CN112643022A - 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末 - Google Patents

一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末 Download PDF

Info

Publication number
CN112643022A
CN112643022A CN202011427359.9A CN202011427359A CN112643022A CN 112643022 A CN112643022 A CN 112643022A CN 202011427359 A CN202011427359 A CN 202011427359A CN 112643022 A CN112643022 A CN 112643022A
Authority
CN
China
Prior art keywords
copper
iron
alloy
composite powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011427359.9A
Other languages
English (en)
Other versions
CN112643022B (zh
Inventor
杨俊杰
周圣丰
王小健
易艳良
张治国
李卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
University of Jinan
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202011427359.9A priority Critical patent/CN112643022B/zh
Publication of CN112643022A publication Critical patent/CN112643022A/zh
Application granted granted Critical
Publication of CN112643022B publication Critical patent/CN112643022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Abstract

本发明公开了一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末,其特点为:将粒径为40~50μm的铜基复合粉末作为成形材料,采用激光选区熔化成形的方法制备铁基非晶增强铜基合金,其中铜基复合粉末主要由铁基非晶粉末与铜合金粉末按1:9~1:7的质量比组成。本发明优点在于:铜基复合粉末在激光选区熔化成形过程中,发生液相分离而自组装形成球状非晶铁颗粒,非晶铁颗粒弥散分布于富铜基体内;铁基非晶增强铜基合金具有高强、高耐蚀与高耐磨与高导热等优异综合性能。

Description

一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合 粉末
技术领域
本发明涉及一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末,属于激光增材制造技术领域。
背景技术
铜合金是以纯铜为基体而加入一种或几种其他元素所构成的合金,因具有较高的强度与韧性,在工业领域具有广阔的应用前景,如用于制作发电机、电线、电缆、开关装置、变压器等电工器材,以及热交换器、管道、太阳能加热装置的平板集热器等导热器件。
但是,由于铜合金的强度、耐磨性与耐热性不足,铜合金的应用受到了很大程度的限制。颗粒增强铜基合金在铜基体内引入第二相颗粒如纤维、晶须、陶瓷等高强度的强化相增强铜基体,增加其耐磨性,具有良好的发展前景。
目前,颗粒增强铜基合金的制备方法主要分为外加强化相法和内部原位生成法,前者通常采用的第二相颗粒如碳化物、硼化物、氮化物、氧化物等直接与铜基合金粉末混合,通过粉末冶金的方法制备;后者通常将形成增强颗粒的合金元素与铜基合金粉末混合,使其在高温下发生复杂的冶金化学反应,原位形成增强相颗粒。但是,外加强化相在高温下会发生烧损,导致强化相优异性能丧失,极易诱导颗粒增强铜基合金开裂;原位合成法形成的增强相与铜基合金具有较好的润湿性能,但是形成增强相的体积、形态与分布无法调控。
铁基非晶合金作为一种新型结构和功能材料,不仅具有极高的强度、耐磨性和耐腐蚀性,而且还表现出优良的磁学性能,具有广泛的应用前景。但是,关于将铁基非晶合金作为增强相来提高铜基合金性能的研究未见文献报道,尤其是没有完全适用于激光选区熔化成形特点,能够成功用于制备大尺寸、结构复杂、无裂纹、高强高导、高耐磨与高耐蚀的铁基非晶增强铜基合金的铜基复合粉末。
发明内容
在高效率条件下,采用激光选区熔化成形技术,实现大尺寸、结构复杂型颗粒增强铜基合金的快速制造。因此,本发明的目的是提供一种用于激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末,该铜基复合粉末主要由铁基非晶粉末与铜合金粉末按1:9~1:7的质量比组成,铁基非晶粉末的化学成分为:W 8~10wt.%,Cr 4~6wt.%, Mo 1~3wt.%,Ni 1~3wt.%,Si 3~5wt.%,B 3~5wt.%,C 0.2~1wt.%, Mn 0.2~1.5wt.%,HfO2 0.8~1.5wt.%,余量为Fe;铜合金粉末的化学成分为:Cr 0.5~2wt.%,Zr 1~3wt.%,P 3~5wt.%,CeO2 0.2~1wt.%,余量为Cu。
本发明所述的铜基复合粉末通过以下工序制备:
(1)对于铁基非晶合金粉末的制备:真空电弧熔炼-雾化-筛选,形成粒度60~80μm的铁基非晶合金粉末;
(2)对于铜合金粉末的制备:真空高频感应熔炼-雾化-筛选,形成粒度60~80μm的铜合金粉末;
(3)将铁基非晶合金粉末与铜合金粉末按1:9~1:7的质量比放置于高能球磨机内,混合均匀,然后经过筛选-活化-干燥-化学镀镍-过滤-水洗-干燥-筛选,获得粒度为40~50μm用于激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末。
与现有技术生产的铜基复合粉末相比,本发明提供的一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末具有以下优点:
(1)铁基非晶合金粉末与铜合金粉末经高能球磨机混合,会发生相互扩散反应,然后进行化学镀镍处理,不仅可以有效保护铜合金元素在激光选区熔化成形过程不被氧化,而且可以保证铜基复合粉末的球形度,有利于其在激光选区熔化成形过程中的铺展。
(2)在激光选区熔化成形过程中,铁基非晶合金粉末与铜合金粉末完全熔化并发生冶金化学反应,由于Cu与Fe以及Cu与Cr为不混溶合金体系,因此它们之间会发生液相分离而自组装形成球状铁基非晶颗粒弥散分布于富铜基体内,形成铁基非晶增强铜基合金,该合金具有高强高导、高耐磨与高耐蚀等优异综合性能。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中所用试剂如无特殊说明均可从市场常规购得。
本发明的一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末,主要由铁基非晶粉末与铜合金粉末按1:9~1:7的质量比组成,其中铁基非晶粉末的化学成分为:W8.5wt.%,Cr 5.2wt.%,Mo 2.5wt.%,Ni 2.4wt.%,Si 3.5wt.%,B 4.5wt.%,C0.5wt.%,Mn 1.2 wt.%,HfO2 0.85wt.%,余量为Fe;铜合金粉末的化学成分为:Cr 1.5wt.%,Zr 1.2wt.%,P 4.2wt.%,CeO2 0.8wt.%,余量为Cu。
发明的制备工序为:首先,制备铁基非晶合金粉末:真空电弧熔炼-雾化-筛选,形成粒度60~80μm的铁基非晶合金粉末;其次,制备铜合金粉末:真空高频感应熔炼-雾化-筛选,形成粒度60~80 μm的铜合金粉末;最后,将铁基非晶合金粉末与铜合金粉末按1:9~1:7 的质量比放置于高能球磨机内,混合均匀,然后经过筛选-活化-干燥-化学镀镍-过滤-水洗-干燥-筛选,获得粒度为40~50μm的铜基复合粉末。
采用本发明的铜基复合粉末,使用激光选区熔化成形工艺参数为:激光功率为100-300W,光斑直径为80μm,激光扫描速度为500~5000 mm/s,分层切片厚度为80~100μm,连续两道之间的搭接率为50%,采用连续两层间激光扫描方向相互垂直的方式进行激光选区熔化成形,获得的铁基非晶增强铜基合金的主要性能指标为:耐磨性是黄铜的8~10倍,耐蚀性与黄铜相当,电导率为50~65%IACS,抗断裂强度为0.8~1.2GPa,延伸率为15~30%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末,其特征在于:铜基复合粉末主要由铁基非晶粉末与铜合金粉末按1:9~1:7的质量比组成,铁基非晶粉末的化学成分为:W 8~10wt.%,Cr 4~6wt.%,Mo 1~3wt.%,Ni 1~3wt.%,Si 3~5wt.%,B 3~5wt.%,C 0.2~1wt.%,Mn 0.2~1.5wt.%,HfO2 0.8~1.5wt.%,余量为Fe;铜合金粉末的化学成分为:Cr 0.5~2wt.%,Zr 1~3wt.%,P 3~5wt.%,CeO2 0.2~1wt.%,余量为Cu。
2.根据权利要求书1所述的一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末,其特征在于:铁基非晶粉末的化学成分为:W 8.5wt.%,Cr 5.2wt.%,Mo 2.5wt.%,Ni 2.4wt.%,Si 3.5wt.%,B 4.5wt.%,C 0.5wt.%,Mn 1.2wt.%,HfO2 0.85wt.%,余量为Fe;铜合金粉末的化学成分为:Cr 1.5wt.%,Zr 1.2wt.%,P 4.2wt.%,CeO20.8wt.%,余量为Cu。
3.根据权利要求书1所述的一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末,其特征在于:所述的铜基复合粉末的粒度为40~50μm。
CN202011427359.9A 2020-12-09 2020-12-09 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末 Active CN112643022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011427359.9A CN112643022B (zh) 2020-12-09 2020-12-09 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011427359.9A CN112643022B (zh) 2020-12-09 2020-12-09 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末

Publications (2)

Publication Number Publication Date
CN112643022A true CN112643022A (zh) 2021-04-13
CN112643022B CN112643022B (zh) 2021-11-26

Family

ID=75350452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011427359.9A Active CN112643022B (zh) 2020-12-09 2020-12-09 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末

Country Status (1)

Country Link
CN (1) CN112643022B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114472923A (zh) * 2022-01-21 2022-05-13 航发优材(镇江)增材制造有限公司 一种铜合金晶格结构激光选区熔化成形制造工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787125A (zh) * 2005-11-16 2006-06-14 安泰科技股份有限公司 具有优良高频性能的铁基非晶合金粉末、磁粉芯及其制备方法
US20130052361A1 (en) * 2010-03-19 2013-02-28 Marcella Wilson Croopnick Iron-chromium-molybdenum-based thermal spray powder and method of making of the same
CN103946406A (zh) * 2011-11-21 2014-07-23 科卢斯博知识产权有限公司 用于铁基块体无定形合金的合金化技术
CN104178656A (zh) * 2014-08-21 2014-12-03 青岛骏泽盛泰智能科技有限公司 一种Cu-Fe 复合材料
CN105154709A (zh) * 2015-07-17 2015-12-16 河南科技大学 高铬铜合金材料及其制备方法
CN107900341A (zh) * 2017-12-18 2018-04-13 天津工业大学 一种激光选区熔化成形大尺寸高性能偏晶合金的方法
CN108080636A (zh) * 2017-12-18 2018-05-29 天津工业大学 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法
CN109434118A (zh) * 2018-10-30 2019-03-08 华中科技大学 一种非晶增强金属基复合材料的制备与成形方法
CN111441046A (zh) * 2020-03-27 2020-07-24 安徽科技学院 一种铁基非晶纳米晶双相结构复合涂层及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787125A (zh) * 2005-11-16 2006-06-14 安泰科技股份有限公司 具有优良高频性能的铁基非晶合金粉末、磁粉芯及其制备方法
US20130052361A1 (en) * 2010-03-19 2013-02-28 Marcella Wilson Croopnick Iron-chromium-molybdenum-based thermal spray powder and method of making of the same
CN103946406A (zh) * 2011-11-21 2014-07-23 科卢斯博知识产权有限公司 用于铁基块体无定形合金的合金化技术
CN104178656A (zh) * 2014-08-21 2014-12-03 青岛骏泽盛泰智能科技有限公司 一种Cu-Fe 复合材料
CN105154709A (zh) * 2015-07-17 2015-12-16 河南科技大学 高铬铜合金材料及其制备方法
CN107900341A (zh) * 2017-12-18 2018-04-13 天津工业大学 一种激光选区熔化成形大尺寸高性能偏晶合金的方法
CN108080636A (zh) * 2017-12-18 2018-05-29 天津工业大学 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法
CN109434118A (zh) * 2018-10-30 2019-03-08 华中科技大学 一种非晶增强金属基复合材料的制备与成形方法
CN111441046A (zh) * 2020-03-27 2020-07-24 安徽科技学院 一种铁基非晶纳米晶双相结构复合涂层及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZOU, YONGMING等: "Microstructure and mechanical properties of Fe-based bulk metallic glass composites fabricated by selective laser melting", 《JOURNAL OF NON-CRYSTALLINE SOLIDS》 *
赵淑珍等: "扫描速率对激光熔覆Cu80Fe20偏晶涂层组织与耐磨性能的影响", 《中国激光》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114472923A (zh) * 2022-01-21 2022-05-13 航发优材(镇江)增材制造有限公司 一种铜合金晶格结构激光选区熔化成形制造工艺

Also Published As

Publication number Publication date
CN112643022B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
Dong et al. Recent progress in development of tungsten-copper composites: Fabrication, modification and applications
CN104711443B (zh) 一种石墨烯/铜复合材料及其制备方法
CN107723500B (zh) 一种石墨烯-氧化铝混杂增强铜基复合材料及其制备方法
CN105695788B (zh) 一种石墨烯增强镍基复合材料及其制备方法
Hu et al. Microstructure evolution and thermostability of bondline based on Cu@ Sn core-shell structured microparticles under high-temperature conditions
CN104700961A (zh) 一种石墨烯/银复合材料及其制备方法
CN105063403A (zh) 一种铜基烯合金的制备方法
Li et al. Densification and properties investigation of W-Cu composites prepared by electroless-plating and activated sintering
CN104988438A (zh) 一种高强高导碳纳米管增强铜基复合材料及其制备方法
CN104746068B (zh) 一种用于铁基合金表面激光熔覆的铜基涂层及其制备方法
CN110157932A (zh) 一种基于原位合成的石墨烯改性铜基电触头材料的制备方法
CN111485129B (zh) 一种TiC/Ti5Si3增强铜基复合材料及其制备方法
CN108677057A (zh) 一种铜基合金坯料及其制备方法
CN109868392A (zh) 一种铁基非晶合金增强的铝基复合材料及其制备方法
CN112643022B (zh) 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末
Dong et al. W–Cu system: synthesis, modification, and applications
CN109576529A (zh) 高性能弥散铜合金及其制备方法
CN107815571A (zh) 一种具有良好耐腐蚀性能的稀土铝合金材料的制备工艺
Li et al. Microstructure and mechanical properties investigation of WCu composites prepared from dual-layer coated powders
CN105177346A (zh) 一种钨铜电接触材料及其制备方法
CN103045895A (zh) 一种电接触材料及其制备方法
CN102952962B (zh) Cu-Fe复合材料及其制备方法
Sundriyal et al. Enhancement of mechanical properties of graphite particulate aluminum metal matrix composites by magnesium addition
Luo et al. Microstructure and properties of W-Ag matrix composites by designed dual-metal-layer coated powders
CN113199024B (zh) 三元层状化合物、金属基复合材料及其制作方法和原料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant