CN112477627A - 基于Python的纯电动汽车扭矩分配系数分析方法及*** - Google Patents

基于Python的纯电动汽车扭矩分配系数分析方法及*** Download PDF

Info

Publication number
CN112477627A
CN112477627A CN202011387653.1A CN202011387653A CN112477627A CN 112477627 A CN112477627 A CN 112477627A CN 202011387653 A CN202011387653 A CN 202011387653A CN 112477627 A CN112477627 A CN 112477627A
Authority
CN
China
Prior art keywords
efficiency
motor
torque
target
rear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011387653.1A
Other languages
English (en)
Other versions
CN112477627B (zh
Inventor
白志浩
赵征澜
佘建强
张丽
徐飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfeng Motor Corp
Original Assignee
Dongfeng Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfeng Motor Corp filed Critical Dongfeng Motor Corp
Priority to CN202011387653.1A priority Critical patent/CN112477627B/zh
Publication of CN112477627A publication Critical patent/CN112477627A/zh
Application granted granted Critical
Publication of CN112477627B publication Critical patent/CN112477627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明公开了一种基于Python的纯电动汽车扭矩分配系数分析方法及***,涉及电动汽车领域,其方法包括:通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点;获取采样点前电机效率和采样点后电机效率;通过Python第三方库numpy模块、math模块、scipy模块及panda模块,根据采样点前电机效率和采样点后电机效率,插值得到各车辆工况点中的非采样点前电机效率和非采样点后电机效率;根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数。本发明对前后电机进行扭矩分配,可以保证在满足车辆动力性需求时车辆动力***效率时刻保持最优,降低车辆能耗,提升车辆续驶里程。

Description

基于Python的纯电动汽车扭矩分配系数分析方法及***
技术领域
本发明涉及领域,具体是涉及一种基于Python的纯电动汽车扭矩分配系数分析方法及***。
背景技术
目前新能源汽车市场中,纯电动汽车驱动方式多为两驱,四驱的车辆占比较少,和两驱相比四驱可以最大限度的利用车辆全部的附着力,可以显著提升车辆动力性。但由于四驱车辆和两驱车辆相比增加了一套动力***,所以四驱车辆要比两驱车辆明显重量大,大重量增加车辆附着力的同时,也增加了车辆阻力,相应的会增加车辆能耗。车辆能耗主要由克服车辆阻力损耗和车辆动力***损耗组成,降低车辆动力***损耗可以降低车辆能耗。可以通过保证动力***效率最优来降低车辆动力***损耗。目前纯电动汽车四驱前后电机扭矩的分配按照固定的比例进行分配,并没有结合实时的工况,因此无法达到***最优。
发明内容
本发明的目的是为了克服上述背景技术的不足,提供一种基于Python的纯电动汽车扭矩分配系数分析方法及***,对前后电机进行扭矩分配,可以保证在满足车辆动力性需求时车辆动力***效率时刻保持最优,降低车辆能耗,提升车辆续驶里程
第一方面,提供一种基于Python的纯电动汽车扭矩分配系数分析方法,包括以下步骤:
通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点;
获取采样点前电机效率和采样点后电机效率,采样点为所述车辆工况点中任意多个;
通过Python第三方库numpy模块、math模块、scipy模块及panda模块,根据所述采样点前电机效率和所述采样点后电机效率,插值得到各车辆工况点中的非采样点前电机效率和非采样点后电机效率;
根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,所述前电机效率包括所述采样点前电机效率和所述非采样点前电机效率,所述后电机效率包括所述采样点后电机效率和所述非采样点后电机效率。
根据第一方面,在第一方面的第一种可能的实现方式中,所述“通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点”步骤,具体包括以下步骤:
读取前电机外特性数据和后电机外特性数据;
根据所述前电机外特性数据和所述后电机外特性数据分别确定前电机最大转速、后电机最大转速、任一转速下的前电机最大扭矩及任一转速下的后电机最大扭矩,选取所述前电机最大转速和所述后电机最大转速中的较小值作为动力***最大转速,选取任一转速下的所述前电机最大扭矩和所述后电机最大扭矩作为所述任一转速下的动力***最大扭矩;按照预设采样规则,结合所述动力***最大转速和所述动力***最大扭矩生成各车辆工况点,所述车辆工况点包括电机转速和及对应的动力***扭矩。
根据第一方面,在第一方面的第二种可能的实现方式中,所述“根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,所述前电机效率包括所述采样点前电机效率和所述非采样点前电机效率,所述后电机效率包括所述采样点后电机效率和所述非采样点后电机效率”步骤之前,具体还包括以下步骤:
选取任一目标车辆工况点,获取所述目标车辆工况点的目标动力***扭矩;
若所述目标动力***扭矩小于等于第一扭矩值T1,则所述目标车辆工况点的扭矩分配系数范围设为[0,1],所述第一扭矩值为所述目标转速下前电机最大扭矩和后电机最大扭矩的较小值;
若所述目标动力***扭矩大于第一扭矩值T1、且小于等于第二扭矩值T2,则所述目标车辆工况点的扭矩分配系数范围设为
Figure BDA0002810149370000021
所述第二扭矩值为所述目标转速下前电机最大扭矩和后电机最大扭矩的较大值;
若所述目标动力***扭矩大于第二扭矩值T2,则所述目标车辆工况点的扭矩分配系数范围设为
Figure BDA0002810149370000031
根据第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述“根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,所述前电机效率包括所述采样点前电机效率和所述非采样点前电机效率,所述后电机效率包括所述采样点后电机效率和所述非采样点后电机效率”步骤,具体包括以下步骤:
在所述扭矩分配系数范围内设置多组效率比对组,所述效率比对组中将所述目标动力***扭矩按照不同的扭矩分配系数细分为相应的目标前电机扭矩和目标后电机扭矩;
根据所述目标车辆工况点的目标转速和所述目标前电机扭矩确定对应的目标前电机效率,根据所述目标车辆工况点的目标转速和所述目标后电机扭矩确定对应的目标后电机效率;
获取前减速器效率和后减速器效率;
根据所述目标前电机扭矩、目标后电机扭矩、所述目标前电机效率、所述目标后电机效率、所述前减速器效率和所述后减速器效率分析各效率比对组的动力***效率;
根据所述动力***效率确定所述最优扭矩分配系数。
根据第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,,所述“根据所述目标前电机扭矩、目标后电机扭矩、所述目标前电机效率、所述目标后电机效率、所述前减速器效率和所述后减速器效率分析各效率比对组的动力***效率”步骤,具体包括以下步骤:
根据所述目标前电机扭矩得到前电机输出功率P01,根据所述目标后电机扭矩得到后电机输出功率P02
根据所述目标前电机效率η1和所述前电机输出功率P01计算前电机输入功率P11
Figure BDA0002810149370000032
根据所述目标后电机效率η2和所述后电机输出功率P02计算后电机输入功率P12
Figure BDA0002810149370000033
根据所述前电机输出功率P01、所述后电机输出功率P02、所述前电机输入功率P11、所述后电机输入功率P12、所述前减速器效率η3和所述后减速器效率η4分析各效率比对组的动力***效率η,
Figure BDA0002810149370000041
第二方面,提供一种基于Python的纯电动汽车扭矩分配系数分析***,包括:
数据读取处理模块,用于通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点,获取采样点前电机效率和采样点后电机效率,采样点为所述车辆工况点中任意多个;
工况点效率分析模块,与所述数据读取处理模块通信连接,用于通过Python第三方库numpy模块、math模块、scipy模块及panda模块,根据所述采样点前电机效率和所述采样点后电机效率,插值得到各车辆工况点中的非采样点前电机效率和非采样点后电机效率;以及,
最优分配系数计算模块,与所述工况点效率分析模块通信连接,用于根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,所述前电机效率包括所述采样点前电机效率和所述非采样点前电机效率,所述后电机效率包括所述采样点后电机效率和所述非采样点后电机效率。
根据第二方面,在第二方面的第一种可能的实现方式中,所述数据读取处理模块包括:
数据读取单元,用于读取前电机外特性数据和后电机外特性数据;
数据处理单元,与所述数据读取单元通信连接,用于根据所述前电机外特性数据和所述后电机外特性数据分别确定前电机最大转速、后电机最大转速、任一转速下的前电机最大扭矩及任一转速下的后电机最大扭矩,选取所述前电机最大转速和所述后电机最大转速中的较小值作为动力***最大转速,选取任一转速下的所述前电机最大扭矩和所述后电机最大扭矩作为所述任一转速下的动力***最大扭矩;按照预设采样规则,结合所述动力***最大转速和所述动力***最大扭矩生成各车辆工况点,所述车辆工况点包括电机转速和及对应的动力***扭矩;
数据获取单元,与所述数据处理单元通信连接,用于用于获取采样点前电机效率和采样点后电机效率,采样点为所述车辆工况点中任意多个。
根据第二方面,在第二方面的第二种可能的实现方式中,所述***还包括:
扭矩分配约束模块,与所述工况点效率分析模块通信连接,用于:
选取任一目标车辆工况点,获取所述目标车辆工况点的目标动力***扭矩;
若所述目标动力***扭矩小于等于第一扭矩值T1,则所述目标车辆工况点的扭矩分配系数范围设为[0,1],所述第一扭矩值为所述目标转速下前电机最大扭矩和后电机最大扭矩的较小值;
若所述目标动力***扭矩大于第一扭矩值T1、且小于等于第二扭矩值T2,则所述目标车辆工况点的扭矩分配系数范围设为
Figure BDA0002810149370000051
所述第二扭矩值为所述目标转速下前电机最大扭矩和后电机最大扭矩的较大值;
若所述目标动力***扭矩大于第二扭矩值T2,则所述目标车辆工况点的扭矩分配系数范围设为
Figure BDA0002810149370000052
根据第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述最优分配系数计算模块,与所述扭矩分配约束模块通信连接,包括:
分组单元,用于在所述扭矩分配系数范围内设置多组效率比对组,所述效率比对组中将所述目标动力***扭矩按照不同的扭矩分配系数细分为相应的目标前电机扭矩和目标后电机扭矩;
电机效率分析单元,与所述分组单元通信连接,用于根据所述目标车辆工况点的目标转速和所述目标前电机扭矩确定对应的目标前电机效率,根据所述目标车辆工况点的目标转速和所述目标后电机扭矩确定对应的目标后电机效率;
效率获取单元,用于获取前减速器效率和后减速器效率;
***效率分析单元,与所述电机效率分析单元和所述效率获取单元通信连接,用于根据所述目标前电机扭矩、目标后电机扭矩、所述目标前电机效率、所述目标后电机效率、所述前减速器效率和所述后减速器效率分析各效率比对组的动力***效率;
最优系数分析单元,与所述***效率分析单元通信连接,用于根据所述动力***效率确定所述最优扭矩分配系数。
根据第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述***效率分析单元包括:
输入功率分析子单元,用于根据所述目标前电机扭矩得到前电机输出功率P01,根据所述目标后电机扭矩得到后电机输出功率P02
输出功率分析子单元,与所述输入功率分析子单元通信连接,用于根据所述目标前电机效率η1和所述前电机输出功率P01计算前电机输入功率P11
Figure BDA0002810149370000061
根据所述目标后电机效率η2和所述后电机输出功率P02计算后电机输入功率P12
Figure BDA0002810149370000062
***效率分析子单元,与所述输入功率分析子单元和所述输出功率分析子单元通信连接,用于根据所述前电机输出功率P01、所述后电机输出功率P02、所述前电机输入功率P11、所述后电机输入功率P12、所述前减速器效率η3和所述后减速器效率η4分析各效率比对组的动力***效率η,
Figure BDA0002810149370000063
与现有技术相比,本发明使用python语言用于前后电机扭矩分配系数计算,找出所有工况点下的车辆动力***效率最优的分配系数,以便将所有最优分配系数组成分配系数表,四驱模式下车辆在进行扭矩控制过程中可以实时查询分配系数表,对前后电机进行扭矩分配,可以保证在满足车辆动力性需求时车辆动力***效率时刻保持最优,降低车辆能耗,提升车辆续驶里程。
附图说明
图1是本发明一种基于Python的纯电动汽车扭矩分配系数分析方法一实施例的流程示意图;
图2是本发明一种基于Python的纯电动汽车扭矩分配系数分析方法另一实施例的流程示意图;
图3是本发明一种基于Python的纯电动汽车扭矩分配系数分析方法另一实施例的流程示意图;
图4是本发明一种基于Python的纯电动汽车扭矩分配系数分析***一实施例的结构示意图。
附图标号:
100、基于Python的纯电动汽车扭矩分配系数分析***;110、数据读取处理模块;111、数据读取单元;112、数据处理单元;113、数据获取单元;120、工况点效率分析模块;130、最优分配系数计算模块;131、分组单元;132、电机效率分析单元;133、效率获取单元;134、***效率分析单元;135、最优系数分析单元;140、扭矩分配约束模块。
具体实施方式
现在将详细参照本发明的具体实施例,在附图中例示了本发明的例子。尽管将结合具体实施例描述本发明,但将理解,不是想要将本发明限于所述的实施例。相反,想要覆盖由所附权利要求限定的在本发明的精神和范围内包括的变更、修改和等价物。应注意,这里描述的方法步骤都可以由任何功能块或功能布置来实现,且任何功能块或功能布置可被实现为物理实体或逻辑实体、或者两者的组合。
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
注意:接下来要介绍的示例仅是一个具体的例子,而不作为限制本发明的实施例必须为如下具体的步骤、数值、条件、数据、顺序等等。本领域技术人员可以通过阅读本说明书来运用本发明的构思来构造本说明书中未提到的更多实施例。
参见图1所示,本发明实施例提供一种基于Python的纯电动汽车扭矩分配系数分析方法,包括以下步骤:
通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点;
获取采样点前电机效率和采样点后电机效率,采样点为车辆工况点中任意多个;
通过Python第三方库numpy模块、math模块、scipy模块及panda模块,根据采样点前电机效率和采样点后电机效率,插值得到各车辆工况点中的非采样点前电机效率和非采样点后电机效率;
根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,前电机效率包括采样点前电机效率和非采样点前电机效率,后电机效率包括采样点后电机效率和非采样点后电机效率。
具体的,本实施例中,通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点,各个车辆工况点中转速和扭矩的取值阶梯设置,其阶梯值基于电机的参数、运转特性进行设置,或根据需要自主设置。
选取车辆工况点中若干工况点作为采样点,获取采样点前电机效率和采样点后电机效率,采样点前电机效率和采样点后电机效率为该采样点工况下实测的前电机和后电机的效率。其中,采样点为车辆工况点中任意多个,且采样点中分配给前电机和后电机的扭矩的值也是唯一确定的,即采样点中前电机转速和扭矩值是确定的值,后电机转速和扭矩值也是确定的值,该条件下前电机和后电机的效率也是唯一确定的值。
通过Python第三方库numpy模块、math模块、scipy模块及panda模块,根据采样点前电机效率和采样点后电机效率,插值得到各车辆工况点中的非采样点前电机效率和非采样点后电机效率,插值方法采用”最近取值法”。采样点的转速、扭矩以及效率均已知,结合非采样点的转速和扭矩得到相应的效率。
根据不同的转速以及扭矩下的所有的前电机效率和后电机效率分析各车辆工况点不同分配系数下的动力***的效率,从而得到每个车辆工况点的最优扭矩分配系数,前电机效率包括采样点前电机效率和非采样点前电机效率,后电机效率包括采样点后电机效率和非采样点后电机效率。
将每个车辆工况点的最优扭矩分配系数生成最优扭矩分配系数表格,后续在车辆行驶过程中,根据车辆的电机转速以及需求扭矩找到相应的匹配的车辆工况点,选取对应的最优扭矩分配系数对前电机和后电机进行扭矩分配,以获取当前状况最优的扭矩分配结果。
本发明使用Python语言编写脚本文件进行车辆动力***效率最优前后电机扭矩分配系数计算。Python语言是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言,具有很强的可读性并且易于学习、易于阅读,另外Python具有丰富的第三方库,可以协助处理各种工作,其中在科学计算和大数据处理方面使用Python尤为简单方便。使用Python语言用于车辆动力***效率最优前后电机扭矩分配系数计算,可以达到简单、方便、快捷的效果。
可选地,在本申请另外的实施例中,“通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点”步骤,具体包括以下步骤:
读取前电机外特性数据和后电机外特性数据;
根据前电机外特性数据和后电机外特性数据分别确定前电机最大转速、后电机最大转速、任一转速下的前电机最大扭矩及任一转速下的后电机最大扭矩,选取前电机最大转速和后电机最大转速中的较小值作为动力***最大转速,选取任一转速下的前电机最大扭矩和后电机最大扭矩作为任一转速下的动力***最大扭矩;按照预设采样规则,结合动力***最大转速和动力***最大扭矩生成各车辆工况点,车辆工况点包括电机转速和及对应的动力***扭矩。
具体的,本实施例中,读取前电机外特性数据和后电机外特性数据,依据前后电机实测外特性数据,明确前电机转速范围以及特定转速对应的扭矩范围,明确后电机转速范围以及特定转速对应的扭矩范围。根据上述明确的前后电机转速范围和特定转速对应的扭矩范围,计算车辆动力***转速范围和特定转速对应扭矩范围,车辆动力***包括前电机加减速器***和后电机加减速器***。根据上述明确的车辆动力***转速范围以及特定转速对应的扭矩范围,进行车辆工况点(转速-扭矩)的设计。例如,划分原则(仅为了便于理解进行举例说明,并不限定为下列划分原则)如下:
a)转速以500rpm为起始转速,以最高转速为终止转速,以500rpm为梯度得到全转速范围内的转速工况点。
b)选取第a步某一转速工况点,扭矩以10Nm为起始扭矩,以当前转速最大扭矩为终止扭矩,以10Nm为梯度得到当前转速下所有扭矩工况点。
c)重复第b步,得到所有转速下的扭矩工况点,进而得出所有扭矩分配系数计算工况点。
本申请导入前后电机外特性数据,确定动力***转速最大值和车辆动力***转速范围;根据车辆动力***转速范围,以及前后电机特定转速下最大扭矩设计车辆工况点更加合理。
可选地,如图2所示,在本申请另外的实施例中,“根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,前电机效率包括采样点前电机效率和非采样点前电机效率,后电机效率包括采样点后电机效率和非采样点后电机效率”步骤之前,具体还包括以下步骤:
选取任一目标车辆工况点,获取目标车辆工况点的目标动力***扭矩;
若目标动力***扭矩小于等于第一扭矩值T1,则目标车辆工况点的扭矩分配系数范围设为[0,1],第一扭矩值为目标转速下前电机最大扭矩和后电机最大扭矩的较小值;
若目标动力***扭矩大于第一扭矩值T1、且小于等于第二扭矩值T2,则目标车辆工况点的扭矩分配系数范围设为
Figure BDA0002810149370000101
第二扭矩值为目标转速下前电机最大扭矩和后电机最大扭矩的较大值;
若目标动力***扭矩大于第二扭矩值T2,则目标车辆工况点的扭矩分配系数范围设为
Figure BDA0002810149370000102
具体的,本实施例中,选取任一目标车辆工况点,获取目标车辆工况点的目标动力***扭矩,即选取目标车辆工况点下的目标转速下和目标动力***扭矩,根据与该目标转速下前电机最大扭矩和后电机最大扭矩进行比对,然后得到该目标车辆工况点的扭矩分配系数范围。因此本申请在进行分配系数范围约束时,方法较为简单且所选范围能覆盖所有满足要求的取值。
可选地,在本申请另外的实施例中,“根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,前电机效率包括采样点前电机效率和非采样点前电机效率,后电机效率包括采样点后电机效率和非采样点后电机效率”步骤,具体包括以下步骤:
在扭矩分配系数范围内设置多组效率比对组,效率比对组中将目标动力***扭矩按照不同的扭矩分配系数细分为相应的目标前电机扭矩和目标后电机扭矩;
根据目标车辆工况点的目标转速和目标前电机扭矩确定对应的目标前电机效率,根据目标车辆工况点的目标转速和目标后电机扭矩确定对应的目标后电机效率;
获取前减速器效率和后减速器效率;
根据目标前电机扭矩、目标后电机扭矩、目标前电机效率、目标后电机效率、前减速器效率和后减速器效率分析各效率比对组的动力***效率;
根据动力***效率确定最优扭矩分配系数。
具体的,本实施例中,各车辆工况点中只设有转速和对应的动力***扭矩,而动力***扭矩并没有具体分配到前电机和后电机。因此对于每一个车辆工况点,在扭矩分配系数范围内设置多组效率比对组,每组效率比对组内按照一定的扭矩分配系数将动力***扭矩分别分配给前电机和后电机,也就是说在每组效率比对组内前电机和后电机的转速以及扭矩都是确定的,因此由上述实施例中的说明中采样点前电机效率、采样点后电机效率、非采样点前电机效率及非采样点后电机效率,可以确定每组效率比对组内目标前电机效率和目标后电机效率。其中,效率比对组之间扭矩分配系数的变化阶梯可以根据不同的需求进行设置,例如,扭矩分配系数变化梯度设定为0.01。
由于车辆动力***包括前电机加减速器***和后电机加减速器***,也就是减速器效率会对车辆动力***产生影响,因此获取前减速器效率和后减速器效率。
根据目标前电机扭矩、目标后电机扭矩、目标前电机效率、目标后电机效率、前减速器效率和后减速器效率分析各效率比对组的动力***效率。将各效率比对组的动力***效率进行比对,选取其中效率最高的效率比对组对应的扭矩分配系数作为最优扭矩分配系数。
本申请设置多组扭矩分配系数接阶梯变化的效率比对组分别计算其动力***效率,以便更加全面地选取出最优扭矩分配系数。
可选地,在本申请另外的实施例中,“根据目标前电机扭矩、目标后电机扭矩、目标前电机效率、目标后电机效率、前减速器效率和后减速器效率分析各效率比对组的动力***效率”步骤,具体包括以下步骤:
根据所述目标前电机扭矩得到前电机输出功率P01,根据所述目标后电机扭矩得到后电机输出功率P02
根据所述目标前电机效率η1和所述前电机输出功率P01计算前电机输入功率P11
Figure BDA0002810149370000121
根据所述目标后电机效率η2和所述后电机输出功率P02计算后电机输入功率P12
Figure BDA0002810149370000122
根据所述前电机输出功率P01、所述后电机输出功率P02、所述前电机输入功率P11、所述后电机输入功率P12、所述前减速器效率η3和所述后减速器效率η4分析各效率比对组的动力***效率η,
Figure BDA0002810149370000123
具体的,本实施例中,根据扭矩值可以直接计算得到相应的功率值,目标前电机扭矩和目标后电机扭矩都是需要电机输出的扭矩值,因此根据目标前电机扭矩得到前电机输出功率P01,根据目标后电机扭矩得到后电机输出功率P02,即计算得到该车辆工况在该效率对比组扭矩分配系数下前电机输出功率和后电机输出功率,由于转速和扭矩一定时,前电机效率和后电机效率一定且已经获取,因此根据目标前电机效率η1和前电机输出功率P01计算前电机输入功率P11
Figure BDA0002810149370000124
根据目标后电机效率η2和后电机输出功率P02计算后电机输入功率P12
Figure BDA0002810149370000125
最后根据前电机输出功率P01、后电机输出功率P02、前电机输入功率P11、后电机输入功率P12、前减速器效率η3和后减速器效率η4分析各效率比对组的动力***效率η,
Figure BDA0002810149370000126
本发明依托上述实例编写计算车辆动力***效率最优前后电机扭矩分配系数脚本程序如下:
Figure BDA0002810149370000127
Figure BDA0002810149370000131
Figure BDA0002810149370000141
Figure BDA0002810149370000151
Figure BDA0002810149370000161
Figure BDA0002810149370000171
参见图1所示,本发明实施例提供一种基于Python的纯电动汽车扭矩分配系数分析方法,包括以下步骤:
S1、导入前后电机外特性数据,其中前电机外特性数据如表一所示,后电机外特性数据如表二所示;
表一 前电机外特性数据
转速(r/min) 扭矩(Nm)
500 232
1000 233
1500 235
12500 91
表二 后电机外特性数据
转速(r/min) 扭矩(Nm)
500 308
1000 305
1500 305
16000 88
根据前后电机外特性数据可知,Nmax_f=12500,Nmax_r=16000,设定前后减速器速比一致,所以取动力***转速最大值Nmax=min(Nmax_f,Nmax_r)=12500,车辆动力***转速范围为0-12500。
S2、根据车辆动力***转速范围,以及前后电机特定转速下最大扭矩Tmax_n=Tmax_f_n+Tmax_r_n,其中n=500,1000,1500…12500,设计车辆工况点如表三所示:
表三 车辆工况点
转速(r/min) 扭矩(Nm)
500 10
500 20
500 30
500 540
1000 10
12500 198
S3、计算使每个工况点车辆动力***效率最优的前后电机扭矩分配系数,根据本发明所阐述的扭矩分配系数计算方法,首先要比较该工况点下扭矩值与该工况点对应的转速下前后电机最大扭矩的大小关系。如果T_n<T_max_f_n and T_n<T_max_r_n,则限定前后电机扭矩分配系数范围为[0,1],通过如下语句实现该条件判断:
iffloat(ws.cell(row=i,column=2).value)/Torque_max_90<1:
proportions=list(range(0,101,1))
设定本实施例中同一转速下,后电机最大扭矩始终大于前电机最大扭矩,所以只判断了T_n与T_max_f_n的大小关系。
如果T_n>T_max_f_n andT_n<T_max_r_n,则限定前后电机扭矩分配系数范围为[0,T_max_f_n/Tmax_n],通过如下语句实现该条件判断:
elif float(ws.cell(row=i,column=2).value)/Torque_max_90>1and float(ws.cell(row=i,column=2).value)/Torque_max_160<1:
a=round(float(Torque_max_160/ws.cell(row=i,column=2).value))*100
b=round(float(Torque_max_90/ws.cell(row=i,column=2).value))*100
proportions_2=list(range(0,b+1,1))
如果T_n<T_max_f_n andT_n<T_max_r_n,则限定前后电机扭矩分配系数范围为[T_max_f_n/Tmax_n,T_max_r_n/Tmax_n],通过如下语句实现该条件判断:
eliffloat(ws.cell(row=i,column=2).value)/Torque_max_160>1:
a=math.floor((float(Torque_max_160/ws.cell(row=i,column=2).value)*100))
b=math.ceil(float(Torque_max_90/ws.cell(row=i,column=2).value)*100)
proportions_3=list(range(b,a,1))
限定前后电机扭矩分配系数范围的目的是,保证前后电机实际所分配的扭矩不超过当前转速下前后电机的最大扭矩能力。
S4、计算每个车辆工况点下车辆动力***效率,根据下式计算每个车辆工况点前后电机输出功率:P输出_前电机_n=T_n*n/9550,其中n=500,1000,1500…12500,P输出_后电机_n=T_n*n/9550,其中n=500,1000,1500…12500;
根据下式计算前后电机输入功率:,P输入_前电机_n=P输出_前电机_n/η_f_n,其中n=500,1000,1500…12500,P输入_后电机_n=P输出_后电机_n/η_r_n,其中n=500,1000,1500…12500;
根据下式计算车辆动力***效率:η_n=(P输出_前电机_n+P输出_后电机_n)/(P输入_前电机_n+P输入_后电机_n)*0.97,其中0.97为前后减速器效率,仅为了便于理解进行举例说明,实际减速器效率并不进行限定。
上述公式中每个工况点下的前电机和后电机的效率,需要根据前后电机实测效率数据,通过插值的方法得出,本发明中编写的脚本程序中,如下语句为前后电机效率插值程序:
result_ef_90=griddata(points_90,values_90,points_new_90,method='nearest')
result_ef_160=griddata(points_160,values_160,points_new_160,method='nearest')
插值方法采用“最近取值法”,其中插值程序中的前后电机样本点通过如下语句得出:
ws_90=wb['前电机外特性']
ws_160=wb['后电机外特性']
rows=ws.max_row
rows_90=ws_90.max_row
rows_160=ws_160.max_row
list_speed_90=[]
list_torque_90=[]
list_ef_90=[]
for i in range(2,rows_90+1):
speed_90=ws_90.cell(row=i,column=1).value
torque_90=ws_90.cell(row=i,column=2).value
eff_90=ws_90.cell(row=i,column=3).value
list_speed_90.append(speed_90)
list_torque_90.append(torque_90)
list_ef_90.append(eff_90)
list_new_90=list(zip(list_speed_90,list_torque_90))
points_90=np.array(list_new_90)
values_90=np.array(list_ef_90)
list_speed_160=[]
list_torque_160=[]
list_ef_160=[]
for i in range(2,rows_160+1):
speed_160=ws_160.cell(row=i,column=1).value
torque_160=ws_160.cell(row=i,column=2).value
eff_160=ws_160.cell(row=i,column=3).value
list_speed_160.append(speed_160)
list_torque_160.append(torque_160)
list_ef_160.append(eff_160)
list_new_160=list(zip(list_speed_160,list_torque_160))
points_160=np.array(list_new_160)
values_160=np.array(list_ef_160)
得到前电机样本点为(points_90,values_90),后电机样本点为(points_160,values_160)。
前电机插值点和后电机插值点,通过如下语句得出:
points_new_90=np.array([SPEED_90,TORQUE_90])
points_new_160=np.array([SPEED_160,TORQUE_160])
在得出样本点和插值点之后,可以得出前后电机插值点的效率result_ef_90和result_ef_160,通过如下语句可以计算每个工况点的车辆动力***效率:
front_power_input=((float(TORQUE_90)*float(SPEED_90))/9550/float(result_ef_90))*100
front_power_output=(float(TORQUE_90)*float(SPEED_90))/9550*0.97
rear_power_input=((float(TORQUE_160)*float(SPEED_160))/9550/float(result_ef_160))*100
rear_power_output=(float(TORQUE_160)*float(SPEED_160))/9550*0.97
total_power_input=front_power_input+rear_power_input
total_power_output=front_power_output+rear_power_output
eff_n=total_power_output/total_power_input
S5、限定前后电机扭矩分配系数范围之后,则需要在限定的系数范围之内,找出使车辆动力***效率最优的点,并将所有点组成车辆动力***效率最优前后电机扭矩分配系数表,通过如下语句可得出该分配表:
EFF_max.append(proportions[EFF.index(max(EFF))]/100)
EFF_max_coefficient.append(max(EFF))
通过上述步骤,本发明所依托的实例最后得出的每个车辆工况点的扭矩分配系数如表四所示;
表四 车辆工况点的扭矩分配系数
转速(r/min) 扭矩(Nm) 分配系数
500 10 1
500 20 0
500 30 0
500 540 0.43
12500 198 0.45
参见图4所示,本发明实施例提供一种基于Python的纯电动汽车扭矩分配系数分析***100,包括:
数据读取处理模块110,用于通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点,获取采样点前电机效率和采样点后电机效率,采样点为车辆工况点中任意多个;
工况点效率分析模块120,与数据读取处理模块110通信连接,用于通过Python第三方库numpy模块、math模块、scipy模块及panda模块,根据采样点前电机效率和采样点后电机效率,插值得到各车辆工况点中的非采样点前电机效率和非采样点后电机效率;以及,
最优分配系数计算模块130,与工况点效率分析模块120通信连接,用于根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,前电机效率包括采样点前电机效率和非采样点前电机效率,后电机效率包括采样点后电机效率和非采样点后电机效率。
数据读取处理模块110包括:
数据读取单元111,用于读取前电机外特性数据和后电机外特性数据;
数据处理单元112,与数据读取单元111通信连接,用于根据前电机外特性数据和后电机外特性数据分别确定前电机最大转速、后电机最大转速、任一转速下的前电机最大扭矩及任一转速下的后电机最大扭矩,选取前电机最大转速和后电机最大转速中的较小值作为动力***最大转速,选取任一转速下的前电机最大扭矩和后电机最大扭矩作为任一转速下的动力***最大扭矩;按照预设采样规则,结合动力***最大转速和动力***最大扭矩生成各车辆工况点,车辆工况点包括电机转速和及对应的动力***扭矩;
数据获取单元113,与数据处理单元112通信连接,用于用于获取采样点前电机效率和采样点后电机效率,采样点为车辆工况点中任意多个。
***还包括:
扭矩分配约束模块140,与工况点效率分析模块120通信连接,用于:
选取任一目标车辆工况点,获取目标车辆工况点的目标动力***扭矩;
若目标动力***扭矩小于等于第一扭矩值T1,则目标车辆工况点的扭矩分配系数范围设为[0,1],第一扭矩值T1为目标转速下前电机最大扭矩和后电机最大扭矩的较小值;
若目标动力***扭矩大于第一扭矩值T1、且小于等于第二扭矩值T2,则目标车辆工况点的扭矩分配系数范围设为
Figure BDA0002810149370000231
第二扭矩值T2为目标转速下前电机最大扭矩和后电机最大扭矩的较大值;
若目标动力***扭矩大于第二扭矩值T2,则目标车辆工况点的扭矩分配系数范围设为
Figure BDA0002810149370000232
最优分配系数计算模块130,与扭矩分配约束模块140通信连接,包括:
分组单元131,用于在扭矩分配系数范围内设置多组效率比对组,效率比对组中将目标动力***扭矩按照不同的扭矩分配系数细分为相应的目标前电机扭矩和目标后电机扭矩;
电机效率分析单元132,与分组单元131通信连接,用于根据目标车辆工况点的目标转速和目标前电机扭矩确定对应的目标前电机效率,根据目标车辆工况点的目标转速和目标后电机扭矩确定对应的目标后电机效率;
效率获取单元1333,用于获取前减速器效率和后减速器效率;
***效率分析单元134,与电机效率分析单元132和效率获取单元133通信连接,用于根据目标前电机扭矩、目标后电机扭矩、目标前电机效率、目标后电机效率、前减速器效率和后减速器效率分析各效率比对组的动力***效率;
最优系数分析单元135,与***效率分析单元134通信连接,用于根据动力***效率确定最优扭矩分配系数。
***效率分析单元134包括:
输入功率分析子单元,用于根据目标前电机扭矩得到前电机输出功率P01,根据目标后电机扭矩得到后电机输出功率P02
输出功率分析子单元,与输入功率分析子单元通信连接,用于根据目标前电机效率η1和前电机输出功率P01计算前电机输入功率P11
Figure BDA0002810149370000241
根据目标后电机效率η2和后电机输出功率P02计算后电机输入功率P12
Figure BDA0002810149370000242
***效率分析子单元,与输入功率分析子单元和输出功率分析子单元通信连接,用于根据前电机输出功率P01、后电机输出功率P02、前电机输入功率P11、后电机输入功率P12、前减速器效率η3和后减速器效率η4分析各效率比对组的动力***效率η,
Figure BDA0002810149370000243
具体的,本实施例中各个模块的功能在相应的方法实施例中已经进行详细说明,因此不再一一赘述。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种基于Python的纯电动汽车扭矩分配系数分析方法,其特征在于,包括以下步骤:
通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点;
获取采样点前电机效率和采样点后电机效率,采样点为所述车辆工况点中任意多个;
通过Python第三方库numpy模块、math模块、scipy模块及panda模块,根据所述采样点前电机效率和所述采样点后电机效率,插值得到各车辆工况点中的非采样点前电机效率和非采样点后电机效率;
根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,所述前电机效率包括所述采样点前电机效率和所述非采样点前电机效率,所述后电机效率包括所述采样点后电机效率和所述非采样点后电机效率。
2.如权利要求1所述的方法,其特征在于,所述“通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点”步骤,具体包括以下步骤:
读取前电机外特性数据和后电机外特性数据;
根据所述前电机外特性数据和所述后电机外特性数据分别确定前电机最大转速、后电机最大转速、任一转速下的前电机最大扭矩及任一转速下的后电机最大扭矩,选取所述前电机最大转速和所述后电机最大转速中的较小值作为动力***最大转速,选取任一转速下的所述前电机最大扭矩和所述后电机最大扭矩作为所述任一转速下的动力***最大扭矩;按照预设采样规则,结合所述动力***最大转速和所述动力***最大扭矩生成各车辆工况点,所述车辆工况点包括电机转速和及对应的动力***扭矩。
3.如权利要求1所述的方法,其特征在于,所述“根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,所述前电机效率包括所述采样点前电机效率和所述非采样点前电机效率,所述后电机效率包括所述采样点后电机效率和所述非采样点后电机效率”步骤之前,具体还包括以下步骤:
选取任一目标车辆工况点,获取所述目标车辆工况点的目标动力***扭矩;
若所述目标动力***扭矩小于等于第一扭矩值T1,则所述目标车辆工况点的扭矩分配系数范围设为[0,1],所述第一扭矩值为所述目标转速下前电机最大扭矩和后电机最大扭矩的较小值;
若所述目标动力***扭矩大于第一扭矩值T1、且小于等于第二扭矩值T2,则所述目标车辆工况点的扭矩分配系数范围设为
Figure FDA0002810149360000021
所述第二扭矩值为所述目标转速下前电机最大扭矩和后电机最大扭矩的较大值;
若所述目标动力***扭矩大于第二扭矩值T2,则所述目标车辆工况点的扭矩分配系数范围设为
Figure FDA0002810149360000022
4.如权利要求3所述的方法,其特征在于,所述“根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,所述前电机效率包括所述采样点前电机效率和所述非采样点前电机效率,所述后电机效率包括所述采样点后电机效率和所述非采样点后电机效率”步骤,具体包括以下步骤:
在所述扭矩分配系数范围内设置多组效率比对组,所述效率比对组中将所述目标动力***扭矩按照不同的扭矩分配系数细分为相应的目标前电机扭矩和目标后电机扭矩;
根据所述目标车辆工况点的目标转速和所述目标前电机扭矩确定对应的目标前电机效率,根据所述目标车辆工况点的目标转速和所述目标后电机扭矩确定对应的目标后电机效率;
获取前减速器效率和后减速器效率;
根据所述目标前电机扭矩、目标后电机扭矩、所述目标前电机效率、所述目标后电机效率、所述前减速器效率和所述后减速器效率分析各效率比对组的动力***效率;
根据所述动力***效率确定所述最优扭矩分配系数。
5.如权利要求4所述的方法,其特征在于,所述“根据所述目标前电机扭矩、目标后电机扭矩、所述目标前电机效率、所述目标后电机效率、所述前减速器效率和所述后减速器效率分析各效率比对组的动力***效率”步骤,具体包括以下步骤:
根据所述目标前电机扭矩得到前电机输出功率P01,根据所述目标后电机扭矩得到后电机输出功率P02
根据所述目标前电机效率η1和所述前电机输出功率P01计算前电机输入功率P11
Figure FDA0002810149360000031
根据所述目标后电机效率η2和所述后电机输出功率P02计算后电机输入功率P12
Figure FDA0002810149360000032
根据所述前电机输出功率P01、所述后电机输出功率P02、所述前电机输入功率P11、所述后电机输入功率P12、所述前减速器效率η3和所述后减速器效率η4分析各效率比对组的动力***效率η,
Figure FDA0002810149360000033
6.一种基于Python的纯电动汽车扭矩分配系数分析***,其特征在于,包括:
数据读取处理模块,用于通过Python第三方库openpyxl模块,读取前电机外特性数据和后电机外特性数据,按照预设采样规则生成各车辆工况点,获取采样点前电机效率和采样点后电机效率,采样点为所述车辆工况点中任意多个;
工况点效率分析模块,与所述数据读取处理模块通信连接,用于通过Python第三方库numpy模块、math模块、scipy模块及panda模块,根据所述采样点前电机效率和所述采样点后电机效率,插值得到各车辆工况点中的非采样点前电机效率和非采样点后电机效率;以及,
最优分配系数计算模块,与所述工况点效率分析模块通信连接,用于根据前电机效率和后电机效率分析各车辆工况点的最优扭矩分配系数,所述前电机效率包括所述采样点前电机效率和所述非采样点前电机效率,所述后电机效率包括所述采样点后电机效率和所述非采样点后电机效率。
7.如权利要求6所述的***,其特征在于,所述数据读取处理模块包括:
数据读取单元,用于读取前电机外特性数据和后电机外特性数据;
数据处理单元,与所述数据读取单元通信连接,用于根据所述前电机外特性数据和所述后电机外特性数据分别确定前电机最大转速、后电机最大转速、任一转速下的前电机最大扭矩及任一转速下的后电机最大扭矩,选取所述前电机最大转速和所述后电机最大转速中的较小值作为动力***最大转速,选取任一转速下的所述前电机最大扭矩和所述后电机最大扭矩作为所述任一转速下的动力***最大扭矩;按照预设采样规则,结合所述动力***最大转速和所述动力***最大扭矩生成各车辆工况点,所述车辆工况点包括电机转速和及对应的动力***扭矩;
数据获取单元,与所述数据处理单元通信连接,用于用于获取采样点前电机效率和采样点后电机效率,采样点为所述车辆工况点中任意多个。
8.如权利要求6所述的***,其特征在于,所述***还包括:
扭矩分配约束模块,与所述工况点效率分析模块通信连接,用于:
选取任一目标车辆工况点,获取所述目标车辆工况点的目标动力***扭矩;
若所述目标动力***扭矩小于等于第一扭矩值T1,则所述目标车辆工况点的扭矩分配系数范围设为[0,1],所述第一扭矩值为所述目标转速下前电机最大扭矩和后电机最大扭矩的较小值;
若所述目标动力***扭矩大于第一扭矩值T1、且小于等于第二扭矩值T2,则所述目标车辆工况点的扭矩分配系数范围设为
Figure FDA0002810149360000041
所述第二扭矩值为所述目标转速下前电机最大扭矩和后电机最大扭矩的较大值;
若所述目标动力***扭矩大于第二扭矩值T2,则所述目标车辆工况点的扭矩分配系数范围设为
Figure FDA0002810149360000042
9.如权利要求8所述的***,其特征在于,所述最优分配系数计算模块,与所述扭矩分配约束通信连接,包括:
分组单元,用于在所述扭矩分配系数范围内设置多组效率比对组,所述效率比对组中将所述目标动力***扭矩按照不同的扭矩分配系数细分为相应的目标前电机扭矩和目标后电机扭矩;
电机效率分析单元,与所述分组单元通信连接,用于根据所述目标车辆工况点的目标转速和所述目标前电机扭矩确定对应的目标前电机效率,根据所述目标车辆工况点的目标转速和所述目标后电机扭矩确定对应的目标后电机效率;
效率获取单元,用于获取前减速器效率和后减速器效率;
***效率分析单元,与所述电机效率分析单元和所述效率获取单元通信连接,用于根据所述目标前电机扭矩、目标后电机扭矩、所述目标前电机效率、所述目标后电机效率、所述前减速器效率和所述后减速器效率分析各效率比对组的动力***效率;
最优系数分析单元,与所述***效率分析单元通信连接,用于根据所述动力***效率确定所述最优扭矩分配系数。
10.如权利要求9所述的***,其特征在于,所述***效率分析单元包括:
输入功率分析子单元,用于根据所述目标前电机扭矩得到前电机输出功率P01,根据所述目标后电机扭矩得到后电机输出功率P02
输出功率分析子单元,与所述输入功率分析子单元通信连接,用于根据所述目标前电机效率η1和所述前电机输出功率P01计算前电机输入功率P11
Figure FDA0002810149360000051
根据所述目标后电机效率η2和所述后电机输出功率P02计算后电机输入功率P12
Figure FDA0002810149360000052
***效率分析子单元,与所述输入功率分析子单元和所述输出功率分析子单元通信连接,用于根据所述前电机输出功率P01、所述后电机输出功率P02、所述前电机输入功率P11、所述后电机输入功率P12、所述前减速器效率η3和所述后减速器效率η4分析各效率比对组的动力***效率η,
Figure FDA0002810149360000053
CN202011387653.1A 2020-12-01 2020-12-01 基于Python的纯电动汽车扭矩分配系数分析方法及*** Active CN112477627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011387653.1A CN112477627B (zh) 2020-12-01 2020-12-01 基于Python的纯电动汽车扭矩分配系数分析方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011387653.1A CN112477627B (zh) 2020-12-01 2020-12-01 基于Python的纯电动汽车扭矩分配系数分析方法及***

Publications (2)

Publication Number Publication Date
CN112477627A true CN112477627A (zh) 2021-03-12
CN112477627B CN112477627B (zh) 2022-06-17

Family

ID=74939706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011387653.1A Active CN112477627B (zh) 2020-12-01 2020-12-01 基于Python的纯电动汽车扭矩分配系数分析方法及***

Country Status (1)

Country Link
CN (1) CN112477627B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094114A1 (zh) * 2022-11-04 2024-05-10 奇瑞汽车股份有限公司 车辆参数确定方法、扭矩分配方法、装置及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191831A (ja) * 2011-12-28 2012-10-04 Pioneer Electronic Corp 効率マップ生成装置および効率マップ生成方法
CN104129388A (zh) * 2013-05-03 2014-11-05 上海汽车集团股份有限公司 基于效率优化的混合动力***中双电机扭矩分配控制方法
CN104859486A (zh) * 2015-04-30 2015-08-26 北汽福田汽车股份有限公司 具有双电机的电动汽车的扭矩分配方法、***及车辆
CN106515509A (zh) * 2017-01-03 2017-03-22 重庆长安汽车股份有限公司 一种电动四驱汽车的驱动***及其扭矩分配方法
CN107487225A (zh) * 2016-12-23 2017-12-19 宝沃汽车(中国)有限公司 电动汽车的转矩分配方法、***及电动汽车
CN109062561A (zh) * 2018-07-27 2018-12-21 淮海工学院 一种基于Python危险驾驶预警***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191831A (ja) * 2011-12-28 2012-10-04 Pioneer Electronic Corp 効率マップ生成装置および効率マップ生成方法
CN104129388A (zh) * 2013-05-03 2014-11-05 上海汽车集团股份有限公司 基于效率优化的混合动力***中双电机扭矩分配控制方法
CN104859486A (zh) * 2015-04-30 2015-08-26 北汽福田汽车股份有限公司 具有双电机的电动汽车的扭矩分配方法、***及车辆
CN107487225A (zh) * 2016-12-23 2017-12-19 宝沃汽车(中国)有限公司 电动汽车的转矩分配方法、***及电动汽车
CN106515509A (zh) * 2017-01-03 2017-03-22 重庆长安汽车股份有限公司 一种电动四驱汽车的驱动***及其扭矩分配方法
CN109062561A (zh) * 2018-07-27 2018-12-21 淮海工学院 一种基于Python危险驾驶预警***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094114A1 (zh) * 2022-11-04 2024-05-10 奇瑞汽车股份有限公司 车辆参数确定方法、扭矩分配方法、装置及车辆

Also Published As

Publication number Publication date
CN112477627B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
CN106042976B (zh) 一种分布式驱动电动汽车在线实时转矩优化分配控制方法
CN105844061B (zh) 生成换挡map的方法和装置
CN111645537B (zh) 电动汽车两档变速器换档方法、存储介质、电子设备及电动汽车
CN112477627B (zh) 基于Python的纯电动汽车扭矩分配系数分析方法及***
CN112026531A (zh) 前后轴双电机驱动电动汽车的驱动扭矩分配方法及***
CN111546903B (zh) 滑行扭矩的确定方法、装置、设备及存储介质
CN113829891B (zh) 电动汽车及其分布式转矩的分配方法和装置
WO2024103632A1 (zh) 一种电动汽车加速踏板图谱标定方法
CN112622634B (zh) 电动汽车的扭矩控制方法及***
CN110469661B (zh) 一种基于cvt效率的动力性速比优化方法及***
CN112622635B (zh) 双电机扭矩分配的方法和装置
CN110126636B (zh) 一种双电机制动能量回收控制方法及装置
CN113609624B (zh) 确定发动机档位的方法、装置、设备和介质
CN108394402A (zh) 一种并联式混合动力汽车的混合扭矩控制方法
CN112883563B (zh) 一种纯电动汽车前后桥电机驱动效率线性插值优化方法
CN115489340A (zh) 多电机扭矩分配方法、装置、计算机设备、存储介质
CN112977082B (zh) 扭矩分配方法及装置、建模方法及汽车
CN114714916A (zh) 一种氢燃料电池汽车制动能量回收方法及***
US10913460B2 (en) Vehicle propulsion control using gear dependent pedal mapping during gear shift
Zheng et al. Research on particle swarm optimization algorithm of electromechanical hybrid braking control strategy based on road surface recognition
CN117681684B (zh) 节能驱动转矩控制方法和装置、新能源车辆和存储介质
CN111634194B (zh) 一种电机选择方法、设备及存储介质
Dong Research On Driving Torque Strategy For Dual Axis Drive Electric Vehicles
CN114684168A (zh) 轮端驱动扭矩确定方法、装置和车辆
CN116176300A (zh) 一种分布式驱动电动汽车经济性驱动力矩的云端更新方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant