CN112480275B - Modified nano-cellulose and preparation method and application thereof - Google Patents

Modified nano-cellulose and preparation method and application thereof Download PDF

Info

Publication number
CN112480275B
CN112480275B CN201910857465.1A CN201910857465A CN112480275B CN 112480275 B CN112480275 B CN 112480275B CN 201910857465 A CN201910857465 A CN 201910857465A CN 112480275 B CN112480275 B CN 112480275B
Authority
CN
China
Prior art keywords
cellulose
preparation
nanocellulose
modified nano
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910857465.1A
Other languages
Chinese (zh)
Other versions
CN112480275A (en
Inventor
黄勇
董西龙
吴敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201910857465.1A priority Critical patent/CN112480275B/en
Publication of CN112480275A publication Critical patent/CN112480275A/en
Application granted granted Critical
Publication of CN112480275B publication Critical patent/CN112480275B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The invention provides a modified nano-cellulose and a preparation method and application thereof, wherein the preparation method of the modified nano-cellulose comprises the following steps: the cellulose or the cellulose derivative and 3, 4-dichlorophenyl isocyanate are ball milled together in an aprotic polar organic solvent. The invention adopts a mechanochemical method, and applies mechanical force while utilizing 3, 4-dichlorophenyl isocyanate to carry out chemical modification on cellulose or cellulose derivatives, so as to prepare the modified nano-cellulose with water resistance and ultraviolet resistance by one step, thus being simple and efficient; and the chemical modification and the ball milling play a synergistic role, so that the diameter of the obtained modified nano-cellulose is smaller, and the transparency of the film prepared from the modified nano-cellulose is better.

Description

Modified nano-cellulose and preparation method and application thereof
Technical Field
The invention relates to the field of nanofiber materials, in particular to modified nanocellulose and a preparation method and application thereof.
Background
With the development of nanotechnology, nanocellulose has become a functional polymer material with wide application. Nanocellulose is generally a cellulose that is broken down from natural cellulose or cellulose derivatives into nano-scale cellulose by a series of physical or chemical treatments.
Due to their outstanding physical and chemical properties, such as nano-scale, excellent mechanical properties, renewability, biodegradability, etc., nanocellulose is highly desired and it is desirable to expand the use of nanocellulose by modification, for example as a water-resistant uv-resistant material.
In the prior art, most of nano-cellulose with water resistance and ultraviolet resistance is prepared by preparing cellulose into nano-cellulose and then chemically modifying the nano-cellulose, wherein the common chemical modification method comprises esterification reaction and etherification reactionThe nanocellulose is rendered hydrophobic, and is then coated with TiO2、ZnO、Al2O3And the metal oxide or other modification methods endow the nano-cellulose with ultraviolet resistance. However, such a preparation method is excessively complicated and reaction conditions are often severe.
Disclosure of Invention
Aiming at the problems in the prior art, the invention provides modified nano-cellulose and a preparation method and application thereof.
In a first aspect, the present invention provides a method for preparing a modified nanocellulose, comprising: the cellulose or the cellulose derivative and 3, 4-dichlorophenyl isocyanate are ball milled together in an aprotic polar organic solvent.
The invention adopts a mechanochemical method, and applies mechanical force while utilizing 3, 4-dichlorophenyl isocyanate to carry out chemical modification on cellulose or cellulose derivatives, so as to prepare the modified nano-cellulose with water resistance and ultraviolet resistance by one step, thus being simple and efficient; and the monoisocyanate exerts a synergistic effect on the chemical modification and the ball milling of the modified nanocellulose, so that the diameter of the obtained modified nanocellulose is smaller, about 2nm, and is much finer than the nanocellulose with the diameter of more than ten nanometers prepared in the prior art, and the modified nanocellulose is superfine fiber, so that the transparency of the prepared modified nanocellulose after being prepared into a film is better.
The cellulose in the invention refers to plant cellulose, animal cellulose and bacterial cellulose; cellulose derivatives include hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, cyanoethyl cellulose, cellulose nitrate, cellulose acetate, cellulose sulfonate and the like.
Furthermore, the molar ratio of the hydroxyl group in the cellulose or the cellulose derivative to the 3, 4-dichlorophenyl isocyanate is 10: 1-1: 10, and more preferably 1: 2.
The inventor finds that the ratio is too low, the substitution degree of cellulose is low, the diameter of nano-cellulose is large, the hydrophobicity is poor, the transparency of a film prepared from the nano-cellulose is poor, and the ratio is too high, so that the waste of reagents is caused. Under the ratio of 1:2, the nano-cellulose has high substitution degree, small diameter and high hydrophobicity, and the film prepared from the nano-cellulose has high transparency.
Further, the aprotic polar organic solvent is one or more of dimethyl sulfoxide, N-dimethylformamide, N-dimethylacetamide, 1, 3-dimethyl-2-imidazolidinone, and N-methylpyrrolidone.
Further, the mass ratio of the cellulose or the cellulose derivative to the aprotic polar organic solvent is 0.5-10: 100.
In a preferred embodiment of the present invention, the aprotic polar organic solvent is dimethyl sulfoxide.
Further, the rotating speed of the ball mill is 100-10000 r/min, and the time is 1-3 h.
In a second aspect, the invention provides a modified nanocellulose prepared by any one of the above preparation methods.
The diameter of the modified nano-cellulose prepared by the method is about 2nm, and the modified nano-cellulose is superfine fiber and has good hydrophobicity and ultraviolet resistance.
The modified nano cellulose is dispersed in solvents such as N, N-dimethylformamide and the like, and then is subjected to suction filtration to form a film, so that the nano cellulose film with good transparency can be obtained.
In a third aspect, the invention provides an application of the modified nanocellulose in preparing an ultraviolet-resistant material, a water-resistant material, a transparent packaging material or a transparent substrate material of a flexible electronic device.
The invention adopts a mechanochemical method, and applies mechanical force while utilizing 3, 4-dichlorophenyl isocyanate to carry out chemical modification on cellulose or cellulose derivatives, so as to prepare the modified nano-cellulose with water resistance and ultraviolet resistance by one step, thus being simple and efficient; and the chemical modification and the ball milling play a synergistic role, so that the diameter of the obtained modified nano-cellulose is smaller, and the transparency of the film prepared from the modified nano-cellulose is better.
Drawings
FIG. 1 is an infrared spectrum of unmodified nanocellulose and modified nanocellulose;
FIG. 2 is an AFM image of unmodified nanocellulose and modified nanocellulose;
FIG. 3 is a graph of water contact angles for unmodified nanocellulose and modified nanocellulose;
FIG. 4 is an electron photograph of an unmodified nanocellulose membrane and a modified nanocellulose membrane;
FIG. 5 is a UV spectrum of an unmodified nanocellulose membrane and a modified nanocellulose membrane;
fig. 6 is a water contact angle graph of the modified nanocellulose in example 3.
Detailed Description
The following examples are given to further illustrate the embodiments of the present invention. The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention.
Example 1
The embodiment provides a preparation method of modified nanocellulose, which comprises the following steps:
0.5g of bamboo pulp and 3.4819g of 3, 4-dichlorophenyl isocyanate (wherein the molar ratio of the 3, 4-dichlorophenyl isocyanate to the hydroxyl in the bamboo pulp is 2:1) are weighed and added into a ball mill, and then 20mL of dimethyl sulfoxide is added, and ball milling is carried out for 2 hours together at the rotating speed of 200 r/min.
Example 2
The embodiment provides a preparation method of modified nanocellulose, which comprises the following steps:
0.5g of corncob cellulose and 3.4819g of 3, 4-dichlorophenyl isocyanate (wherein the molar ratio of the 3, 4-dichlorophenyl isocyanate to hydroxyl in the corncob cellulose is 2:1) are weighed and added into a ball mill, then 25mL of dimethyl sulfoxide is added, and ball milling is carried out for 2 hours at the rotating speed of 300 revolutions per minute.
Example 3
The embodiment provides a preparation method of modified nanocellulose, which comprises the following steps:
0.5g of corncob cellulose and 0.1741g of 3, 4-dichlorophenyl isocyanate (wherein the molar ratio of the 3, 4-dichlorophenyl isocyanate to hydroxyl in the corncob cellulose is 1:10) are weighed and added into a ball mill, and then 20mL of dimethyl sulfoxide is added, and ball milling is carried out for 2 hours at the rotating speed of 200 r/min.
Comparative example 1
The comparative example provides a method for preparing unmodified nanocellulose, comprising the following steps:
0.5g of bamboo pulp is weighed and added into a ball mill, and then 20mL of dimethyl sulfoxide is added, and the mixture is ball milled for 2 hours together at the rotating speed of 200 r/min.
Performance testing
The modified nanocellulose obtained in example 1 and the unmodified nanocellulose obtained in comparative example 1 were subjected to a performance test, and the results were as follows:
FIG. 1 is an infrared spectrum of unmodified nanocellulose and modified nanocellulose, with the modified nanocellulose at 1720cm compared to unmodified nanocellulose-1The peak of COO ester group appears, indicating that the reaction between cellulose and 3, 4-dichlorophenyl isocyanate has been successful.
FIG. 2 is an AFM image of unmodified nanocellulose and modified nanocellulose, wherein a is an AFM image of unmodified nanocellulose, and it can be seen that the dimensions thereof are not uniform, the diameter is from several nanometers to tens of nanometers, and cellulose defibration is insufficient; and b is an AFM image of the modified nano-cellulose, and the modified nano-cellulose is uniform in size, has the diameter of about 2nm and is an ultrafine fiber.
Fig. 3 is a water contact angle graph of unmodified nanocellulose and modified nanocellulose, wherein a shows that the water contact angle of unmodified nanocellulose is only 42 °, and b shows that the water contact angle of modified nanocellulose can reach 90 °.
The preparation method of the nano cellulose membrane comprises the following steps: dispersing the nano-cellulose in N, N-dimethylformamide, and filtering to form a film. The performance of the nanocellulose membranes was tested.
Fig. 4 is an electron photograph of the unmodified nano cellulose film and the modified nano cellulose film, and it can be seen that the transparency of the unmodified nano cellulose film a is poor, and the transparency of the modified nano cellulose film b is good.
Fig. 5 is a uv spectrum of the unmodified nano cellulose film and the modified nano cellulose film, and it can be seen that the transmittance of the modified nano cellulose film in the visible light region exceeds 70%, and the transmittance in the uv region below 300nm is reduced to below 1%, while the unmodified nano cellulose film still has a higher transmittance in the uv region.
In addition, the water contact angle of the modified nanocellulose of example 3 was measured, and as a result, as shown in fig. 6, it can be seen that the contact angle was improved to some extent compared with the unmodified cellulose due to the difference in the raw material ratio in this example, but the effect was not as good as in example 1.
In conclusion, the modified nano cellulose prepared by the embodiment of the invention has the diameter of about 2nm, is a superfine fiber, has good hydrophobicity and ultraviolet resistance, and has good transparency and ultraviolet resistance after being prepared into a nano cellulose film.
Finally, the examples are only preferred embodiments and are not intended to limit the scope of the present invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (7)

1. A preparation method of modified nano-cellulose is characterized by comprising the following steps: carrying out ball milling on cellulose or a cellulose derivative and 3, 4-dichlorophenyl isocyanate in an aprotic polar organic solvent, wherein the molar ratio of hydroxyl in the cellulose or the cellulose derivative to the 3, 4-dichlorophenyl isocyanate is 1: 2;
the cellulose derivative comprises hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, cyanoethyl cellulose, cellulose nitrate, cellulose acetate and cellulose sulfonate.
2. The method according to claim 1, wherein the aprotic polar organic solvent is one or more of dimethylsulfoxide, N-dimethylformamide, N-dimethylacetamide, 1, 3-dimethyl-2-imidazolidinone, and N-methylpyrrolidone.
3. The method according to claim 2, wherein the mass ratio of the cellulose or the cellulose derivative to the aprotic polar organic solvent is 0.5 to 10: 100.
4. The method according to claim 3, wherein the aprotic polar organic solvent is dimethyl sulfoxide.
5. The preparation method according to any one of claims 1 to 4, wherein the rotation speed of the ball mill is 100 to 10000 rpm and the time is 1 to 3 hours.
6. A modified nanocellulose, characterized by being produced by the production method according to any one of claims 1 to 5.
7. Use of the modified nanocellulose as claimed in claim 6 in the preparation of uv resistant materials, water resistant materials, transparent packaging materials or transparent substrate materials for flexible electronic devices.
CN201910857465.1A 2019-09-11 2019-09-11 Modified nano-cellulose and preparation method and application thereof Active CN112480275B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910857465.1A CN112480275B (en) 2019-09-11 2019-09-11 Modified nano-cellulose and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910857465.1A CN112480275B (en) 2019-09-11 2019-09-11 Modified nano-cellulose and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN112480275A CN112480275A (en) 2021-03-12
CN112480275B true CN112480275B (en) 2022-04-22

Family

ID=74920477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910857465.1A Active CN112480275B (en) 2019-09-11 2019-09-11 Modified nano-cellulose and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN112480275B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115804373A (en) * 2022-12-08 2023-03-17 上海师范大学 Nano cellulose based ultraviolet-resistant pesticide microcapsule and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132169A (en) * 2011-11-30 2013-06-05 中国科学院理化技术研究所 Preparation method for cellulose nano-fibers capable of dispersing stably
CN103333259A (en) * 2013-07-03 2013-10-02 福建农林大学 Method for preparing esterified nanocellulose through mechanochemical synchronization reaction
CN105885096A (en) * 2015-01-26 2016-08-24 中国科学院理化技术研究所 Hydrophobic cellulosic material and preparing method and application thereof
JP2018030965A (en) * 2016-08-26 2018-03-01 株式会社ダイセル Amylose derivative and separation agent for optical isomers containing the same
CN109503724A (en) * 2018-11-05 2019-03-22 大连理工大学 The Cellulose nanocrystal of organic acid catalysis one kettle way preparation acetylation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132169A (en) * 2011-11-30 2013-06-05 中国科学院理化技术研究所 Preparation method for cellulose nano-fibers capable of dispersing stably
CN103333259A (en) * 2013-07-03 2013-10-02 福建农林大学 Method for preparing esterified nanocellulose through mechanochemical synchronization reaction
CN105885096A (en) * 2015-01-26 2016-08-24 中国科学院理化技术研究所 Hydrophobic cellulosic material and preparing method and application thereof
JP2018030965A (en) * 2016-08-26 2018-03-01 株式会社ダイセル Amylose derivative and separation agent for optical isomers containing the same
CN109503724A (en) * 2018-11-05 2019-03-22 大连理工大学 The Cellulose nanocrystal of organic acid catalysis one kettle way preparation acetylation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Influence of Medium Polarity and Mechanical Force on Morphology and Structure of Nanocellulose;Wang C et al;《ACTA POLYMERICA SINICA》;20170920(第9期);第1415-1425页 *
机械球磨和溶剂极性协同制备纳米纤维素的研究;吴敏等;《2017第一届天然材料研究与应用研讨会论文集》;20171110;第1页 *

Also Published As

Publication number Publication date
CN112480275A (en) 2021-03-12

Similar Documents

Publication Publication Date Title
Wu et al. Water and humidity-induced shape memory cellulose nanopaper with quick response, excellent wet strength and folding resistance
Shams et al. Fabrication of optically transparent chitin nanocomposites
JP6814753B2 (en) Modified carboxymethylated cellulose nanofiber dispersion and its manufacturing method
JP6797215B2 (en) Method for producing sulfate esterified modified cellulose nanofibers and cellulose nanofibers
Heinze et al. Cellulose derivatives: synthesis, structure, and properties
Singh et al. Isolation of microcrystalline cellulose from corn stover with emphasis on its constituents: corn cover and corn cob
JP5617289B2 (en) Cellulose membrane and laminate material using the same
Zimmermann et al. Cellulose fibrils for polymer reinforcement
Missoum et al. Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties
Lee et al. Bioinspired transparent laminated composite film for flexible green optoelectronics
CN108779183B (en) Production of nanocellulose and intermediates thereof using oxalic acid dihydrate
CN112480275B (en) Modified nano-cellulose and preparation method and application thereof
JP2015196693A (en) Fine cellulose fiber dispersion, manufacturing method thereof and cellulose laminate
JP2009261993A (en) Method of pulverizing polysaccharides, method of modifying polysaccharides, resin reinforcing agent and resin composition
JP2017043648A (en) Cellulose ester aqueous dispersion
Cheng et al. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films
Wu et al. Cellulose Nanocrystals Extracted from Grape Pomace with Deep Eutectic Solvents and Application for Self‐Healing Nanocomposite Hydrogels
JP2017141394A (en) Resin composition, resin molded article and production method of the same
CN111944067A (en) Biomass environment-friendly water-based paint and preparation method and application thereof
JP7323887B2 (en) cellulose acetate film
CN107598152A (en) A kind of method of purification of nano silver wire
Ho et al. Wood lignocellulosic stabilizers: effect of their characteristics on stability and rheological properties of emulsions
CN110670408B (en) Hydrophobic slurry and preparation method and application thereof
WO2006118109A1 (en) Polysaccharide composite material
JP2015071703A (en) Water-based coating composition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant