CN112730488A - 一种x射线衍射法测定钢种残余奥氏体的标定方法 - Google Patents

一种x射线衍射法测定钢种残余奥氏体的标定方法 Download PDF

Info

Publication number
CN112730488A
CN112730488A CN202110151899.7A CN202110151899A CN112730488A CN 112730488 A CN112730488 A CN 112730488A CN 202110151899 A CN202110151899 A CN 202110151899A CN 112730488 A CN112730488 A CN 112730488A
Authority
CN
China
Prior art keywords
sample
ray diffraction
residual austenite
measuring
steel grade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110151899.7A
Other languages
English (en)
Other versions
CN112730488B (zh
Inventor
尤绍军
孙小东
王红伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luoyang Bearing Group Co ltd
Original Assignee
Luoyang LYC Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luoyang LYC Bearing Co Ltd filed Critical Luoyang LYC Bearing Co Ltd
Priority to CN202110151899.7A priority Critical patent/CN112730488B/zh
Publication of CN112730488A publication Critical patent/CN112730488A/zh
Application granted granted Critical
Publication of CN112730488B publication Critical patent/CN112730488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/303Accessories, mechanical or electrical features calibrating, standardising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/624Specific applications or type of materials steel, castings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种涉及轴承热处理无损检测技术领域的X射线衍射法测定钢种残余奥氏体的标定方法,包含如下具体步骤:步骤一:残余奥氏体含量为零的轴承钢0#试样制备;步骤二:获得测量设备零位偏差值A;使用X射线衍射设备对制备好的残余奥氏体含量为零的0#试样进行检测,将得到的检测值A作为零位偏差值;步骤三:利用同一个X射线衍射设备对待测样品进行检测,待测样品的残余奥氏体含量Y=实际测量值B-零位偏差值A;该标定方法能对X射线衍射法测定的残余奥氏体含量进行修正,使测量结果更加准确。

Description

一种X射线衍射法测定钢种残余奥氏体的标定方法
技术领域
本发明涉及轴承热处理无损检测技术领域,尤其是涉及一种X射线衍射法测定钢种残余奥氏体的标定方法。
背景技术
根据X射线的衍射原理,某物相的X射线衍射线累积强度随该相在试样中的相对含量的增加而提高,通过测量轴承钢马氏体相和奥氏体相衍射线的累积强度计算出钢中残余奥氏体的含量,但测量过程中存在设备与计算偏差,一般在1%~2%之间;精密轴承、轧机轴承和风电轴承对钢中残余奥氏体含量要求较低,一般要求不超过3%,在此偏差下无法获得准确的测量结果,需要一种标定方法对测量结果进行修正,以准确的获得试样的残余奥氏体含量。
发明内容
为了克服背景技术中的不足,本发明公开了一种X射线衍射法测定钢种残余奥氏体的标定方法,能对X射线衍射法测定的残余奥氏体含量进行修正,使测量结果更加准确。
为实现上述发明目的,本发明采用如下技术方案:
一种X射线衍射法测定钢种残余奥氏体的标定方法,包含如下具体步骤:
步骤一:残余奥氏体含量为零的轴承钢0#试样制备;将高碳铬轴承钢GCr15或GCr15SiMn试样进行球化退火,先放入加热炉中加热,加热温度:790℃±10℃,保温时间:6h~7h;然后打开炉盖快冷到620℃±10℃;再随炉升温至720℃±10℃,保温时间2h~3h;最后炉冷至600℃±10℃出炉。
步骤二:获得测量设备零位偏差值A;使用X射线衍射设备对制备好的残余奥氏体含量为零的0#试样进行检测,将得到的检测值A作为零位偏差值。
步骤三:利用同一个X射线衍射设备对待测样品进行检测,待测样品的残余奥氏体含量Y=实际测量值B-零位偏差值A。
进一步,在步骤三中,待测样品的实际测量值的绝对值小于6%。
进一步,当待测样品的实际测量值的绝对值大于等于6%时,更换X射线衍射设备,重新进行标定。
进一步,所述待测样品需与0#试样的材质相同。
进一步,在步骤一中0#试样在加热阶段的保温时间为6.5h。
由于采用如上所述的技术方案,本发明具有如下有益效果:
本发明公开的X射线衍射法测定钢种残余奥氏体的标定方法,能够更准确的检测出钢中残余奥氏含量,解决对于精密轴承、轧机轴承和风电轴承等残余奥氏体含量要求低的轴承零件,X射线衍射法无法精确获得残余奥氏体含量的问题,便于对热处理工艺的优化调整提供技术支撑,满足用户需求。
附图说明
无。
具体实施方式
通过下面的实施例可以详细的解释本发明,公开本发明的目的旨在保护本发明范围内的一切技术改进,本发明并不局限于下面的实施例:
实施例一:
一种X射线衍射法测定钢种残余奥氏体的标定方法,包含如下具体步骤:
步骤一:残余奥氏体含量为零的轴承钢0#试样制备;先将高碳铬轴承钢GCr15或GCr15SiMn试样进行球化退火,先放入加热炉中加热,加热温度:780℃,保温时间:6h;然后打开炉盖快冷到610℃;再随炉升温至710℃,保温时间2h;最后炉冷至590℃出炉;
步骤二:获得测量设备零位偏差值A;使用X射线衍射设备对制备好的残余奥氏体含量为零的0#试样进行检测,将得到的检测值A作为零位偏差值;
步骤三:利用同一个X射线衍射设备对待测样品进行检测,待测样品需与选用的0#试样的材质相同,待测样品的残余奥氏体含量Y=实际测量值B-零位偏差值A;此外,为保证标定更加准确,在步骤三中,待测样品的实际测量值的绝对值需要小于6%,一般根据偏差要求,待测样品的奥氏体只有小于6%,才有标定的意义;根据需要,当待测样品的实际测量值的绝对值大于等于6%时,基于X射线衍射设备测量偏差的不确定性,能够选择更换合适的X射线衍射设备,重新进行标定。
实施例二:
与实施例一的不同之处在于步骤一:
步骤一:残余奥氏体含量为零的轴承钢0#试样制备;将高碳铬轴承钢GCr15或GCr15SiMn试样进行球化退火,先放入加热炉中加热,加热温度:790℃,保温时间:6.5h;然后打开炉盖快冷到620℃;再随炉升温至720℃,保温时间2.5h;最后炉冷至600℃出炉。
实施例三:
与实施例一的不同之处在于步骤一:
步骤一:残余奥氏体含量为零的轴承钢0#试样制备;将高碳铬轴承钢GCr15或GCr15SiMn试样进行球化退火,先放入加热炉中加热,加热温度:800℃,保温时间:7h;然后打开炉盖快冷到630℃;再随炉升温至730℃,保温时间3h;最后炉冷至610℃出炉。
X射线衍射法测定的残余奥氏体含量 %
Figure 964977DEST_PATH_IMAGE002
本发明未详述部分为现有技术。

Claims (5)

1.一种X射线衍射法测定钢种残余奥氏体的标定方法,其特征在于:包含如下具体步骤:
步骤一:残余奥氏体含量为零的轴承钢0#试样制备;
将高碳铬轴承钢GCr15或GCr15SiMn试样进行球化退火,先放入加热炉中加热,加热温度:790℃±10℃,保温时间:6h~7h;然后打开炉盖快冷到620℃±10℃;再随炉升温至720℃±10℃,保温时间2h~3h;最后炉冷至600℃±10℃出炉。
步骤二:获得测量设备零位偏差值A;使用X射线衍射设备对制备好的残余奥氏体含量为零的0#试样进行检测,将得到的检测值A作为零位偏差值。
步骤三:利用同一个X射线衍射设备对待测样品进行检测,待测样品的残余奥氏体含量Y=实际测量值B-零位偏差值A。
2.根据权利要求1所述的X射线衍射法测定钢种残余奥氏体的标定方法,其特征是:在步骤三中,待测样品的实际测量值的绝对值小于6%。
3.根据权利要求2所述的X射线衍射法测定钢种残余奥氏体的标定方法,其特征是:当待测样品的实际测量值的绝对值大于等于6%时,更换X射线衍射设备,重新进行标定。
4.根据权利要求1所述的X射线衍射法测定钢种残余奥氏体的标定方法,其特征是:所述待测样品需与0#试样的材质相同。
5.根据权利要求1所述的X射线衍射法测定钢种残余奥氏体的标定方法,其特征是:在步骤一中0#试样在加热阶段的保温时间为6.5h。
CN202110151899.7A 2021-02-04 2021-02-04 一种x射线衍射法测定钢中残余奥氏体的标定方法 Active CN112730488B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110151899.7A CN112730488B (zh) 2021-02-04 2021-02-04 一种x射线衍射法测定钢中残余奥氏体的标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110151899.7A CN112730488B (zh) 2021-02-04 2021-02-04 一种x射线衍射法测定钢中残余奥氏体的标定方法

Publications (2)

Publication Number Publication Date
CN112730488A true CN112730488A (zh) 2021-04-30
CN112730488B CN112730488B (zh) 2023-09-22

Family

ID=75596836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110151899.7A Active CN112730488B (zh) 2021-02-04 2021-02-04 一种x射线衍射法测定钢中残余奥氏体的标定方法

Country Status (1)

Country Link
CN (1) CN112730488B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563623A (en) * 1979-06-19 1981-01-14 Kawasaki Steel Corp On-line measuring method of austenite contained in rolled steel sheet
US5148458A (en) * 1990-01-18 1992-09-15 Clayton Ruud Method and apparatus for simultaneous phase composition and residual stress measurement by x-ray diffraction
CN101446561A (zh) * 2008-10-17 2009-06-03 武汉钢铁(集团)公司 采用x-射线衍射极图数据定量测定钢中残余奥氏体的方法
CN102135506A (zh) * 2010-01-26 2011-07-27 宝山钢铁股份有限公司 钢板中残余奥氏体在线检测方法
CN103604821A (zh) * 2013-11-27 2014-02-26 南京钢铁股份有限公司 一种钢中奥氏体含量的测量方法
JP2016194158A (ja) * 2015-04-01 2016-11-17 新日鐵住金株式会社 熱延鋼板及びその製造方法
CN106896124A (zh) * 2017-04-24 2017-06-27 上海应用技术大学 一种轴承钢材料热处理过程中所对应残余奥氏体含量的测定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563623A (en) * 1979-06-19 1981-01-14 Kawasaki Steel Corp On-line measuring method of austenite contained in rolled steel sheet
US5148458A (en) * 1990-01-18 1992-09-15 Clayton Ruud Method and apparatus for simultaneous phase composition and residual stress measurement by x-ray diffraction
CN101446561A (zh) * 2008-10-17 2009-06-03 武汉钢铁(集团)公司 采用x-射线衍射极图数据定量测定钢中残余奥氏体的方法
CN102135506A (zh) * 2010-01-26 2011-07-27 宝山钢铁股份有限公司 钢板中残余奥氏体在线检测方法
CN103604821A (zh) * 2013-11-27 2014-02-26 南京钢铁股份有限公司 一种钢中奥氏体含量的测量方法
JP2016194158A (ja) * 2015-04-01 2016-11-17 新日鐵住金株式会社 熱延鋼板及びその製造方法
CN106896124A (zh) * 2017-04-24 2017-06-27 上海应用技术大学 一种轴承钢材料热处理过程中所对应残余奥氏体含量的测定方法

Also Published As

Publication number Publication date
CN112730488B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN106768380B (zh) 一种对红外测温设备的测试结果进行修正的方法
Yang et al. Uncertainties in dilatometric determination of martensite start temperature
CN102620833B (zh) 红外测温方法和红外测温***
CN103969284A (zh) 热膨胀法测定低碳钢中碳在奥氏体完全溶解的温度的方法
CN104614283B (zh) 一种金属材料热处理加工过程中的所对应物相变化的分析方法
CN112730488A (zh) 一种x射线衍射法测定钢种残余奥氏体的标定方法
CN109852921B (zh) 一种通用型qpq氮化剂浓度调整方法
CN107421830A (zh) 一种用于8Cr4Mo4V钢的维氏硬度与洛氏硬度换算方法
CN208043587U (zh) 一种热重分析装置
CN111366254A (zh) 一种大气透过率检测方法及装置
CN102373382B (zh) 一种杨氏模量性能检测的标准样品及其制备方法
CN101929967B (zh) 一种电阻率检测低碳微合金钢中Nb(C,N)溶解温度的方法
Peyser et al. Effect of filler and cooling rate on the glass transition of polymers
CN103207204B (zh) 一种用于检测比弯曲性能的标准样品及其制备方法
CN106244773A (zh) 一种p92钢回火硬度的预测方法
CN112981057A (zh) 一种低硬度p91钢试块的制备方法
WO2021120391A1 (zh) 一种薄壁齿圈类零件热处理后变形校正方法
CN108535309A (zh) 一种原位测量低碳合金钢中Fe3C析出量的方法
CN112305012B (zh) 基于动态热模拟机测定钛/钛合金β相转变温度的方法
CN103994705A (zh) 一种弹簧零件的测量方法
CN204188270U (zh) 一种红外辐射测温仪机械光轴对准装置
CN110873728A (zh) 一种有机电致发光材料的玻璃化转变温度的测试方法
CN111854968B (zh) 一种红外测温仪精确测量铝锭温度的方法
CN108303441A (zh) 一种测定锡及锡合金样品中白锡转变为灰锡比例的方法
EP4266043A1 (en) Correction steel sheet, electromagnetic inspection device capable of correcting, and method for manufacturing correction steel sheet

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 471039 No. 96, Jianxi, Luoyang District, Henan, Jianshe Road

Patentee after: Luoyang Bearing Group Co.,Ltd.

Country or region after: China

Address before: 471039 No. 96, Jianxi, Luoyang District, Henan, Jianshe Road

Patentee before: LUOYANG LYC BEARING Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address