车需求方面对充电聚集商的能量进行了约束。
第二阶段模型约束为:
功率平衡约束:
Figure BDA0002808310090000132
Figure BDA0002808310090000133
机组出力与备用约束
Figure BDA0002808310090000134
Figure BDA0002808310090000135
Figure BDA0002808310090000136
机组燃料成本约束
Figure BDA0002808310090000137
机组爬坡约束
Figure BDA0002808310090000138
Figure BDA0002808310090000139
电动汽车相关约束
Figure BDA0002808310090000141
Figure BDA0002808310090000142
Figure BDA0002808310090000143
Figure BDA0002808310090000144
Figure BDA0002808310090000145
其中,
Figure BDA0002808310090000146
Figure BDA0002808310090000147
分别为二阶段的机组实际出力
Figure BDA0002808310090000148
相对于一阶段的机组预出力pit的上调量和下调量。gin(x)为燃料成本的分段线性函数,NLi为分段数。式(30)实际上表示的是各个场景下的功率平衡条件,并计及了极端场景中可能出现的弃风和失负荷现象。式(32)和(33)说明了允许各机组在第一阶段预留的备用范围内调整出力以满足电网运行要求。式(38)-(42)考虑了与第一阶段相同的约束条件,但此时的约束对应于每个实际场景。
步骤五,根据实际数据并利用步骤四建立的二阶段随机机组组合模型,使用CPLEX求解器求解该MILP-UC问题。由求解结果确定机组组合和备用安排方案。
下面以一个简单的算例说明本方法实施流程。
该实例为IEEE118母线54机组***,其网架结构如图3所示,调度周期为24h。考虑***中存在EV充电聚集商6个,电动汽车的总量考虑为120000个,使其最大的充电功率达到了***最大负荷的10%。对可调度电动汽车,假设电动汽车的种类相同,每辆电动汽车存储容量20kWh,最大充放电功率为6.4kW,每千米耗电为0.15kWh,充放电效率均为0.8,最低存储电量水平为0.2,能够离站的存储电量水平为0.8。电动汽车的行驶距离和行驶速度都近似认为服从正态分布,其中行驶距离的期望值考虑为50km,行驶速度的期望值考虑为30km/h。
利用本发明的方法,依据各步骤具体实施,可以得到机组组合和备用安排结果,机组组合结果见图4,备用安排见图5。总运行费用为1562190.7$,开关机成本分别为1380$和2849$。
图6对本发明的方法与传统的确定性备用模型的运行结果进行了对比。可以看到采用本发明的方法,可以有效减少备用容量的冗余并减少***的总运行费用。图7展示了本发明综合考虑风电出力和电动汽车不确定性的效果,通过对机组和电动汽车的合理安排,可以有效地提高***对风电的消纳量并减少***的备用容量。
最后应当说明的是:以上实例仅用以说明本发明的技术方案,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都属于本发明的保护范围。

Claims (9)

1.一种计及风电与电动汽车随机性的两阶段机组组合建模方法,其特征在于,包括以下步骤:
步骤一:对建立模型所需要的数据进行整理,包括风电预测数据、不可调度电动汽车充放电情况的历史数据、可调度电动汽车的出行数据和规模数据、以及电力***相关参数;通过可调度电动汽车的出行数据得到其相应服从的概率分布,包括行驶距离的概率分布;
步骤二:利用步骤一得到的风电预测数据生成风电出力多场景;利用K-means聚类分析法对不可调度电动汽车充放电情况的历史数据处理得到不可调度电动汽车的典型负荷曲线;
步骤三:利用蒙特卡洛方法对步骤一得到的可调度电动汽车的出行数据和规模数据进行随机模拟,并生成可调度电动汽车的充电聚集商模式;
步骤四:根据步骤二生成的风电出力多场景和步骤三生成的可调度电动汽车的充电聚集商模式,以及步骤二得到的不可调度电动汽车的典型负荷曲线,以及电力***相关参数形成基于场景分析的考虑EV充电聚集商的二阶段随机机组组合模型。
2.根据权利要求1所述的一种计及风电与电动汽车随机性的两阶段机组组合建模方法,其特征在于,所述步骤四中,第一阶段考虑机组启停状态及其相关约束,第二阶段考虑多场景下的变量及相关约束,第一阶段所确定的机组启停状态在第二阶段中保持不变;通过对两个阶段约束的统筹考虑,综合求解得到机组的开停机计划,出力安排以及可调度电动汽车的安排,并且得到***的运行费用。
3.根据权利要求1所述的一种计及风电与电动汽车随机性的两阶段机组组合建模方法,其特征在于,所述步骤四中所述二阶段随机机组组合模型为:
Figure FDA0002808310080000011
Figure FDA0002808310080000012
Figure FDA0002808310080000013
分别是机组的启动和停机成本,下标i是机组的编号,
Figure FDA0002808310080000014
是场景下的机组出力,rit是机组预留的备用量,ρr为单位备用成本,Prs是场景s所对应的概率值,Fi()是机组的燃料成本曲线,ρe为失负荷损失系数,
Figure FDA0002808310080000021
为场景s下t时段***的失负荷量;ρh为单位弃风成本,
Figure FDA0002808310080000022
为场景s下t时段***的弃风量。
4.根据权利要求1或2所述的一种计及风电与电动汽车随机性的两阶段机组组合建模方法,其特征在于,所述步骤四中,第一阶段模型的相关约束包括功率平衡约束、机组出力及备用约束、机组启停成本约束、最小开停机时间约束、电动汽车相关约束和网络安全约束,其中具体求解步骤为:
功率平衡约束:
Figure FDA0002808310080000023
机组出力及备用约束:
pit+rit≤Pmax,i·vit(12)
pit+rit≤Pmax,i·vit(13)
Figure FDA0002808310080000024
机组启停成本约束:
Figure FDA0002808310080000025
Figure FDA0002808310080000026
Figure FDA0002808310080000027
Figure FDA0002808310080000028
其中,
Figure FDA0002808310080000029
Figure FDA00028083100800000210
分别是机组的启动和停机成本,下标i是机组的编号,
Figure FDA00028083100800000211
是场景下的机组出力,rit是机组预留的备用量,ρr为单位备用成本,Prs是场景s所对应的概率值,Fi()是机组的燃料成本曲线,ρe为失负荷损失系数,
Figure FDA00028083100800000212
为场景s下t时段***的失负荷量;ρh为单位弃风成本,
Figure FDA00028083100800000213
为场景s下t时段***的弃风量,
Figure FDA00028083100800000214
为风电出力的预测值,Ljt是除EV外的常规负荷的预测值,
Figure FDA00028083100800000215
是不可调度电动汽车对应的充电负荷,vit表示机组的启停状态,Pmax,i,Pmin,i分别表示第i台机组的最大和最小的输出功率,RUi,RDi分别为机组的上爬坡能力和下爬坡能力,
Figure FDA0002808310080000031
表示阶梯状启动成本曲线上第m级阶梯对应的启动成本,NDi则表示阶梯状启动成本曲线的分段总数,Ci表示机组的停机成本;
最小开停机时间约束:
Figure FDA0002808310080000032
Figure FDA0002808310080000033
Figure FDA0002808310080000034
Figure FDA0002808310080000035
Figure FDA0002808310080000036
Figure FDA0002808310080000037
电动汽车相关约束:
Figure FDA0002808310080000038
Figure FDA0002808310080000039
Figure FDA00028083100800000310
Figure FDA00028083100800000311
网络安全约束:
Figure FDA00028083100800000312
其中,Gi为运行初期机组i受到最小开机时间约束影响必须继续运行的时段数,Mi则是由于最小停机时间,机组必须初始停机时间,UTi和DTi分别是发电机组的最小开机时间和最小停机时间,T则是总调度时段,Fl是线路l的传输功率极限,πil是从机组i到线路l的功率分布因子,πwl是从风电站w到线路l的功率分布因子,同理,πjl和πkl也为相应的功率分布因子,式(25)和(26)是电动汽车的最大充放电功率约束,式(27)和(28)分别从充电聚集商的存储容量以及电动汽车的行车需求方面对充电聚集商的能量进行了约束。
5.根据权利要求1或2所述的一种计及风电与电动汽车随机性的两阶段机组组合建模方法,其特征在于,所述步骤四中,第二阶段模型约束包括功率平衡约束、机组出力与备用约束、机组燃料成本约束、机组爬坡约束和电动汽车相关约束,其中,具体的求解步骤为:
功率平衡约束:
Figure FDA0002808310080000041
Figure FDA0002808310080000042
机组出力与备用约束
Figure FDA0002808310080000043
Figure FDA0002808310080000044
Figure FDA0002808310080000045
机组燃料成本约束
Figure FDA0002808310080000046
机组爬坡约束
Figure FDA0002808310080000047
Figure FDA0002808310080000048
电动汽车相关约束
Figure FDA0002808310080000049
Figure FDA00028083100800000410
Figure FDA0002808310080000051
Figure FDA0002808310080000052
Figure FDA0002808310080000053
其中,
Figure FDA0002808310080000054
Figure FDA0002808310080000055
分别为二阶段的机组实际出力
Figure FDA0002808310080000056
相对于一阶段的机组预出力pit的上调量和下调量,gin(x)为燃料成本的分段线性函数,NLi为分段数,式(30)实际上表示的是各个场景下的功率平衡条件,并计及了极端场景中可能出现的弃风和失负荷现象,式(32)和(33)说明了允许各机组在第一阶段预留的备用范围内调整出力以满足电网运行要求,式(38)至(42)考虑了与第一阶段相同的约束条件,但此时的约束对应于每个实际场景。
6.根据权利要求1或2所述的一种计及风电与电动汽车随机性的两阶段机组组合建模方法,其特征在于,还包括步骤五,根据实际数据并利用步骤四建立的二阶段随机机组组合模型,使用CPLEX求解器求解该MILP-UC(机组组合问题的混合整数线性规划模型)问题,由求解结果确定机组组合和备用安排方案。
7.根据权利要求1或2所述的一种计及风电与电动汽车随机性的两阶段机组组合建模方法,其特征在于,所述步骤一中,电力***相关参数包括机组参数和负荷数据。
8.根据权利要求1或2所述的一种计及风电与电动汽车随机性的两阶段机组组合建模方法,其特征在于,所述步骤二中,在生成风电出力多场景时,假设风电出力在未来任一时刻服从正态分布,即
Figure FDA0002808310080000057
以风电出力的预测值
Figure FDA0002808310080000058
为数学期望,并根据实际情况估计相应的方差,据此通过蒙特卡洛模拟的方法抽样形成服从正态分布的随机序列;
在对不可调度电动汽车的出力进行聚类分析时,将每一个电动汽车的负荷曲线视为用于聚类分析的一个多维数据点,并对每一个数据点进行归一化处理,在计算过程中,点与点之间的距离采用欧几里得距离,即:
Figure FDA0002808310080000059
9.根据权利要求1或2所述的一种计及风电与电动汽车随机性的两阶段机组组合建模方法,其特征在于,所述步骤三中,生成EV充电聚集商的相应参数的具体模拟过程如下:
Figure FDA0002808310080000061
Figure FDA0002808310080000062
Figure FDA0002808310080000063
Figure FDA0002808310080000064
其中,
Figure FDA0002808310080000065
是每个时段接入EV充电聚集商的EV数量,
Figure FDA0002808310080000066
Figure FDA0002808310080000067
分别代表离开和到达EV充电聚集商的EV数量,k表示充电聚集商的编号,t为时间;x是表示EV行驶距离的随机变量,v表示EV的行驶速度;公式(2)和(3)是对EV充电聚集商管辖区内的电动汽车数量动态变化进行模拟,可计算得出EV充电聚集商的相应属性参数;其中
Figure FDA0002808310080000068
是EV充电聚集商每时段的最大存储容量,而
Figure FDA0002808310080000069
则是每时段的最大充放电功率,
Figure FDA00028083100800000610
是一个电动汽车的最大存储容量;设各电动汽车的种类相同,参数相同,则每辆电动汽车的最大存储容量为emax,最大充放电功率为pch,max
Figure FDA00028083100800000611
Figure FDA00028083100800000612
Figure FDA00028083100800000613
Figure FDA00028083100800000614
公式(6)至(9)是对EV充电聚集商管辖区内的电动汽车能量的动态变化进行模拟,其中,Ekt为每个时段接入EV充电聚集商电动汽车的存储能量,
Figure FDA00028083100800000615
Figure FDA00028083100800000616
分别是离开和到达EV充电聚集商电动汽车的存储能量;
Figure FDA00028083100800000617
Figure FDA00028083100800000618
分别为EV充电聚集商的充放电功率,ηcd分别是充放电效率,kh是当EV离开充电站时,其电池的存储能量需要达到的水平,
Figure FDA0002808310080000071
是电动汽车行车而消耗的能量,m是电动汽车每单位距离消耗的能量,dmax,dmin是电动汽车的最大和最小出行距离;
利用式(2)至式(9)实现对可调度电动汽车行为的随机模拟,并得到EV充电聚集商的相应参数,包括
Figure FDA0002808310080000072
Figure FDA0002808310080000073
CN202011376386.8A 2020-11-30 2020-11-30 一种计及风电与电动汽车随机性的两阶段机组组合建模方法 Pending CN112736894A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011376386.8A CN112736894A (zh) 2020-11-30 2020-11-30 一种计及风电与电动汽车随机性的两阶段机组组合建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011376386.8A CN112736894A (zh) 2020-11-30 2020-11-30 一种计及风电与电动汽车随机性的两阶段机组组合建模方法

Publications (1)

Publication Number Publication Date
CN112736894A true CN112736894A (zh) 2021-04-30

Family

ID=75597990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011376386.8A Pending CN112736894A (zh) 2020-11-30 2020-11-30 一种计及风电与电动汽车随机性的两阶段机组组合建模方法

Country Status (1)

Country Link
CN (1) CN112736894A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148213A (zh) * 2021-11-30 2022-03-08 西安理工大学 一种电网和电动车电网互动协调综合控制处理方法和***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171147A1 (zh) * 2011-06-17 2012-12-20 辽宁省电力有限公司 结合风力发电的纯电动汽车有序充放电协调控制***
CN107730048A (zh) * 2017-10-26 2018-02-23 华中科技大学 一种风电‑电动汽车联合***随机鲁棒优化调度方法
CN109861208A (zh) * 2019-01-07 2019-06-07 南京工程学院 一种基于两阶段预处理策略的电动汽车并网优化调度方法
CN110212584A (zh) * 2019-06-27 2019-09-06 上海电力学院 一种风电与大规模电动汽车协调优化的调度方法
CN110556822A (zh) * 2019-08-13 2019-12-10 常州大学 一种含电动汽车消纳大规模风电机组的组合计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171147A1 (zh) * 2011-06-17 2012-12-20 辽宁省电力有限公司 结合风力发电的纯电动汽车有序充放电协调控制***
CN107730048A (zh) * 2017-10-26 2018-02-23 华中科技大学 一种风电‑电动汽车联合***随机鲁棒优化调度方法
CN109861208A (zh) * 2019-01-07 2019-06-07 南京工程学院 一种基于两阶段预处理策略的电动汽车并网优化调度方法
CN110212584A (zh) * 2019-06-27 2019-09-06 上海电力学院 一种风电与大规模电动汽车协调优化的调度方法
CN110556822A (zh) * 2019-08-13 2019-12-10 常州大学 一种含电动汽车消纳大规模风电机组的组合计算方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148213A (zh) * 2021-11-30 2022-03-08 西安理工大学 一种电网和电动车电网互动协调综合控制处理方法和***
CN114148213B (zh) * 2021-11-30 2024-03-01 西安理工大学 一种电网和电动车电网互动协调综合控制处理方法和***

Similar Documents

Publication Publication Date Title
Wang et al. Energy management and optimization of vehicle-to-grid systems for wind power integration
Li et al. A state machine control based on equivalent consumption minimization for fuel cell/supercapacitor hybrid tramway
Jian et al. Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid
CN111626527B (zh) 计及可调度电动汽车快/慢充放电形式的智能电网深度学习调度方法
CN109217290B (zh) 计及电动汽车充放电的微网能量优化管理方法
CN107730048B (zh) 一种风电-电动汽车联合***随机鲁棒优化调度方法
CN104410089B (zh) 基于电动汽车的风力发电微网功率平衡实时调度方法
CN110266031B (zh) 储能并网充放电量控制方法、装置、服务器及存储介质
CN109948823B (zh) 一种光储充电塔自适应鲁棒日前优化调度方法
CN113285490A (zh) 电力***调度方法、装置、计算机设备和存储介质
CN112270433A (zh) 考虑可再生能源不确定性和用户满意度的微电网优化方法
CN114362218B (zh) 基于深度q学习的微电网内多类型储能的调度方法及装置
CN109950900B (zh) 基于电动汽车负荷最小峰值模型的微网负荷削减控制方法
CN112510690B (zh) 考虑风火储联合和需求响应奖惩的优化调度方法及***
CN112736894A (zh) 一种计及风电与电动汽车随机性的两阶段机组组合建模方法
CN117154792A (zh) 计及风光不确定性的电动汽车换电站日前优化调度方法
CN112260274A (zh) 一种基于全景理论的虚拟电厂组建方法
CN115360738B (zh) 一种考虑可控域约束的电动汽车一次调频控制方法
Zhuang et al. Capacity configuration and control strategy of ev charging station with integrated wind power and energy storage based on ssa
CN114611957B (zh) 一种用于供需预测偏差二次修正储能能量管理方法
CN114884133B (zh) 一种计及电动汽车的微电网经济调度优化方法及***
CN113949098B (zh) 计及fcv的孤岛型混合微电网***可靠性评估方法
Yao et al. Determination of a dispatch strategy to maximize income for a wind turbine-BESS power station
CN111934331A (zh) 一种电动汽车充放电优化调度方法及装置
CN111062532A (zh) 一种考虑v2g的增量配电园区内电网容量配置优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20240714

Address after: No. 669, Aerospace Middle Road, National Civil Aerospace Industry Base, Xi'an City, Shaanxi Province 710199

Applicant after: Electric Power Research Institute of State Grid Shaanxi Electric Power Co.,Ltd.

Country or region after: China

Applicant after: XI'AN JIAOTONG University

Applicant after: STATE GRID CORPORATION OF CHINA

Address before: No.669, Hangtian Middle Road, Chang'an District, Xi'an City, Shaanxi Province

Applicant before: STATE GRID SHAANXI ELECTRIC POWER Research Institute

Country or region before: China

Applicant before: XI'AN JIAOTONG University

Applicant before: STATE GRID CORPORATION OF CHINA