CN112564308B - 一种用于双负载wpt***的双频补偿及功率解耦控制*** - Google Patents

一种用于双负载wpt***的双频补偿及功率解耦控制*** Download PDF

Info

Publication number
CN112564308B
CN112564308B CN202011376772.7A CN202011376772A CN112564308B CN 112564308 B CN112564308 B CN 112564308B CN 202011376772 A CN202011376772 A CN 202011376772A CN 112564308 B CN112564308 B CN 112564308B
Authority
CN
China
Prior art keywords
frequency
switch tube
power switch
dual
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011376772.7A
Other languages
English (en)
Other versions
CN112564308A (zh
Inventor
高鑫
杜博超
崔淑梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202011376772.7A priority Critical patent/CN112564308B/zh
Publication of CN112564308A publication Critical patent/CN112564308A/zh
Application granted granted Critical
Publication of CN112564308B publication Critical patent/CN112564308B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Inverter Devices (AREA)

Abstract

本发明是一种用于双负载WPT***的双频补偿及功率解耦控制***。本发明涉及无线电能传输技术领域,直流电源为整个***提供电能,第一DC/DC变换电路实现全桥逆变电路输入侧直流母线电压的调节,全桥逆变电路将直流电变换为高频交流电,供发射线圈使用,双频补偿网络允许全桥逆变电路输出端两种频率成分的电流通过,供给到发射线圈。两个接收线圈分别接收这两种频率分量的能量,实现解耦输出。本发明提出了一种频率可任意设定的双频补偿网络及其参数设计方法,可以实现发射电流两种频率分量的硬件恒流,降低逆变源的设计难度。同时提出了两种频率分量的功率解耦控制方法,可以实现两个负载输出功率的同时调节。

Description

一种用于双负载WPT***的双频补偿及功率解耦控制***
技术领域
本发明涉及无线电能传输技术领域,是一种用于双负载WPT***的双频补偿及功率解耦控制***。
背景技术
无线电能传输技术可以实现非接触、全隔离的电能供给,与有线供电相比具有更高的可靠性、更强的环境适应性以及更便捷的人机交互性,因此得到了广泛重视和研究。该技术已经在移动通讯设备、家用电器、生物医疗、电动汽车、轨道交通等多领域得到应用。
单接收端WPT(Wireless power transfer,WPT)***的耦合机构设计、补偿网络特性、功率控制方法等技术已经比较成熟。然而在实际应用中,存在一个发射线圈同时为多个接收端供电的情况。多接收端***存在两方面突出问题:首先,由于空间和位置的限制,距离较近的两接收线圈之间存在交叉耦合,输出功率和***效率均会受到影响;其次,多个负载同时工作时,需要实现各接收端功率的解耦控制。
为了对接收线圈进行解耦从而提高***性能,可以通过设计正交的磁路来实现,但受到接收端空间和尺寸的影响,结构上的解耦往往受限。还可以通过匹配***的最佳谐振频率或最优工作负载,实现输出功率最大或***效率最高的目的,但往往使得最佳频率偏离固有谐振频率点,增大***无功。此外,可以利用频率分叉现象对多个负载的功率进行解耦控制,将不同接收端的谐振频率设置在不同的分叉点,输出功率的大小通过调节工作频率实现。然而这种方法并未达到每一个接收端和发射端之间耦合能力的最大值,在实际意义上属于一种考虑折衷下的最优解。
多频无线电能传输技术给接收端的解耦控制提供了新的解决方案,为多个接收端配置不同的谐振频率,通过在发射电流中叠加各频率的电流分量,实现功率上的解耦,解决接收端交叉耦合引起的输出功率降低问题,提高***效率。目前有两种实现方案:第一种利用谐振频率的基波和奇次谐波传输能量,然而其各接收端的谐振频率无法随意设定;第二种通过多个逆变源串联或耦合的方式提供多个频率的发射电流分量,具有频率任意设定的优点,但是逆变源结构复杂,成本较高,控制难度大。
如何能在谐振频率随意设定的前提下简化逆变源的结构及功率解耦控制方法,仍需进一步研究。
发明内容
本发明为了降低电机体积,提高***的响应速度,同时提高***的集成度和可靠性,本发明提供了以下技术方案:
一种用于双负载WPT***的双频补偿及功率解耦控制***,所述***包括发射端、第一接收端和第二接收端;
所述发射端包括直流电源、第一DC/DC变换电路、全桥逆变电路、双频补偿网络和发射线圈;
所述直流电源连接第一DC/DC变换电路,所述第一DC/DC变换电路连接全桥逆变电路,所述全桥逆变电路连接双频补偿网络,所述双频补偿网络连接发射线圈。
优选地,所述第一接收端包括第一接收线圈、第一串联补偿电路、第一高频整流电路、第二DC/DC变换电路和第一负载;
所述第一接收线圈与发射线圈互感,所述第一接收线圈连接第一串联补偿电路,所述第一串联补偿电路连接第一高频整流电路,所述第一高频整流电路连接第二DC/DC变换电路,所述第二DC/DC变换电路连接第一负载。
优选地,所述第二接收端包括第二接收线圈、第二串联补偿电路、第二高频整流电路、第三DC/DC变换电路和第二负载;
所述第二接收线圈与发射线圈互感,所述第二接收线圈连接第二串联补偿电路,所述第二串联补偿电路连接第二高频整流电路,所述第二高频整流电路连接第三DC/DC变换电路,所述第三DC/DC变换电路连接第二负载。
优选地,所述双频补偿网络包括电容Cf1、电容Cf2、电感L1和电感Lf;所述电容Cf1一端接入电感L1端的输出电流,所述电容Cf1另一端连接电感Lf一端,所述电感Lf另一端连接电容Cf2一端,所述电容Cf2另一端输出发射线圈的电流。
优选地,所述双频补偿网络包含有两个谐振频率,一个为最低谐振频率ωL,一个为最高谐振频率ωH,分别对应于第一接收端和第二接收端的谐振频率,通过下式表示ωL和ωH
Figure GDA0003098307110000021
Figure GDA0003098307110000022
其中,L1为串联谐振电感,Lf为并联谐振电感,Cf为电容Cf1和电容Cf2的取值。
优选地,所述全桥逆变电路包括功率开关管T1、功率开关管T2、功率开关管T3、功率开关管T4、反并联二极管D1、反并联二极管D2、反并联二极管D3和反并联二极管D4
所述功率开关管T3和功率开关管T1一端接入可调的直流输入电压源的正极,所述功率开关管T4和功率开关管T2一端接入可调的直流输入电压源的负极,所述功率开关管T1另一端连接功率开关管T2另一端,所述所述功率开关管T3另一端连接功率开关管T4另一端,所述反并联二极管D1、反并联二极管D2、反并联二极管D3和反并联二极管D4分别并联在功率开关管T1、功率开关管T2、功率开关管T3和功率开关管T4上。
优选地,通过SPWM调制方法调制双负载WPT***的双频补偿及功率解耦控制***,确定调制比M,通过下式表示调制比M:
Figure GDA0003098307110000031
其中,Ms为调制波幅值,Mc为载波幅值。
优选地,通过调节直流母线电压及调制比M的值,实现发射电流两种频率分量的独立调节,通过下式表示发射电流两个频率分量的有效值:
Figure GDA0003098307110000032
Figure GDA0003098307110000033
其中,Ed为直流母线电压,ω1和ω2分别为发射电流中两种主要成分的工作频率,J0为贝塞尔函数。
本发明具有以下有益效果:
本发明提出了一种频率可任意设定的双频补偿网络,可以实现发射电流两种频率分量的硬件恒流,降低逆变源的设计难度。
本发明基于SPWM调制方法,提出了两种频率分量的功率解耦控制,可以实现两个负载输出功率的同时调节。本发明提出了双频补偿网络参数设计方法,为实际应用提供参考和指导
附图说明
图1为用于双负载WPT***的双频补偿及功率解耦控制***示意图;
图2为双频补偿拓扑示意图;
图3为全桥逆变拓扑示意图;
图4为SPWM调制示意图;
图5为参数设计流程。
具体实施方式
以下结合具体实施例,对本发明进行了详细说明。
具体实施例一:
根据图1至图4所示,本发明提供一种用于双负载WPT***的双频补偿及功率解耦控制***,具体为:
一种用于双负载WPT***的双频补偿及功率解耦控制***,所述***包括发射端、第一接收端和第二接收端;
所述发射端包括直流电源、第一DC/DC变换电路、全桥逆变电路、双频补偿网络和发射线圈;
所述直流电源连接第一DC/DC变换电路,所述第一DC/DC变换电路连接全桥逆变电路,所述全桥逆变电路连接双频补偿网络,所述双频补偿网络连接发射线圈。
所述第一接收端包括第一接收线圈、第一串联补偿电路、第一高频整流电路、第二DC/DC变换电路和第一负载;
所述第一接收线圈与发射线圈互感,所述第一接收线圈连接第一串联补偿电路,所述第一串联补偿电路连接第一高频整流电路,所述第一高频整流电路连接第二DC/DC变换电路,所述第二DC/DC变换电路连接第一负载。
所述第二接收端包括第二接收线圈、第二串联补偿电路、第二高频整流电路、第三DC/DC变换电路和第二负载;
所述第二接收线圈与发射线圈互感,所述第二接收线圈连接第二串联补偿电路,所述第二串联补偿电路连接第二高频整流电路,所述第二高频整流电路连接第三DC/DC变换电路,所述第三DC/DC变换电路连接第二负载。直流电源为整个***提供电能,第一DC/DC变换电路实现全桥逆变电路输入侧直流母线电压的调节,全桥逆变电路将直流电变换为高频交流电,供发射线圈使用,双频补偿网络允许全桥逆变电路输出端两种频率成分的电流通过,供给到发射线圈,并对两种分量均具有硬件恒流特点,发射线圈在两种频率分量电流的激励下在空间中产生高频交变磁场,建立能量交换的通道。
第一和第二接收线圈在发射线圈产生的高频磁场中感应出电压,经串联补偿电路匹配处于谐振状态,高频整流电路将接收到的高频交流电整流成直流电,方便进行变换和使用,第二和第三DC/DC变换器将直流电进行变换以匹配负载的充电需求。
所述双频补偿网络包括电容Cf1、电容Cf2、电感L1和电感Lf;所述电容Cf1一端接入电感L1端的输出电流,所述电容Cf1另一端连接电感Lf一端,所述电感Lf另一端连接电容Cf2一端,所述电容Cf2另一端输出发射线圈的电流。
对发射端补偿拓扑而言,传统的串联(S)拓扑和并联(P)拓扑只有一个谐振点,而LCL拓扑虽然有两个谐振点,但只有其中一个满足硬件恒流条件。因此本文提出一种双频补偿拓扑,如图2所示。其具有两个固有谐振点,对其他频率分量呈现高阻状态,且发射电流中的两个频率分量均满足硬件恒流条件。
其中:Lp为发射线圈自感,L1为串联谐振电感,Lf为并联谐振电感,Cf1和Cf2为并联谐振电容,Ceq为并联支路的等效电容。uin为输入电压即全桥逆变电路3的输出电压,iin为输入电流即全桥逆变电路3的输出电流,uo为补偿网络的输出电压,ip为发射线圈的电流。双频补偿拓扑以LCL拓扑为原型,在其并联谐振电容两端并联另一组LC谐振支路,引入额外的谐振点。
所述双频补偿网络包含有两个谐振频率,一个为最低谐振频率ωL,一个为最高谐振频率ωH,分别对应于第一接收端和第二接收端的谐振频率,通过下式表示ωL和ωH
Figure GDA0003098307110000051
Figure GDA0003098307110000052
其中,L1为串联谐振电感,Lf为并联谐振电感,Cf为电容Cf1和电容Cf2的取值。
所述全桥逆变电路包括功率开关管T1、功率开关管T2、功率开关管T3、功率开关管T4、反并联二极管D1、反并联二极管D2、反并联二极管D3和反并联二极管D4
所述功率开关管T3和功率开关管T1一端接入可调的直流输入电压源的正极,所述功率开关管T4和功率开关管T2一端接入可调的直流输入电压源的负极,所述功率开关管T1另一端连接功率开关管T2另一端,所述所述功率开关管T3另一端连接功率开关管T4另一端,所述反并联二极管D1、反并联二极管D2、反并联二极管D3和反并联二极管D4分别并联在功率开关管T1、功率开关管T2、功率开关管T3和功率开关管T4上。
对应的发射电源全桥逆变拓扑如图3所示,Ed为可调的直流输入电压,Uo为逆变源输出电压。
SPWM调制方法的示意图如图4所示,其中us为调制波,其频率等于双频补偿网络较低的谐振频率ωL,uc为载波,其频率等于双频补偿网络较高的谐振频率ωH
通过SPWM调制方法调制双负载WPT***的双频补偿及功率解耦控制***,确定调制比M,通过下式表示调制比M:
Figure GDA0003098307110000053
其中,Ms为调制波幅值,Mc为载波幅值。
通过调节直流母线电压及调制比M的值,实现发射电流两种频率分量的独立调节,通过下式表示发射电流两个频率分量的有效值:
Figure GDA0003098307110000061
Figure GDA0003098307110000062
其中,Ed为直流母线电压,ω1和ω2分别为发射电流中两种主要成分的工作频率,J0为贝塞尔函数。
具体实施例二:
如图5所示,本发明提供参数设计方法:
给定接收端1输出功率Ps1与等效负载电阻Rs1,给定接收端2输出功率Ps2与等效负载电阻Rs2
给定接收端1与发射端互感Mps1,推出接收端1感应电压Us1,给定***效率指标η与接收端相间互感Ms12,推出接收端2感应电压Us2,给定接收端2与发射端互感Mps2
推出ω1与Ip_ω1乘积,确定工作频率ω1、ω2,推出ω2与Ip_ω2乘积,
推出Ip_ω1,推出Ip_ω2,
推出M=M*下直流母线电压Ed和补偿电感L1,推出补偿电感Lf和补偿电容Cf
以上所述仅是一种用于双负载WPT***的双频补偿及功率解耦控制***的优选实施方式,一种用于双负载WPT***的双频补偿及功率解耦控制***的保护范围并不仅局限于上述实施例,凡属于该思路下的技术方案均属于本发明的保护范围。应当指出,对于本领域的技术人员来说,在不脱离本发明原理前提下的若干改进和变化,这些改进和变化也应视为本发明的保护范围。

Claims (6)

1.一种用于双负载WPT***的双频补偿及功率解耦控制***,其特征是:所述***包括发射端、第一接收端和第二接收端;
所述发射端包括直流电源、第一DC/DC变换电路、全桥逆变电路、双频补偿网络和发射线圈;
所述直流电源连接第一DC/DC变换电路,所述第一DC/DC变换电路连接全桥逆变电路,所述全桥逆变电路连接双频补偿网络,所述双频补偿网络连接发射线圈;
所述双频补偿网络包括电容Cf1、电容Cf2、电感L1和电感Lf;所述电容Cf1一端接入电感L1端的输出电流,所述电容Cf1另一端连接电感Lf一端,所述电感Lf另一端连接电容Cf2一端,所述电容Cf2另一端输出发射线圈的电流;
所述双频补偿网络包含有两个谐振频率,一个为最低谐振频率ωL,一个为最高谐振频率ωH,分别对应于第一接收端和第二接收端的谐振频率,通过下式表示ωL和ωH
Figure FDA0003130940250000011
Figure FDA0003130940250000012
其中,L1为串联谐振电感,Lf为并联谐振电感,电容Cf1和电容Cf2的容值相同均为Cf
2.根据权利要求1所述的一种用于双负载WPT***的双频补偿及功率解耦控制***,其特征是:所述第一接收端包括第一接收线圈、第一串联补偿电路、第一高频整流电路、第二DC/DC变换电路和第一负载;
所述第一接收线圈与发射线圈互感,所述第一接收线圈连接第一串联补偿电路,所述第一串联补偿电路连接第一高频整流电路,所述第一高频整流电路连接第二DC/DC变换电路,所述第二DC/DC变换电路连接第一负载。
3.根据权利要求2所述的一种用于双负载WPT***的双频补偿及功率解耦控制***,其特征是:所述第二接收端包括第二接收线圈、第二串联补偿电路、第二高频整流电路、第三DC/DC变换电路和第二负载;
所述第二接收线圈与发射线圈互感,所述第二接收线圈连接第二串联补偿电路,所述第二串联补偿电路连接第二高频整流电路,所述第二高频整流电路连接第三DC/DC变换电路,所述第三DC/DC变换电路连接第二负载。
4.根据权利要求1所述的一种用于双负载WPT***的双频补偿及功率解耦控制***,其特征是:所述全桥逆变电路包括功率开关管T1、功率开关管T2、功率开关管T3、功率开关管T4、反并联二极管D1、反并联二极管D2、反并联二极管D3和反并联二极管D4
所述功率开关管T3和功率开关管T1一端接入可调的直流输入电压源的正极,所述功率开关管T4和功率开关管T2一端接入可调的直流输入电压源的负极,所述功率开关管T1另一端连接功率开关管T2另一端,所述功率开关管T3另一端连接功率开关管T4另一端,所述反并联二极管D1、反并联二极管D2、反并联二极管D3和反并联二极管D4分别并联在功率开关管T1、功率开关管T2、功率开关管T3和功率开关管T4上。
5.根据权利要求4所述的一种用于双负载WPT***的双频补偿及功率解耦控制***,其特征是:通过SPWM调制方法调制双负载WPT***的双频补偿及功率解耦控制***,确定调制比M,通过下式表示调制比M:
Figure FDA0003130940250000021
其中,Ms为调制波幅值,Mc为载波幅值,M为调制比。
6.根据权利要求1所述的一种用于双负载WPT***的双频补偿及功率解耦控制***,其特征是:通过调节直流母线电压及调制比M的值,实现发射电流两种频率分量的独立调节,通过下式表示发射电流两个频率分量的有效值:
Figure FDA0003130940250000022
Figure FDA0003130940250000023
其中,Ed为直流母线电压,ω1和ω2分别为发射电流中两种主要成分的工作频率,J0为贝塞尔函数,L1为串联谐振电感。
CN202011376772.7A 2020-11-30 2020-11-30 一种用于双负载wpt***的双频补偿及功率解耦控制*** Active CN112564308B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011376772.7A CN112564308B (zh) 2020-11-30 2020-11-30 一种用于双负载wpt***的双频补偿及功率解耦控制***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011376772.7A CN112564308B (zh) 2020-11-30 2020-11-30 一种用于双负载wpt***的双频补偿及功率解耦控制***

Publications (2)

Publication Number Publication Date
CN112564308A CN112564308A (zh) 2021-03-26
CN112564308B true CN112564308B (zh) 2021-10-08

Family

ID=75046736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011376772.7A Active CN112564308B (zh) 2020-11-30 2020-11-30 一种用于双负载wpt***的双频补偿及功率解耦控制***

Country Status (1)

Country Link
CN (1) CN112564308B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193666A (zh) * 2021-05-21 2021-07-30 福州大学 一种应用于无线电能传输的新型双频负磁导率超材料板
CN113645734B (zh) * 2021-08-25 2023-08-01 山东省科学院能源研究所 一种无线供电的大功率led电源
CN114142625A (zh) * 2021-11-30 2022-03-04 中南大学 基于多频磁场空间定向的三维无线电能传输***
CN114825663B (zh) * 2022-05-06 2024-05-24 安徽工业大学 一种sp型双输出单独可调无线电能传输***及其控制方法
CN115102302A (zh) * 2022-07-19 2022-09-23 浙江大学 一种高效率准单级式无线充电装置
CN115296441B (zh) * 2022-08-15 2023-05-02 江南大学 基于多频多幅叠加调制的多频多负载mcr-wpt参数设计方法
CN116405065A (zh) * 2023-03-14 2023-07-07 哈尔滨工业大学 一种无线座椅能量与信息同步传输***、信号传输方法及回传方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746462A (zh) * 2013-07-11 2014-04-23 重庆米亚车辆技术有限公司 一种用于无线电能传输的双边lcc补偿网络及其调谐方法
CN108390471A (zh) * 2018-03-09 2018-08-10 山东大学 一种多频率磁耦合谐振式无线电能传输***及充电***
CN109638983A (zh) * 2019-01-28 2019-04-16 重庆大学 一种基于共享信道的全双工通信icpt***
CN110808641A (zh) * 2019-11-01 2020-02-18 南京航空航天大学 一种基于多频能量并行传输的具有强抗偏移性能的无线电能传输拓扑
CN210167861U (zh) * 2019-08-19 2020-03-20 南京航空航天大学 一种基波-谐波并行传能的多通道非接触供电***
CN111464063A (zh) * 2020-04-29 2020-07-28 华南理工大学 一种多负载无线输电***
CN111478457A (zh) * 2020-04-27 2020-07-31 中国矿业大学 基于多调制波复合spwm控制的多频多负载无线电能传输***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746462A (zh) * 2013-07-11 2014-04-23 重庆米亚车辆技术有限公司 一种用于无线电能传输的双边lcc补偿网络及其调谐方法
CN108390471A (zh) * 2018-03-09 2018-08-10 山东大学 一种多频率磁耦合谐振式无线电能传输***及充电***
CN109638983A (zh) * 2019-01-28 2019-04-16 重庆大学 一种基于共享信道的全双工通信icpt***
CN210167861U (zh) * 2019-08-19 2020-03-20 南京航空航天大学 一种基波-谐波并行传能的多通道非接触供电***
CN110808641A (zh) * 2019-11-01 2020-02-18 南京航空航天大学 一种基于多频能量并行传输的具有强抗偏移性能的无线电能传输拓扑
CN111478457A (zh) * 2020-04-27 2020-07-31 中国矿业大学 基于多调制波复合spwm控制的多频多负载无线电能传输***
CN111464063A (zh) * 2020-04-29 2020-07-28 华南理工大学 一种多负载无线输电***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Design of Near Field Shielding Strategy by Theoretical Calculation for a Multi-load WPT System;Tianluan Xiao; Wenjie Chen; Yang Yang; Liyu Dai; Rui Wang; Xu Ya;《2019 IEEE Applied Power Electronics Conference and Exposition (APEC)》;20190527;第860-863页 *
High-Efficiency Design and Close-loop Power Distribution Control for Double-Frequency Double-Load Magnetically Coupled Resonant Wireless Power Transfer System;Ze Ding; Fuxin Liu; Yong Yang; Xuling Chen; Ralph M. Kennel;《2019 IEEE Applied Power Electronics Conference and Exposition (APEC)》;20190527;第3111-3116页 *
用于家用电器的双负载无线电能传输***的研究;雷阳;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20150215;第C042-819页 *

Also Published As

Publication number Publication date
CN112564308A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
CN112564308B (zh) 一种用于双负载wpt***的双频补偿及功率解耦控制***
KR102230564B1 (ko) 인터리빙된 정류기들을 갖는 무선 전력 전송 시스템
CN109302070A (zh) 电力变换器电路拓扑结构及其控制方法
CN109245536A (zh) 一种适用于双向近场电能传输的电路拓扑结构
CN210608706U (zh) 一种实现恒流恒压输出切换的感应式无线电能传输***
CN104065178A (zh) 一种三相负载单相无线供电***及其设计方法
CN109888933B (zh) 一种原边多模块高频并联的无线电能传输***
CN112701806B (zh) 适用于无线供电***的双边lcc补偿网络参数设计方法
CN105680577A (zh) 一种宽范围功率可调无线电能传输***及其控制方法
Nagashima et al. Analytical design procedure for resonant inductively coupled wireless power transfer system with class-E 2 DC-DC converter
CN112928828A (zh) 一种可调频率的单逆变器输出多频正弦波装置
Nagashima et al. Analytical design procedure for resonant inductively coupled wireless power transfer system with class-DE inverter and class-E rectifier
CN115037062A (zh) 一种抗偏移的混合式无线电能传输***及其充电方法
Nagashima et al. Analytical design for resonant inductive coupling wireless power transfer system with class-E inverter and class-DE rectifier
CN113162167B (zh) 一种恒流恒压自主切换的无线充电***
CN113241959B (zh) 一种多相变换器的并联均流电路
CN113675956A (zh) 一种交错抗偏移恒压谐振式无线电能传输***
Asa et al. Efficiency analysis of a Bi-directional DC/DC converter for wireless energy transfer applications
CN212210616U (zh) 谐振电路、无线充电发射电路、接收电路及无线充电装置
CN115241988A (zh) 一种多线圈单管无线电能传输电路、***与控制方法
CN109756124B (zh) 一种用于无线电能传输的电流馈电式半桥谐振拓扑结构
CN210806860U (zh) 一种具有恒压输出特性的无线电能传输***
CN112202252B (zh) 带有原边阻抗变换网络的非接触单管谐振变换器
US20230282412A1 (en) Power generating transformer system (pgts), a power factor correction method in pgts, a pgts functioning also as power supply, and block diagrams of pgts
Nagashima et al. Inductively coupled wireless power transfer with class-DE power amplifier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant