CN112517867B - 一种连铸用扁平形喷嘴的优化布置方法 - Google Patents

一种连铸用扁平形喷嘴的优化布置方法 Download PDF

Info

Publication number
CN112517867B
CN112517867B CN202011357932.3A CN202011357932A CN112517867B CN 112517867 B CN112517867 B CN 112517867B CN 202011357932 A CN202011357932 A CN 202011357932A CN 112517867 B CN112517867 B CN 112517867B
Authority
CN
China
Prior art keywords
nozzle
nozzles
water quantity
continuous casting
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011357932.3A
Other languages
English (en)
Other versions
CN112517867A (zh
Inventor
杨志刚
刘青
王慧胜
韩延申
黄伟丽
陈四平
牛跃威
徐子谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Delong Steel Ltd
Original Assignee
University of Science and Technology Beijing USTB
Delong Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB, Delong Steel Ltd filed Critical University of Science and Technology Beijing USTB
Priority to CN202011357932.3A priority Critical patent/CN112517867B/zh
Publication of CN112517867A publication Critical patent/CN112517867A/zh
Application granted granted Critical
Publication of CN112517867B publication Critical patent/CN112517867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Strategic Management (AREA)
  • Mechanical Engineering (AREA)
  • Economics (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Continuous Casting (AREA)

Abstract

一种连铸用扁平形喷嘴的优化布置方法,所述方法包括以下步骤:a.确定喷嘴的工作压力设定值;b.对单喷嘴进行水量分布测试;c.确定水量的计量宽度;d.计算相邻喷嘴喷淋重叠区域与单喷嘴中心区域水量比;e.计算不同喷嘴高度和不同喷嘴间距时的边部区域与中心区域水量比;f.确定喷嘴的最优布置方式。本发明基于喷嘴的冷态性能测试,结合实际连铸工艺数据,确定不同工况下喷嘴的最优配置方法。该方法简单易行,得到的喷嘴配置方案与实际连铸工艺符合度高,可提高连铸坯横向冷却均匀性,降低连铸坯裂纹、鼓肚等质量缺陷发生几率,提高连铸坯质量。

Description

一种连铸用扁平形喷嘴的优化布置方法
技术领域
本发明涉及一种连铸用扁平形喷嘴布置优化的方法,属于冶金设备技术领域。
背景技术
连续铸钢生产过程中,二冷区的冷却机制对连铸坯质量具有重要的影响,连铸坯在二冷区能否受到较均匀的冷却,直接影响其裂纹、鼓肚等缺陷的发生几率。在二冷区,喷嘴喷出的冷却水带走的热量占二冷区总散热的50%以上,是该冷却段主要的传热方式,因此,喷嘴类型的选取与布置方式直接影响连铸坯在二冷区的冷却效果。
连铸用喷嘴一般分为水喷嘴和气-水雾化喷嘴两种,喷嘴射流的形状有扁平形、圆锥形、椭圆形和矩形。喷嘴类型不同,与之相匹配的布置方式也不相同,明确各类型喷嘴在不同工作环境下的最优布置方式,对改善连铸坯在二冷区的冷却均匀性具有重要的现实意义。目前,对改善二冷区冷却均匀性的报道主要体现在对特定的钢种或连铸机制定相应的二冷配水和喷嘴布置方式优化方案,导致提出的方案适用性有限;此外,优化方案的制定与喷嘴自身冷态性能相结合的研究较少,不能确保连铸坯在二冷区的冷却均匀性,因此有必要开展进一步研究。
发明内容
本发明的目的在于针对现有技术之弊端,提供一种连铸用扁平形喷嘴的优化布置方法,以提高连铸坯在二冷区的冷却均匀性,降低连铸坯质量缺陷的发生几率。
本发明所述问题是以下述技术方案解决的:
一种连铸用扁平形喷嘴的优化布置方法,所述方法包括以下步骤:
a.确定喷嘴的工作压力设定值;
b.对单喷嘴进行水量分布测试
将连铸机喷嘴高度设置为初始高度h,进水压力设置为工作压力设定值,采用喷淋检测设备对不同型号单个喷嘴进行水量分布测试,记录单喷嘴喷射角θ、喷淋覆盖宽度D以及在喷淋覆盖宽度范围内的水量分布数据;
c.确定水量的计量宽度
计算相邻喷嘴喷淋重叠区宽度d′:
d′=D–d
其中,d为两个相邻喷嘴之间的间距,将计算得到的相邻喷嘴喷淋重叠区宽度d′作为水量的计量宽度;
d.计算相邻喷嘴喷淋重叠区域与单喷嘴中心区域水量比λ:
根据喷嘴喷淋覆盖宽度范围内的水量分布数据,计算单个喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比ξ,以及单个喷嘴喷淋范围边部区域计量宽度范围内的水量与单个喷嘴总水量之比η,则相邻喷嘴喷淋重叠区域与单喷嘴中心区域水量比为:
λ=2η/ξ;
e.计算不同喷嘴高度和不同喷嘴间距时的边部区域与中心区域水量比
首先计算不同喷嘴高度时的边部区域与中心区域水量比:
按设定的步长依次改变喷嘴高度,重复步骤c至步骤d,得到不同喷嘴高度时的边部区域与中心区域水量比:λi=2ηii,其中,λi表示喷嘴高度为hi时的边部区域与中心区域水量比,ηi表示喷嘴高度为hi时边部区域计量宽度范围内的水量与单个喷嘴总水量之比,ξi表示喷嘴高度为hi时喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比;
然后计算不同喷嘴高度和不同喷嘴间距时的边部区域与中心区域水量比:
按设定的步长依次改变喷嘴间距,重复步骤c至步骤e,得到不同喷嘴高度和不同喷嘴间距时的边部区域与中心区域水量比:λij=2ηijij,其中,λij表示喷嘴高度为hi喷嘴间距为dj时的边部区域与中心区域水量比,ηij表示喷嘴高度为hi喷嘴间距为dj时的边部区域计量宽度范围内的水量与单个喷嘴总水量之比,ξij表示喷嘴高度为hi喷嘴间距为dj时喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比;
f.确定喷嘴的最优布置方式
定义喷嘴布置方式的评价指标:θij=∣1-λij∣,并定义最优评价指标:Evi(i,j)=min{θij},则求得的Evi(i,j)所对应的喷嘴高度hi与喷嘴间距dj即为喷嘴的最优布置方式。
上述连铸用扁平形喷嘴的优化布置方法,确定喷嘴的工作压力设定值的具体步骤如下:
①首先采用喷淋检测设备,对不同型号扁平形喷嘴分别进行压力流量测试,得到各扁平形喷嘴的流量随压力变化的曲线;
②从目标浇注钢种的二冷水表读取第i冷却段总水量Qi,L/min,计算二冷区各段单个喷嘴总水量:
qi=Qi/Ni
其中,qi为第i冷却段单喷嘴总水量,L/min;Ni为第i冷却段喷嘴总数;
③根据流量随压力变化的曲线确定与qi相对应的压力值,将该压力值作为第i冷却段喷嘴的工作压力设定值。
上述连铸用扁平形喷嘴的优化布置方法,喷淋覆盖宽度范围内的水量分布数据的记录方法为:将喷淋覆盖区域分为若干小段,记录每个小段上分布的水量占喷嘴总水量的百分比。
上述连铸用扁平形喷嘴的优化布置方法,喷嘴高度由初始高度h改变为hi后,hi对应的单喷嘴喷淋覆盖宽度Di通过下式计算得出:
Di=D·hi/h。
上述连铸用扁平形喷嘴的优化布置方法,两个相邻喷嘴之间的间距dj应满足以下要求:
dj≥(D′-Di)/(n-1)
其中,D′为根据目标钢种浇注尺寸确定的连铸生产过程所需达到的喷淋覆盖宽度,n为连铸机单排喷嘴个数。
上述连铸用扁平形喷嘴的优化布置方法,喷嘴高度hi取值范围为80mm~400mm。
上述连铸用扁平形喷嘴的优化布置方法,按设定的步长依次改变喷嘴间距时,喷嘴间距dj按递增的顺序选取,若ξi≥2ηi,则dj取最小值。
上述连铸用扁平形喷嘴的优化布置方法,在对单喷嘴进行水量分布测试的过程中,需要对同型号的多个喷嘴进行水量分布测试,若其喷射角波动幅度大于6°,则该型号的喷嘴不能使用。
本发明基于喷嘴的冷态性能测试,结合实际连铸工艺数据,确定不同工况下喷嘴的最优配置方法。该方法简单易行,得到的喷嘴配置方案与实际连铸工艺符合度高,可提高连铸坯横向冷却均匀性,降低连铸坯裂纹、鼓肚等质量缺陷发生几率,提高连铸坯质量。
附图说明
下面结合附图对本发明作进一步详述。
图1为本发明一种连铸用扁平形喷嘴的布置优化方法的流程图;
图2为本发明方法中选取的参数与实物相对应位置的示意图;
图3为实施例中目标连铸机弯曲段上部同型号喷嘴水量分布图,图中Ⅰ、Ⅱ、Ⅲ为对同型号喷嘴的编号;
图4为实施例中目标连铸机弯曲段下部同型号喷嘴水量分布图,图中IV、Ⅴ、Ⅵ为对同型号喷嘴的编号;
图5为实施例中目标连铸机现行工艺下弯曲段上部横向水量分布图;
图6为实施例中现行工艺下(编号为Ⅶ)和采用本发明方法优化后(编号为VIII)目标连铸机弯曲段横向水量分布图。
图中各标号为:1、喷嘴。
文中各符号为:h表示喷嘴初始高度,D表示单喷嘴喷淋覆盖宽度,d′表示相邻喷嘴喷淋重叠区宽度,d表示两个相邻喷嘴之间的间距,λ表示相邻喷嘴喷淋重叠区域与单喷嘴中心区域水量比,ξ表示单个喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比,η表示单个喷嘴喷淋范围边部区域计量宽度范围内的水量与单个喷嘴总水量之比,λi表示喷嘴高度为hi时的边部区域与中心区域水量比,ηi表示喷嘴高度为hi时边部区域计量宽度范围内的水量与单个喷嘴总水量之比,ξi表示喷嘴高度为hi时喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比;λij表示喷嘴高度为hi喷嘴间距为dj时的边部区域与中心区域水量比,ηij表示喷嘴高度为hi喷嘴间距为dj时的边部区域计量宽度范围内的水量与单个喷嘴总水量之比,ξij表示喷嘴高度为hi喷嘴间距为dj时喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比,θij表示喷嘴布置方式的评价指标,Evi(i,j)表示最优评价指标,hi表示第i次调节的喷嘴高度,dj表示第j次调节的喷嘴间距,Qi表示第i冷却段总水量,qi表示第i冷却段单喷嘴总水量,Ni为第i冷却段喷嘴总数,D′为根据目标钢种浇注尺寸确定的连铸生产过程所需达到的喷淋覆盖宽度,n为连铸机单排喷嘴个数,θ为喷嘴喷射角,Di为喷嘴高度为hi时对应的单喷嘴喷淋覆盖宽度,d′(i,j)为喷嘴高度为hi喷嘴间距为dj时相邻喷嘴喷淋重叠宽度,Dg为连铸机辊子直径。
具体实施方式
本发明的核心技术为一种连铸用扁平形喷嘴布置优化的方法,旨在通过该方法的应用,获得扁平形喷嘴在不同连铸工况下最优的选型和布置方式,指导实际连铸工艺生产调整,从而改善连铸坯在二冷区的冷却均匀性,降低连铸坯裂纹、鼓肚等质量缺陷发生几率。
本发明基于喷嘴冷态性能测试,结合实际连铸工艺数据,制定了不同工况下喷嘴的配置方法。该方法简单易行,得到的喷嘴配置方法与实际连铸工艺符合度高,可指导实际连铸工艺生产调整,提高连铸坯横向冷却均匀性,提高连铸坯质量。
为达上述目的,本发明采用下述技术方案:
(1)依据目标浇注钢种的二冷水表,计算二冷区各段单个喷嘴总水量,qi=Qi/Ni,其中,qi表示第i冷却段单喷嘴总水量,L/min;Ni为第i冷却段喷嘴总数,Qi为第i冷却段总水量,L/min。采用喷淋检测设备,对连铸机使用的不同型号扁平形喷嘴分别进行压力流量测试,将测试结果与qi值相比较,获得连铸生产过程中不同型号喷嘴的实际工作压力。
(2)将步骤(1)中结果作为喷嘴的工作压力设定值,取现行工艺下连铸机喷嘴布置高度h作为喷嘴初始高度,采用喷淋检测设备对不同型号单喷嘴进行水量分布测试。记录喷嘴喷射角θ、水量分布数据以及喷淋覆盖宽度值D。
(3)结合目标钢种浇注尺寸要求,获取连铸生产过程所需达到的喷淋覆盖宽度D′。取两个相邻喷嘴之间的间距为d,d≥(D′-D)/(n-1),其中,D为步骤(2)中检测获得的单喷嘴喷淋覆盖宽度,mm;n为连铸机单排喷嘴个数。相邻喷嘴喷淋重叠区宽度值用d′表示,d′=D–d,将d′作为水量的计量宽度,依据步骤(2)中记录的单喷嘴水量分布数据分别计算喷嘴喷淋覆盖宽度范围内的水量分布数据,计算单个喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比ξ,以及单个喷嘴喷淋范围边部区域计量宽度范围内的水量与单个喷嘴总水量之比η,并计算相邻喷嘴喷淋重叠区域与单喷嘴中心区域水量比:λ=2η/ξ。
改变喷嘴高度和喷嘴之间的间距,分别记为hi、dj。取Di=D·hi/h,其中,Di为喷嘴高度为hi时对应的单喷嘴喷淋覆盖宽度,mm,相邻喷嘴喷淋重叠宽度d′(i,j)=Di-dj,其中,i、j分别为选取喷嘴高度和间距值对应的编号;将步骤(2)中记录的单喷嘴喷淋覆盖宽度范围(D)内的水量分布数据映射到Di上,利用映射后的水量分布数据计算喷嘴高度为hi喷嘴间距为dj时的边部区域计量宽度范围内的水量与单个喷嘴总水量之比ηij和喷嘴高度为hi喷嘴间距为dj时喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比ξij
将上述公式进行整合,结果如下:
dj≥(D′-D·hi/h)/(n-1) (1)
d′(i,j)=D·hi/h-dj (2)
(4)依据步骤(3)中结果,计算喷嘴高度为hi喷嘴间距为dj时的边部区域与中心区域水量比:λij=2ηijij。定义喷嘴布置方式的评价指标:θij=∣1-λij∣,0<θij<1,用以表征喷嘴高度hi、喷嘴间距dj的布置方式对应的评价指标值;定义最优评价指标:Evi(i,j)=min{θij},用来表征喷淋水量分布最优的布置方式,i、j分别对应最优的喷嘴高度hi与喷嘴间距dj
在喷嘴水量分布测试过程中,需要对同型号多个喷嘴进行水量分布检测,并将单个喷嘴水量分布不对称性差值超过10%或喷射角波动幅度大于6°的喷嘴进行标记。对于标记较多的喷嘴型号,降低其使用的频率或者选用满足目标钢种连铸工艺要求的质量较好的喷嘴将其替换。
水量分布数据记录方法为:将喷淋覆盖区域分为若干小段,记录每个小段上分布的水量占喷嘴总水量的百分比。
在计算过程中,hi取值范围为80mm~400mm。
喷嘴间距dj按递增的顺序选取,若ξi≥2ηi,则dj取最小值。
本发明在喷嘴冷态性能测试过程中,通过对同一型号喷嘴多次抽样检测,分析喷嘴水量分布对称性和喷射角波动值,可筛选出质量稳定性较差的喷嘴,降低其使用的频率或者选用满足连铸要求的质量较好的喷嘴将其替换,从而避免因喷嘴自身质量问题导致的连铸坯横向冷却不均匀,从根本上改善了连铸二冷区冷却环境。一般地,除偏喷嘴外,喷射角不大于90°的喷嘴,允差为0°~+4°;喷射角大于90°的喷嘴,允差为0°~+6°。此外,喷嘴的水量分布不对称性允差为10%。
喷嘴高度hi的取值原则是hi≥0.5Dg,其中,Dg为连铸机辊子直径。有研究表明,在保证气-水雾化效果的前提下,喷嘴头部距离铸坯表面的距离不能低于80mm,常用的喷嘴高度值为120~200mm,喷嘴高度上限为400mm。基于此,本发明在计算过程中选取的喷嘴高度范围为80~400mm,基本上可以包含绝大部分使用扁平形喷嘴的连铸机对喷嘴高度要求。通过对现行工艺下单喷嘴水量分布测试,即可通过本发明提出的方法预测不同的喷嘴布置方式下水量分布均匀性的优劣,进而选出对应于某尺寸钢种或某喷淋覆盖宽度下最优的喷嘴布置方案,从而改善连铸坯在二冷区的横向冷却均匀性,提高连铸坯质量。
下面将参照附图来对根据本发明的各个实施例进行详细描述。
图1是本发明一种连铸用扁平形喷嘴的布置优化方法的流程图,依据本发明的方法,以对某厂板坯连铸机弯曲段喷嘴布置方式进行优化为例,实施步骤如下:
该连铸机主要生产SPHC钢种,断面尺寸为1020mm×200mm。表1为连铸机弯曲段相应的连铸工艺参数。
表1连铸机弯曲段连铸工艺参数
Figure BDA0002803157320000081
首先,依据SPHC钢连铸过程中在该冷却段的配水量,计算单个喷嘴的实际水流量,不同拉速下弯曲段上、下部单个喷嘴的实际水流量q1、q2的范围为2.3~4.0L/min、2.5~4.0L/min。对该段喷嘴进行压力流量测试,测试结果为:当测试水压、气压分别为0.3MPa时,弯曲段上部喷嘴水流量为4.0L/min;当测试水压、气压分别为0.25MPa、0.3MPa时,弯曲段下部喷嘴水流量为4.0L/min。以铸机最高拉速下的配水参数为参考,分别选取0.3MPa水压、0.3MPa气压以及0.25MPa水压、0.3MPa气压分别对弯曲段上、下部喷嘴进行水量分布测试。
测试结果如图3、图4所示,弯曲段上部同型号喷嘴水量分布基本一致,而弯曲段下部同型号喷嘴表现出较大的差异性。测试结果表明:弯曲段上部抽样检测的3个喷嘴水量分布相近,喷淋覆盖宽度为444mm,喷射角为123.2°,喷嘴的水量分布不对称性差值为5%,该型号喷嘴质量较好;弯曲段下部抽样检测的3个喷嘴水量分布差异性较大,喷淋覆盖宽度依次为384mm、420mm、456mm,相应的喷射角为116.0°、120.5°、124.5°,喷嘴波动幅度达到8.5°,3号水量分布对称性最差,相应差值为13.1%,由图5可知,应用该型号喷嘴,连铸机弯曲段下部横向冷却均匀性极差。考虑到实际连铸生产过程中弯曲段上、下部喷嘴在相同压力下水流量相差较小,因此,用弯曲段上部喷嘴替代弯曲段下部的喷嘴。
将D′=1020mm,h=120mm,D=444mm代入公式(1)(2)中,可得:
dj≥510–1.85hi (3)
d′(i,j)=3.70hi-dj (4)
依据本发明提出的方法,结合公式(3)(4),对不同喷嘴布置方式下的θij值进行计算,数据汇总见表2(注:表中数据的选取和计算过程只是对本发明方法的一种简单应用,还可以采用计算机实现快速计算)。本实施例中SPHC钢要求全覆盖喷淋,即每个喷嘴高度下的最小喷嘴间距对应于喷嘴喷淋水量刚好完全覆盖铸坯表面的情况,在喷嘴高度选取范围内每间隔10mm进行一次计算;考虑到喷嘴喷淋水量完全落在铸坯上,在每个喷嘴高度下取最小喷嘴间距值进行计算,计算数据汇总如表2所示。
表2不同喷嘴布置方式下的θij
Figure BDA0002803157320000091
由表2数据可知,在喷嘴高度为80mm、90mm时,不能满足连铸生产过程中全覆盖喷淋的要求;随喷嘴高度值的升高,θij值随喷嘴高度的升高先减小后增大,当喷嘴高度达到170mm时,θij=1,表明此时相邻喷嘴喷淋重叠区域宽度等于单喷嘴喷淋覆盖宽度,因此,不再对170~400mm范围内的喷嘴高度值进行计算。
分析表2数据,θij的最小值应处于喷嘴高度为120~130mm之间,在该范围内每间隔1mm进行一次计算,计算数据汇总如表3所示。
表3不同喷嘴布置方式下的θij
喷嘴高度h<sub>i</sub>,mm 121 122 123 124 125 126 127 128 129
最小喷嘴间距d<sub>j</sub>,mm 286 284 282 281 279 277 275 273 271
ξ<sub>i</sub>与2η<sub>i</sub>大小
θ<sub>ij</sub>值 0.261 0.231 0.200 0.166 0.133 0.089 0.066 0.031 0.003
综合表2、表3计算结果,采用本发明提出的评价方法,该型号喷嘴Evi(i,j)=0.003,对应的喷嘴布置方式:喷嘴高度为129mm,两个喷嘴之间间距为271mm。因此,该型号喷嘴在生产1020mm×200mm尺寸SPHC钢时的最优布置方式为:喷嘴高度129mm、两喷嘴之间间距271mm,该布置方式下的水量分布如图6所示,喷嘴喷出水量在横向上的分布均匀性改善明显,有利于提高连铸坯质量。
与现有技术相比,本发明具有如下有益效果:
1.本发明采用喷嘴压力流量测试数据与实际生产中喷嘴流量相耦合的方法确定测试水压和气压(对于水喷嘴,无气压),测试结果与实际生产过程中喷嘴的工作状态符合度较高,并通过分析扁平形喷嘴水量分布对称性和喷射角波动值,可及时发现问题喷嘴以及整体质量较差的喷嘴型号,保证了连铸坯选用喷嘴的质量,从根本上改善连铸二冷区的冷却环境。
2.本发明简单易行,可适用于绝大多数采用扁平形喷嘴连铸机的喷嘴配置优化,且对于使用相同或相近喷嘴的连铸机,测试结果可以通用。此外,本发明提出的方法可以适用于不同尺寸的连铸坯生产,可实现根据浇注钢种尺寸的变化动态调整喷嘴布置方式,保证喷嘴的布置方式始终处于最优的工作状态,从而降低连铸坯裂纹、鼓肚等缺陷的发生几率。

Claims (8)

1.一种连铸用扁平形喷嘴的优化布置方法,其特征是,所述方法包括以下步骤:
a.确定喷嘴的工作压力设定值;
b.对单喷嘴进行水量分布测试
将连铸机喷嘴高度设置为初始高度h,进水压力设置为工作压力设定值,采用喷淋检测设备对不同型号单个喷嘴进行水量分布测试,记录单喷嘴喷淋覆盖宽度D以及在喷淋覆盖宽度范围内的水量分布数据;
c.确定水量的计量宽度
计算相邻喷嘴喷淋重叠区宽度d′:
d′=D–d
其中,d为两个相邻喷嘴之间的间距,将计算得到的相邻喷嘴喷淋重叠区宽度d′作为水量的计量宽度;
d.计算相邻喷嘴喷淋重叠区域与单喷嘴中心区域水量比λ:
根据喷嘴喷淋覆盖宽度范围内的水量分布数据,计算单个喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比ξ,以及单个喷嘴喷淋范围边部区域计量宽度范围内的水量与单个喷嘴总水量之比η,则相邻喷嘴喷淋重叠区域与单喷嘴中心区域水量比为:
λ=2η/ξ;
e.计算不同喷嘴高度和不同喷嘴间距时的边部区域与中心区域水量比首先计算不同喷嘴高度时的边部区域与中心区域水量比:
按设定的步长依次改变喷嘴高度,重复步骤c至步骤d,得到不同喷嘴高度时的边部区域与中心区域水量比:λi=2ηii,其中,λi表示喷嘴高度为hi时的边部区域与中心区域水量比,ηi表示喷嘴高度为hi时边部区域计量宽度范围内的水量与单个喷嘴总水量之比,ξi表示喷嘴高度为hi时喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比;
然后计算不同喷嘴高度和不同喷嘴间距时的边部区域与中心区域水量比:
按设定的步长依次改变喷嘴间距,重复步骤c至步骤e,得到不同喷嘴高度和不同喷嘴间距时的边部区域与中心区域水量比:λij=2ηijij,其中,λij表示喷嘴高度为hi喷嘴间距为dj时的边部区域与中心区域水量比,ηij表示喷嘴高度为hi喷嘴间距为dj时的边部区域计量宽度范围内的水量与单个喷嘴总水量之比,ξij表示喷嘴高度为hi喷嘴间距为dj时喷嘴正下方计量宽度范围内的水量与单个喷嘴总水量之比;
f.确定喷嘴的最优布置方式
定义喷嘴布置方式的评价指标:θij=∣1-λij∣,并定义最优评价指标:Evi(i,j)=min{θij},则求得的Evi(i,j)所对应的喷嘴高度hi与喷嘴间距dj即为喷嘴的最优布置方式。
2.根据权利要求1所述的一种连铸用扁平形喷嘴的优化布置方法,其特征是,确定喷嘴的工作压力设定值的具体步骤如下:
①首先采用喷淋检测设备,对不同型号扁平形喷嘴分别进行压力流量测试,得到各扁平形喷嘴的流量随压力变化的曲线;
②从目标浇注钢种的二冷水表读取第i冷却段总水量Qi,L/min,计算二冷区各段单个喷嘴总水量:
qi=Qi/Ni
其中,qi为第i冷却段单喷嘴总水量,L/min;Ni为第i冷却段喷嘴总数;
③根据流量随压力变化的曲线确定与qi相对应的压力值,将该压力值作为第i冷却段喷嘴的工作压力设定值。
3.根据权利要求1或2所述的一种连铸用扁平形喷嘴的优化布置方法,其特征是,喷淋覆盖宽度范围内的水量分布数据的记录方法为:将喷淋覆盖区域分为若干小段,记录每个小段上分布的水量占喷嘴总水量的百分比。
4.根据权利要求3所述的一种连铸用扁平形喷嘴的优化布置方法,其特征是,喷嘴高度由初始高度h改变为hi后,hi对应的单喷嘴喷淋覆盖宽度Di通过下式计算得出:
Di=D·hi/h。
5.根据权利要求4所述的一种连铸用扁平形喷嘴的优化布置方法,其特征是,两个相邻喷嘴之间的间距dj应满足以下要求:
dj≥(D′-Di)/(n-1)
其中,D′为根据目标钢种浇注尺寸确定的连铸生产过程所需达到的喷淋覆盖宽度,n为连铸机单排喷嘴个数。
6.根据权利要求5所述的一种连铸用扁平形喷嘴的优化布置方法,其特征是,喷嘴高度hi取值范围为80mm~400mm。
7.根据权利要求6所述的一种连铸用扁平形喷嘴的优化布置方法,其特征是,按设定的步长依次改变喷嘴间距时,喷嘴间距dj按递增的顺序选取,若ξi≥2ηi,则dj取最小值。
8.根据权利要求7所述的一种连铸用扁平形喷嘴的优化布置方法,其特征是,在对单喷嘴进行水量分布测试的过程中,需要对同型号的多个喷嘴进行水量分布测试,若其喷射角波动幅度大于6°,则该型号的喷嘴不能使用。
CN202011357932.3A 2020-11-27 2020-11-27 一种连铸用扁平形喷嘴的优化布置方法 Active CN112517867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011357932.3A CN112517867B (zh) 2020-11-27 2020-11-27 一种连铸用扁平形喷嘴的优化布置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011357932.3A CN112517867B (zh) 2020-11-27 2020-11-27 一种连铸用扁平形喷嘴的优化布置方法

Publications (2)

Publication Number Publication Date
CN112517867A CN112517867A (zh) 2021-03-19
CN112517867B true CN112517867B (zh) 2021-10-08

Family

ID=74994319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011357932.3A Active CN112517867B (zh) 2020-11-27 2020-11-27 一种连铸用扁平形喷嘴的优化布置方法

Country Status (1)

Country Link
CN (1) CN112517867B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340584B (zh) * 2021-08-02 2021-11-23 北京科技大学 一种锥型喷嘴水量分布对称性的评估方法
CN114526932B (zh) * 2022-04-22 2022-08-02 中汽研(天津)汽车工程研究院有限公司 一种模拟雨中行车车轮溅水的喷水试验***及方法
CN114769546B (zh) * 2022-06-17 2022-09-06 北京科技大学 一种提高铸坯冷却均匀性的方法
CN116511441B (zh) * 2023-07-03 2023-10-13 北京科技大学 一种基于连铸钢坯凝固特性的喷嘴优化布置方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1191173A1 (ru) * 1984-05-11 1985-11-15 Lipetskij V Pt I Litejnogo Pro Устройство для вторичного охлаждения непрерывнолитой заготовки
JP4042541B2 (ja) * 2002-11-19 2008-02-06 Jfeスチール株式会社 連続鋳造鋳片の二次冷却装置および二次冷却方法
CN101279360A (zh) * 2008-05-15 2008-10-08 天津钢管集团股份有限公司 直径为Ф350~Ф400mm低合金钢连铸圆管坯的生产方法
CN202305189U (zh) * 2011-09-28 2012-07-04 中冶南方工程技术有限公司 连铸二冷喷嘴热态性能测试***
CN103464708A (zh) * 2013-09-06 2013-12-25 上海宝锋工程技术有限公司 一种硅钢板坯连铸生产的二次冷却喷嘴布置方法
JP5609199B2 (ja) * 2010-03-25 2014-10-22 Jfeスチール株式会社 連続鋳造における二次冷却方法
CN105458206A (zh) * 2016-01-21 2016-04-06 中冶赛迪工程技术股份有限公司 一种板坯二次冷却方法
CN106825471A (zh) * 2016-12-20 2017-06-13 中冶连铸技术工程有限责任公司 方坯连铸机和板坯连铸机的喷嘴布置方法及***
CN107971355A (zh) * 2017-12-07 2018-05-01 燕山大学 一种二次冷轧机组乳化液喷嘴的喷射角度优化设定方法
CN207479552U (zh) * 2017-10-30 2018-06-12 中冶赛迪工程技术股份有限公司 一种连铸机二冷水喷淋宽度控制装置
CN110394436A (zh) * 2019-07-26 2019-11-01 南京钢铁股份有限公司 一种方坯连铸机的二次冷却区喷淋装置
JP2020078815A (ja) * 2018-11-13 2020-05-28 日本製鉄株式会社 連続鋳造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1191173A1 (ru) * 1984-05-11 1985-11-15 Lipetskij V Pt I Litejnogo Pro Устройство для вторичного охлаждения непрерывнолитой заготовки
JP4042541B2 (ja) * 2002-11-19 2008-02-06 Jfeスチール株式会社 連続鋳造鋳片の二次冷却装置および二次冷却方法
CN101279360A (zh) * 2008-05-15 2008-10-08 天津钢管集团股份有限公司 直径为Ф350~Ф400mm低合金钢连铸圆管坯的生产方法
JP5609199B2 (ja) * 2010-03-25 2014-10-22 Jfeスチール株式会社 連続鋳造における二次冷却方法
CN202305189U (zh) * 2011-09-28 2012-07-04 中冶南方工程技术有限公司 连铸二冷喷嘴热态性能测试***
CN103464708A (zh) * 2013-09-06 2013-12-25 上海宝锋工程技术有限公司 一种硅钢板坯连铸生产的二次冷却喷嘴布置方法
CN105458206A (zh) * 2016-01-21 2016-04-06 中冶赛迪工程技术股份有限公司 一种板坯二次冷却方法
CN106825471A (zh) * 2016-12-20 2017-06-13 中冶连铸技术工程有限责任公司 方坯连铸机和板坯连铸机的喷嘴布置方法及***
CN207479552U (zh) * 2017-10-30 2018-06-12 中冶赛迪工程技术股份有限公司 一种连铸机二冷水喷淋宽度控制装置
CN107971355A (zh) * 2017-12-07 2018-05-01 燕山大学 一种二次冷轧机组乳化液喷嘴的喷射角度优化设定方法
JP2020078815A (ja) * 2018-11-13 2020-05-28 日本製鉄株式会社 連続鋳造方法
CN110394436A (zh) * 2019-07-26 2019-11-01 南京钢铁股份有限公司 一种方坯连铸机的二次冷却区喷淋装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
喷嘴布置方式对中厚板坯连铸二次冷却效果的影响;刘青等;《北京科技大学学报》;20100831;第1064-1070页 *
特厚板坯连铸机二冷区喷嘴选型与布置;占贤辉;《钢铁》;20140531;第42-46页 *

Also Published As

Publication number Publication date
CN112517867A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN112517867B (zh) 一种连铸用扁平形喷嘴的优化布置方法
CN106825479B (zh) 一种连铸坯热送过程表面淬火工艺冷却水流量的确定方法
CN105057626B (zh) 一种连铸坯角部晶粒细化的控制***及方法
CN103849734B (zh) 基于板形的淬火装置流量控制方法及其检测与控制装置
CN111014607B (zh) 一种连铸高质量精准二次冷却工艺
CN102399950A (zh) 一种中厚板淬火工艺的控制方法
CN110479776A (zh) 热轧棒线材轧后闭环控冷***及控制方法
CN104117541A (zh) 一种热轧马氏体不锈钢带钢横向翘曲控制方法
CN111666653B (zh) 一种带钢精轧模型设定精度的在线评判方法
CN107414049B (zh) 连铸板坯角部表层金相组织的细化控制方法
CN105817489A (zh) 一种热轧带钢热头热尾层流冷却工艺
CN105251778B (zh) 单锥度工作辊窜辊轧机边部减薄反馈控制方法
CN110064667A (zh) 一种钢板层流冷却方法
CN113426975A (zh) 一种高效小方坯连铸配水二次冷却研究方法
CN105953832A (zh) 一种磨煤机入口一次风管路及管路内风量风温测量方法
CN113083912A (zh) 一种热轧h型钢温度均匀性控制***及其控制方法
CN112036056A (zh) 一种热轧带钢层流冷却有限元建模方法
Hu et al. Application of a chamfered mold to improve corner defects of HSLA during slab continuous casting
CN204470299U (zh) 一种增加高速棒材在线冷却效果的冷却装置
CN109570242A (zh) 一种热轧冷却辊道控制***及方法
CN110860565A (zh) 一种精确实现带钢边部对称遮挡的方法
CN106825060A (zh) 热轧工作辊冷却喷淋量控制***及喷淋量记录的编码方法
CN111715708B (zh) 一种用于线材吐丝盘条后均匀冷却装置及其冷却方法
CN201375992Y (zh) 一种冷却装置
CN104785549A (zh) 薄规格钢板强冷条件下的层流冷却方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant