CN112420912A - 一种微型热电器件的制造方法 - Google Patents

一种微型热电器件的制造方法 Download PDF

Info

Publication number
CN112420912A
CN112420912A CN202011306581.3A CN202011306581A CN112420912A CN 112420912 A CN112420912 A CN 112420912A CN 202011306581 A CN202011306581 A CN 202011306581A CN 112420912 A CN112420912 A CN 112420912A
Authority
CN
China
Prior art keywords
thermoelectric device
electrode substrate
micro
particles
micro thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011306581.3A
Other languages
English (en)
Other versions
CN112420912B (zh
Inventor
唐新峰
唐昊
鄢永高
苏贤礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202011306581.3A priority Critical patent/CN112420912B/zh
Publication of CN112420912A publication Critical patent/CN112420912A/zh
Application granted granted Critical
Publication of CN112420912B publication Critical patent/CN112420912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种微型热电器件的制造方法,具体步骤为:1)根据微型热电器件的电极基板尺寸和图案设计钢制模具;2)将点胶好的电极基板1置于步骤2所得钢制模具的凹槽内,使得电极基板1的胶点与钢制模具的限位板通孔相对应;3)将切割好的热电粒子摆入钢制模具的限位板通孔中;4)将连同电极基板1和热电粒子在内的整个钢制模具进行焊接,得到微型热电器件的半成品;5)将微型热电器件的半成品脱模后,焊接另一面的电极基板2,得到微型热电器件。本发明实现了微型粒子的精确排布,同时在焊接过程中,粒子位置被固定,保证了微型热电器件基板与粒子的焊接精度,最终制造出高精度的微型热电器件,整个过程快速高效,有利于大规模生产使用。

Description

一种微型热电器件的制造方法
技术领域
本发明涉及热电器件制造领域,尤其涉及一种微型热电器件的制造方法。
背景技术
热电器件作为一种可实现电能与热能之间直接相互转换的新能源器件,越来越受到人们的广泛关注。常规热电器件主要用于红酒柜、半导体冰箱、冰淇淋机等民用领域,而目前热电器件的发展朝着微型化进行,主要用于可穿戴设备的供能、微区精确控温,比如热电手表、5G光通信模块的激光器控温等。微型热电器件的制造与常规热电器件相比,难点之一在于高精度的组装焊接。
传统常规热电器件的摆模用具主要由橡胶制成,通过人工手动将热电粒子填进摆模用具孔中,随用利用聚酰亚胺膜将热电粒子粘出,手工对位在丝网印刷锡膏完毕的热电器件基板上,利用接触压力焊方式进行焊接。整个制造过程依靠手工完成,橡胶摆模用具由于具有一定的弹性,因此粘出的热电粒子排布并不精确,且由于使用聚酰亚胺膜粘出,粒子表面的金属化层被粘胶污染,并且聚酰亚胺膜也具有弹性,影响粒子与基板锡膏的对位精度,后续不利于焊接工艺的进行。因此,这种方式也制造不出对精度要求极高的微型热电器件。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种微型热电器件的制造方法,可使微型热电粒子精确排布,确保器件基板与微型热电粒子的焊接精度,且对微型热电粒子表面不造成污染。
本发明为解决上述提出的问题所采用的技术方案为:
一种微型热电器件的制造方法,包括以下步骤:
1)根据微型热电器件的电极基板尺寸和图案设计钢制模具图纸;
2)按照步骤1)所述的图纸加工钢制模具;所述钢制模具包括限位板和设于限位板四周的外框,限位板的顶面和外框内侧面形成凹槽以容纳电极基板,限位板上开设有多个通孔以限定热电粒子的位置;
3)将点胶好的电极基板1置于步骤2所得钢制模具的凹槽内,使得电极基板1的胶点与钢制模具的限位板通孔相对应;
4)将切割好的热电粒子摆入步骤3)所述钢制模具的限位板通孔中;
5)将连同电极基板1和热电粒子在内的整个钢制模具进行焊接,得到微型热电器件的半成品;
6)将步骤5)所述微型热电器件的半成品脱模后,焊接另一面的电极基板2,得到微型热电器件。
按上述方案,所述钢制模具的凹槽大小与电极基板1的大小一致,凹槽深度比电极基板1厚度多0.1~0.5mm。
按上述方案,步骤2)中利用连续激光按照图纸加工钢制模具。所述钢制模具的通孔为方形或者圆形,优选方形,更易于加工。
按上述方案,步骤5)中将连同电极基板1和热电粒子在内的整个钢制模具放入真空焊接炉中进行焊接。
按上述方案,步骤6)中,电极基板2和电极基板1大小、材质等一般都相同。电极基板均为陶瓷基覆铜板(DCB板),一般为氧化铝陶瓷或氮化铝陶瓷上进行覆铜所得。
按上述方案,微型热电器件的横截面积不超过100mm2(即电极基板的面积一般不超过100mm2);热电粒子的体积不大于1mm3,横截面不超过1mm2。优选地,微型热电器件的横截面一般为四边形(如长方形或者正方形),长和宽均在1~10mm范围内;热电粒子为圆柱体或长方体或正方体,优选长方体,长宽高均在0.2~1mm范围内。
以上述内容为基础,在不脱离本发明基本技术思想的前提下,根据本领域的普通技术知识和手段,对其内容还可以有多种形式的修改、替换或变更。
在微型热电器件中,微型热电粒子与电极基板间的对位不佳会造成器件短路、虚焊等现象发生,增大了微型热电器件的失效率,同时也影响微型热电器件的美观性。与现有技术相比,本发明的有益效果是:
1.本发明利用钢制模具网孔对微型热电粒子进行固定,直接将点胶锡膏的基板置于网孔下方,确保微型热电粒子与锡膏的接触精度,避免了因传统橡胶模具弹性变形影响微型热电粒子排布精度,进而造成短路、虚焊等现象发生。通过该方式制造出的微型热电器件的性能一致性得到提高;
2.本发明制造微型热电器件过程中,钢制模具与微型热电粒子一同送入回流焊炉中,实现高精度组装焊接;而橡胶模具只能在空气中采用压力接触焊方式,锡膏有轻微氧化,焊接质量没有回流焊高。
3.本发明所述微型热电器件的制造方法,无需利用聚酰亚胺膜将微型热电粒子粘出,使得微型热电粒子表面不受粘胶污染,减少工艺环节,且微型热电粒子的摆模采用自动化贴片方式进行,适合规模化生产。
附图说明
图1为钢制模具的限位板的俯视图;
图2为钢制模具的剖视图;
图3为实施例1中步骤2)所加工出的摆模用具实际图;
图4为实施例1中步骤3)步骤4)所进行的热电粒子摆模效果;
图5为实施例1中步骤5)所得微型热电器件的半成品的照片;
图6为实施例1中步骤6)所制造出的微型热电器件成品的照片。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
下述实施例中,钢制模具可采用304不锈钢和316不锈钢等;电极基板选用陶瓷基覆铜板(DCB板),尺寸具体为8×8mm2;热电粒子为长方体,尺寸为0.45×0.45×0.5mm3,具体采用等离子活化烧结制备出的p型和n型碲化铋热电材料粒子。
实施例1
一种用于微型热电器件制造的摆模用具设计方法,它包括以下步骤:
1)本实施例需制造的微型热电器件的尺寸为8×8mm2,共97对微型热电粒子;根据微型热电器件的电极基板的要求设计钢制模具图纸,如图1和图2所示;
2)利用连续激光按照步骤1)所述图纸加工钢制模具;所述钢制模具包括限位板和设于限位板四周的外框,限位板的顶面和外框内侧面形成凹槽以容纳电极基板,限位板上开设有多个方形通孔以限定热电粒子的位置;凹槽大小与电极基板1的大小相匹配,凹槽深度比电极基板1厚度多0.1~0.5mm,凹槽深度为0.35mm;每个方形通孔的内径尺寸为0.47mm*0.47mm,外径为0.57mm*0.57mm,深度为0.25mm;
3)将点胶好的电极基板1置于步骤2所得钢制模具的凹槽内,使得电极基板1的胶点与钢制模具的限位板通孔相对应;
4)将切割好的热电粒子摆入步骤3)所述钢制模具的限位板通孔中;其中,如图1所示,钢制模具的限位板上共有196个通孔,左上角和右上角的通孔中不摆入热电粒子,其他通孔按照P-N-P-N-P(或者N-P-N-P-N)交替摆放p型和n型碲化铋热电材料粒子,只要确保n型粒子与p型粒子不相邻即可;
5)将步骤4)所得连同电极基板1和热电粒子在内的整个钢制模具放入真空焊接炉中进行焊接,得到微型热电器件的半成品;
6)将步骤5)所述微型热电器件的半成品脱模后,焊接另一面的电极基板2,得到微型热电器件;其中,电极基板2与电极基板1完全相同。
其中,步骤5)、步骤6)中真空焊接的具体工艺依据锡膏型号而定,比如本实施例中点胶使用SAC305锡膏,熔点217℃,则采用60s升到150℃,随后90s从150℃升到260℃,在260℃保温2min,随后随炉冷却降至室温。若点胶使用Au22Sn焊料,则60s升到180℃,随后100s从180℃升到320℃,320℃保温3min,随后随炉冷却。
如图5和图6所示,该实施例所述方法制造的微型热电器件,各微型热电粒子排布精度高。
依照实施例1所述方法制造了10个8×8微型热电器件(序号分别为1-10),下面为微型热电器件制冷性能测试值,如表1所示,平均最大制冷温差56.97℃;平均最大制冷电流1.94A;平均最大工作电压11.68V;平均最大制冷量12.82W;平均器件内阻5.43Ω,微型热电器件一致性较好。
表1
Figure BDA0002788481620000041
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (7)

1.一种微型热电器件的制造方法,其特征在于,包括以下步骤:
1)根据微型热电器件的电极基板尺寸和图案设计钢制模具;所述钢制模具包括限位板和设于限位板四周的外框,限位板的顶面和外框内侧面形成凹槽以容纳电极基板,限位板上开设有多个通孔以限定热电粒子的位置;
2)将点胶好的电极基板1置于步骤2所得钢制模具的凹槽内,使得电极基板1的胶点与钢制模具的限位板通孔相对应;
3)将切割好的热电粒子摆入步骤2)所述钢制模具的限位板通孔中;
4)将连同电极基板1和热电粒子在内的整个钢制模具进行焊接,得到微型热电器件的半成品;
5)将步骤4)所述微型热电器件的半成品脱模后,在热电粒子的表面焊接电极基板2,得到微型热电器件。
2.根据权利要求1所述的微型热电器件的制造方法,其特征在于,所述钢制模具的凹槽大小与电极基板大小相匹配,凹槽深度比电极基板厚度多0.1~0.5 mm。
3.根据权利要求1所述的微型热电器件的制造方法,其特征在于,所述通孔为方形通孔。
4.根据权利要求1所述的微型热电器件的制造方法,其特征在于,步骤1)中利用连续激光加工钢制模具。
5.根据权利要求1所述的微型热电器件的制造方法,其特征在于,步骤5)中将连同电极基板1和热电粒子在内的整个钢制模具放入真空焊接炉中进行焊接。
6. 根据权利要求1所述的微型热电器件的制造方法,其特征在于微型热电器件的电极基板的面积不超过100 mm2;热电粒子的体积不大于1 mm3
7. 根据权利要求1所述的微型热电器件的制造方法,其特征在于微型热电器件的电极基板为长方形或者正方形,长和宽均在1~10 mm范围内;热电粒子为长方体或正方体,长宽高均在0.2 ~1mm范围内。
CN202011306581.3A 2020-11-20 2020-11-20 一种微型热电器件的制造方法 Active CN112420912B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011306581.3A CN112420912B (zh) 2020-11-20 2020-11-20 一种微型热电器件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011306581.3A CN112420912B (zh) 2020-11-20 2020-11-20 一种微型热电器件的制造方法

Publications (2)

Publication Number Publication Date
CN112420912A true CN112420912A (zh) 2021-02-26
CN112420912B CN112420912B (zh) 2022-07-08

Family

ID=74773892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011306581.3A Active CN112420912B (zh) 2020-11-20 2020-11-20 一种微型热电器件的制造方法

Country Status (1)

Country Link
CN (1) CN112420912B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810626A (zh) * 2011-06-03 2012-12-05 清华大学 一种基于精密机械加工的微型热电器件制作方法
KR20130015402A (ko) * 2011-08-03 2013-02-14 삼성전자주식회사 열전재료, 열전소자 및 열전모듈
CN105027308A (zh) * 2013-02-27 2015-11-04 琳得科株式会社 热电转换材料及其制造方法、以及热电转换模块
CN108054272A (zh) * 2017-08-29 2018-05-18 南京航空航天大学 一种低成本可快速大量制备集成化微型薄膜热电器件的制造方法
CN108155285A (zh) * 2017-11-27 2018-06-12 中国电子科技集团公司第十八研究所 一种半导体致冷器下脱模装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810626A (zh) * 2011-06-03 2012-12-05 清华大学 一种基于精密机械加工的微型热电器件制作方法
KR20130015402A (ko) * 2011-08-03 2013-02-14 삼성전자주식회사 열전재료, 열전소자 및 열전모듈
CN105027308A (zh) * 2013-02-27 2015-11-04 琳得科株式会社 热电转换材料及其制造方法、以及热电转换模块
CN108054272A (zh) * 2017-08-29 2018-05-18 南京航空航天大学 一种低成本可快速大量制备集成化微型薄膜热电器件的制造方法
CN108155285A (zh) * 2017-11-27 2018-06-12 中国电子科技集团公司第十八研究所 一种半导体致冷器下脱模装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JHONATHAN P. ROJAS: "Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications", 《ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY》 *
SALMAN B: "Nano-materials Enabled Thermoelectricity from Window Glasses", 《SCIENTIFIC REPORTS》 *

Also Published As

Publication number Publication date
CN112420912B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN109256337B (zh) 一种周长毫米级元件共晶焊接装置及焊接方法
KR20000023622A (ko) 반도체 패키지의 제조 방법 및 집합 회로 기판
WO2008127017A1 (en) A thermoelectric module
CN105428266A (zh) 具有介质桥的芯片倒装共晶键合方法及获得的产物
CN112420912B (zh) 一种微型热电器件的制造方法
CN103874345A (zh) 一种利用陶瓷基片制作多层微波电路的方法
CN112218486B (zh) 基于热管及热电制冷器的ltcc集成制冷***及其制作方法
KR101496147B1 (ko) 열전소자 배열판 및 이를 이용한 열전모듈의 제조방법
CN110933878B (zh) 一种弹簧型回流压合治具
CN209609107U (zh) 铲齿散热器和光通讯设备
JPH10242536A (ja) 熱電モジュールの製造方法
CN206497902U (zh) 半导体制冷片
CN105758058A (zh) 一种高电压密集型温差电致冷器及其制备方法
CN110278667B (zh) 一种微波介质板和载体一体化焊接方法
CN109047962B (zh) 一种用于多芯片封装钎焊过程中保持界面平整的方法
CN115915888A (zh) 一种半导体制冷片、模组的制备方法
CN110913594B (zh) 一种散热板与焊接完印制板的连接方法
CN108336640B (zh) 一种高功率半导体激光器及其制备方法
CN113594343A (zh) 热电器件及其制造模具和制造方法
JPH1187787A (ja) 熱電モジュールの製造方法
JPH10313134A (ja) 熱電モジュールの製造方法
CN113629179A (zh) 一种半导体热电器件及其制备方法
CN107978567B (zh) 一种三维陶瓷基板及其制备方法
CN113937208A (zh) 半导体热电器件及其制备方法
CN112993066B (zh) 用于光电器件的制冷***及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant