CN112707741A - 一种CSiNB基多元一体化纤维毡材料的制备方法 - Google Patents

一种CSiNB基多元一体化纤维毡材料的制备方法 Download PDF

Info

Publication number
CN112707741A
CN112707741A CN202011607277.2A CN202011607277A CN112707741A CN 112707741 A CN112707741 A CN 112707741A CN 202011607277 A CN202011607277 A CN 202011607277A CN 112707741 A CN112707741 A CN 112707741A
Authority
CN
China
Prior art keywords
fiber felt
carbon fiber
csinb
reaction
boron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011607277.2A
Other languages
English (en)
Other versions
CN112707741B (zh
Inventor
王志江
兰晓琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202011607277.2A priority Critical patent/CN112707741B/zh
Publication of CN112707741A publication Critical patent/CN112707741A/zh
Application granted granted Critical
Publication of CN112707741B publication Critical patent/CN112707741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
    • D04H1/08Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres and hardened by felting; Felts or felted products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

一种CSiNB基多元一体化纤维毡材料的制备方法,它涉及一种纤维毡材料的制备方法。本发明要解决Si‑B‑C‑N系陶瓷的方法工艺复杂、产量低,成本高的问题。制备方法:一、碳纤维毡的活化处理;二、灌注硼粉;三、高温烧结反应。本发明用于CSiNB基多元一体化纤维毡材料的制备。

Description

一种CSiNB基多元一体化纤维毡材料的制备方法
技术领域
本发明涉及一种纤维毡材料的制备方法。
背景技术
耐高温、非烧蚀、高可靠性和长寿命的陶瓷纤维材料是一类重要的高技术新材料,在促进航空、航天、冶金、化工、及能源等领域的飞速发展中发挥着重要作用。根据对耐高温材料体系的调研发现一种新型的Si-B-C-N系陶瓷具有极高的热稳定性。当前该材料体系在1600℃或更高温度时依然未发生明显的失重现象。但目前取得成果的Si-B-C-N系陶瓷均基于有机聚合物裂解法制备而成。这种方法工艺复杂、产量低(产率仅为30%左右),且有机前驱体聚硼硅氮烷的成本极高。采用有机聚合物裂解法制备Si-B-C-N系陶瓷的应用前景因此受限。
发明内容
本发明要解决Si-B-C-N系陶瓷的方法工艺复杂、产量低,成本高的问题,而提供一种CSiNB基多元一体化纤维毡材料的制备方法。
一种CSiNB基多元一体化纤维毡材料的制备方法,它是按以下步骤完成的:
一、碳纤维毡的活化处理:
将碳纤维毡浸渍于无机盐离子水溶液中,在温度为20℃~80℃的条件下,活化处理0.5h~6h,得到活化后的碳纤维毡;
所述的无机盐离子水溶液的质量百分数为1%~10%;
二、灌注硼粉:
将活化后的碳纤维毡浸渍于硼粉分散液中,在超声功率为35W~50W的条件下,超声分散30min~60min,或者在真空条件下,灌注处理24h~48h,得到浸渍硼粉的碳纤维毡;
所述的硼粉分散液为硼粉与酒精的混合液,所述的硼粉的质量与酒精的体积比为(0.5~7)g:20mL;
三、高温烧结反应:
将反应硅源粉铺放在石墨坩埚底部,得到反应硅源层,然后将浸渍硼粉的碳纤维毡覆盖于反应硅源层表面上,将未盖石墨坩埚盖且盛有反应物的石墨坩埚放入管式炉中,以流速为80mL/min~160mL/min通入氮气作为反应气体,按升温速率为1℃/min~5℃/min将温度升温至1400℃~1700℃,在反应温度为1400℃~1700℃的条件下,烧结反应4h~8h,反应结束后自然冷却至室温,得到CSiNB基多元一体化纤维毡材料;
所述的浸渍硼粉的碳纤维毡与反应硅源粉的质量比为4:(1~6)。
本发明的有益效果是:
本发明为一种简便、成本低廉、工业化前景广阔的制备CSiNB基多元一体化纤维毡的方法,该四元复合纤维毡在原始模板碳纤维毡基础上与硅源、氮源、硼源发生高温烧结反应。先后自外向内渗透Si、N、B等元素,四种元素在原子尺度上相互键合,形成的Si-C、Si-N、B-N键都属于共价键,B元素处于外表层,利于高温稳定,这使得C-Si-N-B多元梯度陶瓷纤维依然能够具有原子晶体的高强力学特性和防隔热性。方法简单,所得纤维毡在C纤维毡基础形貌上产生新的组分,纤维直径约为10μm~15μm。该CSiNB基多元一体化纤维毡具有良好的耐高温防隔热性能,在航空、航天、冶金、化工等高温应用领域具有良好的应用前景。
本发明通过C纤维毡为模板制备Si-B-C-N基多元一体化纤维毡降低生产成本的同时进一步提升其材料的防隔热性能,使纤维毡的热导率降低至可媲美气凝胶材料,常温热导率仅为0.0913W/m·K,该热导率数值远低于防隔热材料的热导率条件要求,经过100次循环,仍然保持了良好的回弹性能,其残余应变仅为5%,且产率高达90%。
本发明用于一种CSiNB基多元一体化纤维毡材料的制备方法。
附图说明
图1为实施例一制备的CSiNB基多元一体化纤维毡材料放大500倍的微观形貌图;
图2为实施例一制备的CSiNB基多元一体化纤维毡材料放大1500倍的微观形貌图;
图3为实施例一制备的CSiNB基多元一体化纤维毡材料的EDS图谱;
图4为实施例一制备的CSiNB基多元一体化纤维毡材料的弹性应力-应变曲线图,1为循环1次,2为循环50次,3为100次。
具体实施方式
具体实施方式一:本实施方式一种CSiNB基多元一体化纤维毡材料的制备方法,它是按以下步骤完成的:
一、碳纤维毡的活化处理:
将碳纤维毡浸渍于无机盐离子水溶液中,在温度为20℃~80℃的条件下,活化处理0.5h~6h,得到活化后的碳纤维毡;
所述的无机盐离子水溶液的质量百分数为1%~10%;
二、灌注硼粉:
将活化后的碳纤维毡浸渍于硼粉分散液中,在超声功率为35W~50W的条件下,超声分散30min~60min,或者在真空条件下,灌注处理24h~48h,得到浸渍硼粉的碳纤维毡;
所述的硼粉分散液为硼粉与酒精的混合液,所述的硼粉的质量与酒精的体积比为(0.5~7)g:20mL;
三、高温烧结反应:
将反应硅源粉铺放在石墨坩埚底部,得到反应硅源层,然后将浸渍硼粉的碳纤维毡覆盖于反应硅源层表面上,将未盖石墨坩埚盖且盛有反应物的石墨坩埚放入管式炉中,以流速为80mL/min~160mL/min通入氮气作为反应气体,按升温速率为1℃/min~5℃/min将温度升温至1400℃~1700℃,在反应温度为1400℃~1700℃的条件下,烧结反应4h~8h,反应结束后自然冷却至室温,得到CSiNB基多元一体化纤维毡材料;
所述的浸渍硼粉的碳纤维毡与反应硅源粉的质量比为4:(1~6)。
本具体实施方式步骤三不加盖石墨坩埚盖使整个反应体系可与惰性气体充分接触。
本实施方式的有益效果是:
本实施方式为一种简便、成本低廉、工业化前景广阔的制备CSiNB基多元一体化纤维毡的方法,该四元复合纤维毡在原始模板碳纤维毡基础上与硅源、氮源、硼源发生高温烧结反应。先后自外向内渗透Si、N、B等元素,四种元素在原子尺度上相互键合,形成的Si-C、Si-N、B-N键都属于共价键,B元素处于外表层,利于高温稳定,这使得C-Si-N-B多元梯度陶瓷纤维依然能够具有原子晶体的高强力学特性和防隔热性。方法简单,所得纤维毡在C纤维毡基础形貌上产生新的组分,纤维直径约为10μm~15μm。该CSiNB基多元一体化纤维毡具有良好的耐高温防隔热性能,在航空、航天、冶金、化工等高温应用领域具有良好的应用前景。
本实施方式通过C纤维毡为模板制备Si-B-C-N基多元一体化纤维毡降低生产成本的同时进一步提升其材料的防隔热性能,使纤维毡的热导率降低至可媲美气凝胶材料,常温热导率仅为0.0913W/m·K,该热导率数值远低于防隔热材料的热导率条件要求,经过100次循环,仍然保持了良好的回弹性能,其残余应变仅为5%,且产率高达90%。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的碳纤维毡为单位质量200g/m2~800g/m2的碳纤维毡;步骤一中所述的碳纤维毡的厚度为3mm~10mm。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是:步骤一中所述的无机盐离子水溶液为氯化钠水溶液、氯化钙水溶液、氟化钠水溶液和氟化钙水溶液中的一种或其中几种的混合物。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中将碳纤维毡浸渍于无机盐离子水溶液中,在温度为20℃~80℃的条件下,活化处理1h~6h,得到活化后的碳纤维毡。其它与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤一中所述的无机盐离子水溶液的质量百分数为5%~10%。其它与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中将活化后的碳纤维毡浸渍于硼粉分散液中,在超声功率为35W的条件下,超声分散30min,得到浸渍硼粉的碳纤维毡。其它与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中所述的硼粉的质量与酒精的体积比为(2~7)g:20mL。其它与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤三中以流速为80mL/min~100mL/min通入氮气作为反应气体,按升温速率为2.5℃/min~5℃/min将温度升温至1600℃~1700℃,在反应温度为1600℃~1700℃的条件下,烧结反应4h~8h。其它与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤三中所述的浸渍硼粉的碳纤维毡与反应硅源粉的质量比为4:(4~6)。其它与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤三中所述的反应硅源粉为摩尔比1:(1~6)的二氧化硅粉与硅粉的混合物;步骤三中所述的氮气纯度≥99.99%。其它与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:
一种CSiNB基多元一体化纤维毡材料的制备方法,它是按以下步骤完成的:
一、碳纤维毡的活化处理:
将碳纤维毡浸渍于无机盐离子水溶液中,在室温下活化处理1h,得到活化后的碳纤维毡;
所述的无机盐离子水溶液的质量百分数为5%;
二、灌注硼粉:
将活化后的碳纤维毡浸渍于硼粉分散液中,在超声功率为35W的条件下,超声分散30min,得到浸渍硼粉的碳纤维毡;
所述的硼粉分散液为硼粉与酒精的混合液,所述的硼粉的质量与酒精的体积比为2g:20mL;
三、高温烧结反应:
将反应硅源粉铺放在石墨坩埚底部,得到反应硅源层,然后将浸渍硼粉的碳纤维毡覆盖于反应硅源层表面上,将未盖石墨坩埚盖且盛有反应物的石墨坩埚放入管式炉中,以流速为80mL/min通入氮气作为反应气体,按升温速率为2.5℃/min将温度升温至1600℃,在反应温度为1600℃的条件下,烧结反应4h,反应结束后自然冷却至室温,得到CSiNB基多元一体化纤维毡材料;
所述的浸渍硼粉的碳纤维毡与反应硅源粉的质量比为1:1;
步骤一中所述的碳纤维毡为单位质量700g/m2的碳纤维毡;步骤一中所述的碳纤维毡厚度为5mm;
步骤一中所述的无机盐离子水溶液为氯化钠水溶液。
步骤三中所述的反应硅源粉为摩尔比1:1的二氧化硅粉与硅粉的混合物;步骤三中所述的氮气纯度≥99.99%。
图1为实施例一制备的CSiNB基多元一体化纤维毡材料放大500倍的微观形貌图;图2为实施例一制备的CSiNB基多元一体化纤维毡材料放大1500倍的微观形貌图;由图可知,纤维直径约为12μm,通过灌注硼粉法在碳纤维表面成功负载硼单质,其微观形貌在碳纤维基础上产生变化生成其他组分。
图3为实施例一制备的CSiNB基多元一体化纤维毡材料的EDS图谱;由图可知,实施例一成功制备出含有Si、B、C、N四种元素的纤维毡。
按照投料比,产率为高达90%。
本实施例制备的CSiNB基多元一体化纤维毡的常温热导率仅为0.0913W/m·K,该热导率数值远低于防隔热材料的热导率条件要求,是足可以媲美气凝胶材料的优异防隔热材料。
图4为实施例一制备的CSiNB基多元一体化纤维毡材料的弹性应力-应变曲线图,1为循环1次,2为循环50次,3为100次。经历了100次疲劳加载-卸载周期,每次应变为20%,加载速率为0.8mm/min。压缩应变初次加载-卸载过程后,C-Si-N-B纤维毡变现出快速弹性恢复特性,经过100次循环,仍然保持了良好的回弹性能,其残余应变仅为5%。说明本实施例制备的CSiNB基多元一体化纤维毡具有高强力学特性。

Claims (10)

1.一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于它是按以下步骤完成的:
一、碳纤维毡的活化处理:
将碳纤维毡浸渍于无机盐离子水溶液中,在温度为20℃~80℃的条件下,活化处理0.5h~6h,得到活化后的碳纤维毡;
所述的无机盐离子水溶液的质量百分数为1%~10%;
二、灌注硼粉:
将活化后的碳纤维毡浸渍于硼粉分散液中,在超声功率为35W~50W的条件下,超声分散30min~60min,或者在真空条件下,灌注处理24h~48h,得到浸渍硼粉的碳纤维毡;
所述的硼粉分散液为硼粉与酒精的混合液,所述的硼粉的质量与酒精的体积比为(0.5~7)g:20mL;
三、高温烧结反应:
将反应硅源粉铺放在石墨坩埚底部,得到反应硅源层,然后将浸渍硼粉的碳纤维毡覆盖于反应硅源层表面上,将未盖石墨坩埚盖且盛有反应物的石墨坩埚放入管式炉中,以流速为80mL/min~160mL/min通入氮气作为反应气体,按升温速率为1℃/min~5℃/min将温度升温至1400℃~1700℃,在反应温度为1400℃~1700℃的条件下,烧结反应4h~8h,反应结束后自然冷却至室温,得到CSiNB基多元一体化纤维毡材料;
所述的浸渍硼粉的碳纤维毡与反应硅源粉的质量比为4:(1~6)。
2.根据权利要求1所述的一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于步骤一中所述的碳纤维毡为单位质量200g/m2~800g/m2的碳纤维毡;步骤一中所述的碳纤维毡的厚度为3mm~10mm。
3.根据权利要求1所述的一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于步骤一中所述的无机盐离子水溶液为氯化钠水溶液、氯化钙水溶液、氟化钠水溶液和氟化钙水溶液中的一种或其中几种的混合物。
4.根据权利要求1所述的一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于步骤一中将碳纤维毡浸渍于无机盐离子水溶液中,在温度为20℃~80℃的条件下,活化处理1h~6h,得到活化后的碳纤维毡。
5.根据权利要求1所述的一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于步骤一中所述的无机盐离子水溶液的质量百分数为5%~10%。
6.根据权利要求1所述的一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于步骤二中将活化后的碳纤维毡浸渍于硼粉分散液中,在超声功率为35W的条件下,超声分散30min,得到浸渍硼粉的碳纤维毡。
7.根据权利要求1所述的一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于步骤二中所述的硼粉的质量与酒精的体积比为(2~7)g:20mL。
8.根据权利要求1所述的一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于步骤三中以流速为80mL/min~100mL/min通入氮气作为反应气体,按升温速率为2.5℃/min~5℃/min将温度升温至1600℃~1700℃,在反应温度为1600℃~1700℃的条件下,烧结反应4h~8h。
9.根据权利要求1所述的一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于步骤三中所述的浸渍硼粉的碳纤维毡与反应硅源粉的质量比为4:(4~6)。
10.根据权利要求1所述的一种CSiNB基多元一体化纤维毡材料的制备方法,其特征在于步骤三中所述的反应硅源粉为摩尔比1:(1~6)的二氧化硅粉与硅粉的混合物;步骤三中所述的氮气纯度≥99.99%。
CN202011607277.2A 2020-12-29 2020-12-29 一种CSiNB基多元一体化纤维毡材料的制备方法 Active CN112707741B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011607277.2A CN112707741B (zh) 2020-12-29 2020-12-29 一种CSiNB基多元一体化纤维毡材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011607277.2A CN112707741B (zh) 2020-12-29 2020-12-29 一种CSiNB基多元一体化纤维毡材料的制备方法

Publications (2)

Publication Number Publication Date
CN112707741A true CN112707741A (zh) 2021-04-27
CN112707741B CN112707741B (zh) 2021-10-01

Family

ID=75547156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011607277.2A Active CN112707741B (zh) 2020-12-29 2020-12-29 一种CSiNB基多元一体化纤维毡材料的制备方法

Country Status (1)

Country Link
CN (1) CN112707741B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608156A (zh) * 2020-12-29 2021-04-06 黑龙江冠瓷科技有限公司 一种微纳混合SiC短切纤维的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870586A (zh) * 2010-07-07 2010-10-27 哈尔滨工业大学 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备方法
US20130011654A1 (en) * 2011-07-07 2013-01-10 Korea Institute Of Energy Research Method for manufacturing high-density fiber reinforced ceramic composite materials
CN103588483A (zh) * 2013-11-28 2014-02-19 哈尔滨工业大学 硅硼碳氮锆陶瓷复合材料及其制备方法
CN103626512A (zh) * 2013-11-28 2014-03-12 哈尔滨工业大学 碳/碳纤维-硅硼碳氮陶瓷复合材料及其制备方法
CN104591741A (zh) * 2015-02-17 2015-05-06 哈尔滨工业大学 一种SiNCB陶瓷材料的制备方法
CN104987078A (zh) * 2015-07-06 2015-10-21 哈尔滨工业大学 Co@SiNBC陶瓷材料的制备方法
CN108276015A (zh) * 2018-02-28 2018-07-13 南京工业大学 一种纤维增强耐高温高发射率一体化材料及其制备方法
CN109851375A (zh) * 2019-01-31 2019-06-07 哈尔滨工业大学 一种硅硼碳氮陶瓷复合材料及其制备方法
CN111441104A (zh) * 2020-03-10 2020-07-24 哈尔滨工业大学 一种由碳纤维制备CSiNB四元纤维的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870586A (zh) * 2010-07-07 2010-10-27 哈尔滨工业大学 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备方法
US20130011654A1 (en) * 2011-07-07 2013-01-10 Korea Institute Of Energy Research Method for manufacturing high-density fiber reinforced ceramic composite materials
CN103588483A (zh) * 2013-11-28 2014-02-19 哈尔滨工业大学 硅硼碳氮锆陶瓷复合材料及其制备方法
CN103626512A (zh) * 2013-11-28 2014-03-12 哈尔滨工业大学 碳/碳纤维-硅硼碳氮陶瓷复合材料及其制备方法
CN104591741A (zh) * 2015-02-17 2015-05-06 哈尔滨工业大学 一种SiNCB陶瓷材料的制备方法
CN104987078A (zh) * 2015-07-06 2015-10-21 哈尔滨工业大学 Co@SiNBC陶瓷材料的制备方法
CN108276015A (zh) * 2018-02-28 2018-07-13 南京工业大学 一种纤维增强耐高温高发射率一体化材料及其制备方法
CN109851375A (zh) * 2019-01-31 2019-06-07 哈尔滨工业大学 一种硅硼碳氮陶瓷复合材料及其制备方法
CN111441104A (zh) * 2020-03-10 2020-07-24 哈尔滨工业大学 一种由碳纤维制备CSiNB四元纤维的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. JIMBOU: "New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall", 《JOURNAL OF NUCLEAR MATERIALS》 *
王秀军 等: "碳纤维增强SiBCN陶瓷基复合材料的制备及性能", 《宇航材料工艺》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608156A (zh) * 2020-12-29 2021-04-06 黑龙江冠瓷科技有限公司 一种微纳混合SiC短切纤维的制备方法
CN112608156B (zh) * 2020-12-29 2021-12-03 内蒙古海特华材科技有限公司 一种微纳混合SiC短切纤维的制备方法

Also Published As

Publication number Publication date
CN112707741B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN109053207A (zh) 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法
CN104311090B (zh) 一种热压烧结/前驱体裂解法制备Cf/ZrC-SiC超高温陶瓷复合材料的方法
CN101239835B (zh) 一种磁悬浮列车滑撬所用的炭/炭-碳化硅材料的制备方法
CN103409732B (zh) 一种金刚石表面金属化的复合处理方法
CN102976756B (zh) 连续碳纤维增强的C-SiC双元基复合材料及其制备方法
CN109824381B (zh) 一种碳化硅陶瓷膜及其制备方法和用途
CN108484194B (zh) 一种Al2O3-SiO2基复合材料及其快速制备方法
CN103288468A (zh) 一种纤维增强碳-碳化硅-碳化锆基复合材料的制备方法
CN111441104B (zh) 一种由碳纤维制备CSiNB四元纤维的方法
CN103613400A (zh) 一种碳纤维增强碳-碳化硅双元陶瓷基梯度复合材料的制备方法
CN105565837A (zh) 一种碳陶复合材料的制备方法及其应用
CN102515120A (zh) 一种六方氮化硼空心微球的制备方法
CN112707741B (zh) 一种CSiNB基多元一体化纤维毡材料的制备方法
CN113045325B (zh) 一种高强度碳/碳-碳化硅复合材料的制备方法
CN106495725A (zh) 一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用
Gu et al. Low-temperature preparation of porous SiC ceramics using phosphoric acid as a pore-forming agent and a binder
CN108658616B (zh) 一种ZrO2-SiO2基复合材料的低温快速制备方法
CN114478015A (zh) 氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法
CN111454071A (zh) 岩棉纤维增强氧化硅基高强度隔热复合材料及其制备方法
CN101818048B (zh) 一种铜硅合金改性炭/陶摩擦材料的制备方法
CN111170754B (zh) 一种具有Si-Y-C三元陶瓷基体复合材料及制备方法
CN108752038A (zh) 一种以可热固化聚碳硅烷制备的碳化硅泡沫陶瓷
CN104926345B (zh) 一种氧化铝纤维增强碳化硅‑硅酸铝陶瓷及其制备方法
CN109748595B (zh) 一种混合渗剂、用途及反应熔渗制备方法
CN106631161A (zh) 一种在碳基材料表面制备抗高温氧化复合涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant