CN112403473B - 一种通过MOFs制备重整催化剂的合成方法 - Google Patents

一种通过MOFs制备重整催化剂的合成方法 Download PDF

Info

Publication number
CN112403473B
CN112403473B CN202011229347.5A CN202011229347A CN112403473B CN 112403473 B CN112403473 B CN 112403473B CN 202011229347 A CN202011229347 A CN 202011229347A CN 112403473 B CN112403473 B CN 112403473B
Authority
CN
China
Prior art keywords
precursor
reaction
catalyst
mofs
auxiliary agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011229347.5A
Other languages
English (en)
Other versions
CN112403473A (zh
Inventor
孙予罕
王慧
杜洋
马春辉
张磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Cluster Rui Low Carbon Energy Technology Co ltd
Original Assignee
Shanghai Cluster Rui Low Carbon Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Cluster Rui Low Carbon Energy Technology Co ltd filed Critical Shanghai Cluster Rui Low Carbon Energy Technology Co ltd
Priority to CN202011229347.5A priority Critical patent/CN112403473B/zh
Publication of CN112403473A publication Critical patent/CN112403473A/zh
Application granted granted Critical
Publication of CN112403473B publication Critical patent/CN112403473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种通过MOFs制备重整催化剂的合成方法,其特征在于,将助剂前驱体M1和有机配体同时加入到有机溶剂中,使助剂前驱体M1充分溶解,形成透明澄清溶液;转移至反应釜中,加热进行反应,反应结束后自然冷却至室温,得到浊液,将浊液进行离心、洗涤、烘干得到M1‑MOFs前驱体;将M1‑MOFs前驱体、Ni(NO3)2·6H2O、助剂前驱体M2溶解于去离子水,加入氨水,反应,冷却至室温;将所得滤饼在烘箱中干燥,再在马弗炉中焙烧后,得到氧化前驱态催化剂。该催化剂通过合成MOFs前驱体,在共沉淀反应时具有良好的限阈效应,从而控制Ni的分散程度与尺寸,延长重整反应过程中催化剂寿命且保证较高的催化效率。

Description

一种通过MOFs制备重整催化剂的合成方法
技术领域
本发明属于石油化工技术领域,涉及一种通过合成MOFs结构获得重整催化剂合成方法及应用。
背景技术
随着工业的发展,人类社会二氧化碳排放量逐年升高。大气中过高的二氧化碳含量对气候及生态平衡造成极大的负面效应,甲烷作为一种清洁能源,虽然具有高的应用价值,但也是一种对环境具有不利影响的“温室气体”。因此,如何利用及减少二氧化碳/甲烷的排放一直是人们关注的热点。甲烷二氧化碳重整制合成气在消除两种温室气体的同时,具有良好的经济、环保价值。
用于催化甲烷和二氧化碳重整的催化剂可分为两类:贵金属和非贵金属。其中贵金属Rh,Ru,Ir的催化活性最好。虽然贵金属催化剂具有好的催化活性和抗积炭性,但因其资源有限,且价格昂贵,导致其工业化应用经济效益太差。与此相反,非贵金属虽然催化活性和抗积炭性不如贵金属,但其价格低廉,资源丰富,因此主要的研究内容仍然是非贵金属催化剂。其中,非贵金属的催化活性顺序为Ni>Co>Cu>Fe。因此,镍基催化剂成为甲烷二氧化碳重整反应研究的重点。
专利CN106391020A公开了一种以碳材料为载体负载活性金属制成的甲烷二氧化碳重整催化剂的制备方法。该方法,通过亚临界H2O-CO改性褐煤制备甲烷二氧化碳重整催化剂载体--碳材料,并以该碳材料为载体负载活性金属制备重整催化剂。该催化剂能在更低温度下使用,节约能源,但存在合成过程复杂且条件难以控制的不足,难以大规模应用。
专利CN102240566B公开了甲烷二氧化碳重整催化剂的制备方法。该方法将半焦浸没在双氧水中改性,在和助剂前驱体进行浸渍、氮气焙烧得到催化剂前驱体。该方法制得的催化剂具有高的活性,但合成过程中使用双氧水,具有一定的危险性;焙烧时隔绝空气,需要更高的成本,因此不利于大规模制备。
甲烷与二氧化碳重整制合成气既是C1化学研究的重要组成部分,也是甲烷转化和二氧化碳利用的有效途径。第Ⅷ过渡金属(Ni、Co、Fe、Cu等)因其价格低廉、高活性而备受青睐,尤其是Ni基催化剂表现出更优的性能。然而,Ni基催化剂却存在严重的积炭现象,同时在高温下反应也会发生金属颗粒的部分烧结,两者共同作用会导致催化剂失活。因此,控制催化剂表面Ni金属颗粒的大小,提高分散度,不仅是解决积炭问题,也是解决催化剂烧结问题的关键。
发明内容
本发明所要解决的技术问题是:如何控制催化剂表面Ni金属颗粒的大小。
为了解决上述技术问题,本发明提供了一种通过MOFs制备重整催化剂的合成方法,其特征在于,包括如下步骤:
步骤1):将助剂前驱体M1和有机配体同时在剧烈搅拌的状态下缓慢加入到有机溶剂中,使助剂前驱体M1充分溶解,形成透明澄清溶液;所述的助剂前驱体M1为Zn(NO3)2·5H2O、Fe(NO3)3·9H2O和Mg(NO3)2·6H2O中的至少一种;所述的有机配体为对苯二甲酸
Figure BDA0002764656020000021
间苯二甲酸
Figure BDA0002764656020000022
均苯三甲酸
Figure BDA0002764656020000023
或含有这三类子结构之一的有机化合物;
步骤2):将步骤1)所得溶液转移至反应釜中,加热进行反应,反应结束后自然冷却至室温,得到浊液,将浊液进行离心、洗涤、烘干得到M1-MOFs前驱体;
步骤3):将M1-MOFs前驱体、Ni(NO3)2·6H2O、助剂前驱体M2溶解于去离子水,缓慢加入氨水,使pH控制在9~10,剧烈搅拌反应,冷却至室温,过滤,用去离子水洗涤至滤液呈中性,得滤饼;所述的助剂前驱体M2为Ce(NO3)3·6H2O、Al(NO3)3·9H2O和Zr(NO3)4·5H2O中的至少一种;
步骤4):将所得滤饼在烘箱中干燥,再在马弗炉中焙烧后,得到氧化前驱态催化剂。
优选地,所述步骤1)中有机配体和助剂前驱体M1的摩尔比为1:(0.1~2),优选为1:(0.5~1)。
优选地,所述步骤1)中的有机溶剂为N,N-二甲基甲酰胺。
优选地,所述步骤1)中有机溶剂的用量为每0.1mol助剂前驱体M1溶解于200mL有机溶剂中。
优选地,所述步骤2)中反应的温度为120℃,时间为24h。
优选地,所述步骤3)中反应的温度为90℃,时间为24h。
优选地,所述步骤3)所得滤饼中M2a+与Ni2+和M1b+的摩尔之和的摩尔比为0.25~2.5:1;Ni2+与M1b+的摩尔比为0.2~2:1。
优选地,所述步骤4)中干燥的温度为80℃,时间为12h;焙烧的温度为750℃,时间为5h。
优选地,所述步骤4)所得氧化前驱态催化剂包含活性组分、助剂前驱体M1、助剂前驱体M2、有机配体,其中,活性组分为Ni,助剂前驱体M1为Zn、Mg和Fe中的至少一种,助剂前驱体M2为Ce、Al和Zr中的至少一种。
本发明提供了一种通过使助剂前驱体M1和有机配体形成金属有机骨架材料(M1-MOFs),之后再和Ni、另一种助剂前驱体M2进行共沉淀反应,经洗涤、烘干、焙烧,最后得到重整催化剂的合成方法。该催化剂有效的通过合成MOFs前驱体,在共沉淀反应时具有良好的限阈效应,从而控制Ni的分散程度与颗粒尺寸,延长重整反应过程中催化剂寿命的同时能够保证较高的催化效率。
与现有技术相比,本发明具有如下优点:
(1)MOFs结构具有一定尺寸的孔径,在合成时可以有效的控制Ni在孔径内的分散度和尺寸,最终合成的氧化前驱态催化剂的粒径会比普通制备方法更小,从而获得更好的催化活性和稳定性。
(2)采用共沉淀制备方法,方法简单易操作,成本低廉。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,作详细说明如下。
对实施例中制得的催化剂用于重整反应评价过程如下:
取氧化前驱态催化剂(0.1g,80-100目)与分析纯的石英砂(0.9g,80-100目)混合均匀,于H2/N2气氛(体积百分比各50%,流速120mL/min)、700℃预还原1h。还原完毕后,在H2/N2气氛(体积百分比各50%)下将反应温度提升至850℃,温度升至850℃后,切换成CO2/CH4混合气(摩尔比1.2:1,GHSV=40000mL/g·h)进行重整反应。反应稳定后,采用气相色谱在线测量产物组成。
实施例1
称取Zn(NO3)2·5H2O(0.1mol,42.93g)溶于200mL DMF中,在剧烈搅拌的情况下加入对苯二甲酸(0.02mol,3.32g),溶解完成后转移至以聚四氟乙烯为内衬的不锈钢反应釜中,将反应釜放置在恒温的烘箱中,120℃下反应24h,冷却后,离心收集产物,并用DMF洗涤数次得到Zn-MOFs。将制备好的Zn-MOFs(0.1mol)、Ni(NO3)2·6H2O(0.2mol,58.16g)、Al(NO3)3·9H2O(0.075mol,28.14g)溶于500mL去离子水中,剧烈搅拌的情况下,缓慢滴加50mL氨水,在90℃下剧烈搅拌反应24h,冷却至室温,过滤,用去离子水洗涤至滤液呈中性,得滤饼,之后80℃烘干12h,750℃焙烧5h得到氧化前驱态催化剂。
计算得到CO2转化率82.01%,CH4转化率87.58%,产出物中H2/CO比例为0.82,反应300h,CO2、CH4转化率和H2/CO比例基本保持不变。
实施例2
称取Mg(NO3)2·6H2O(0.1mol,25.64g)溶于200mL DMF中,在剧烈搅拌的情况下加入2,5-二羟基对苯二甲酸(0.15mol,29.72g),溶解完成后转移至以聚四氟乙烯为内衬的不锈钢反应釜中,将反应釜放置在恒温的烘箱中,120℃下反应24h,冷却后,离心收集产物,并用DMF洗涤数次得到Mg-MOFs。将制备好的Mg-MOFs(0.1mol)、Ni(NO3)2·6H2O(0.05mol,14.54g)、Zr(NO3)4·5H2O(0.225mol,93.48g)溶于500mL去离子水中,剧烈搅拌的情况下,缓慢滴加65mL氨水,在90℃下剧烈搅拌反应24h,冷却至室温,过滤,用去离子水洗涤至滤液呈中性,得滤饼,之后80℃烘干12h,750℃焙烧5h得到氧化前驱态催化剂。
计算得到CO2转化率82.15%,CH4转化率91.62%,产出物中H2/CO比例为0.85,反应300h,CO2、CH4转化率和H2/CO比例基本保持不变。
实施例3
称取Mg(NO3)2·6H2O(0.1mol,25.64g)溶于200mL DMF中,在剧烈搅拌的情况下加入2,5-二羟基对苯二甲酸(0.1mol,19.81g),溶解完成后转移至以聚四氟乙烯为内衬的不锈钢反应釜中,将反应釜放置在恒温的烘箱中,120℃下反应24h,冷却后,离心收集产物,并用DMF洗涤数次得到Mg-MOFS。将制备好的Mg-MOFS(0.1mol)、Ni(NO3)2·6H2O(0.1mol,29.08g)、Al(NO3)3·9H2O(0.2mol,75.02g)溶于500mL去离子水中,剧烈搅拌的情况下,缓慢滴加55mL氨水,在90℃下剧烈搅拌反应24h,冷却至室温,过滤,用去离子水洗涤至滤液呈中性,得滤饼,之后80℃烘干12h,750℃焙烧5h得到氧化前驱态催化剂。
计算得到CO2转化率88.64%,CH4转化率95.21%,产出物中H2/CO比例为0.89,反应300h,CO2、CH4转化率和H2/CO比例基本保持不变。
实施例4
称取Mg(NO3)2·6H2O(0.1mol,25.64g)溶于200mL DMF中,在剧烈搅拌的情况下加入2,5-二羟基对苯二甲酸(0.2mol,39.62g),溶解完成后转移至以聚四氟乙烯为内衬的不锈钢反应釜中,将反应釜放置在恒温的烘箱中,120℃下反应24h,冷却后,离心收集产物,并用DMF洗涤数次得到Mg-MOFs。将制备好的Mg-MOFs(0.1mol)、Ni(NO3)2·6H2O(0.02mol,5.82g)、Ce(NO3)3·6H2O(0.3mol,130.27g)溶于500mL去离子水中,剧烈搅拌的情况下,缓慢滴加65mL氨水,在90℃下剧烈搅拌反应24h,冷却至室温,过滤,用去离子水洗涤至滤液呈中性,得滤饼,之后80℃烘干12h,750℃焙烧5h得到氧化前驱态催化剂。
计算得到CO2转化率82.25%,CH4转化率86.54%,产出物中H2/CO比例为0.81,反应300h,CO2、CH4转化率和H2/CO比例基本保持不变。
实施例5
称取Fe(NO3)3·9H2O(0.1mol,40.4g)溶于200mL DMF中,在剧烈搅拌的情况下加入1,3,5-均苯三甲酸(0.08mol,16.81g),溶解完成后转移至以聚四氟乙烯为内衬的不锈钢反应釜中,将反应釜放置在恒温的烘箱中,120℃下反应24h,冷却后,离心收集产物,并用DMF洗涤数次得到Fe-MOFs。将制备好的Mg-MOFs(0.1mol)、Ni(NO3)2·6H2O(0.15mol,43.62g)、Al(NO3)3·9H2O(0.125mol,46.90g)溶于500mL去离子水中,剧烈搅拌的情况下,缓慢滴加55mL氨水,在90℃下剧烈搅拌反应24h,冷却至室温,过滤,用去离子水洗涤至滤液呈中性,得滤饼,之后80℃烘干12h,750℃焙烧5h得到氧化前驱态催化剂。
计算得到CO2转化率86.11%,CH4转化率92.84%,产出物中H2/CO比例为0.86,反应300h,CO2、CH4转化率和H2/CO比例基本保持不变。
实施例6
称取Zn(NO3)2·5H2O(0.1mol,42.93g)溶于200mL DMF中,在剧烈搅拌的情况下加入间苯二甲酸(0.15mol,24.92g),溶解完成后转移至以聚四氟乙烯为内衬的不锈钢反应釜中,将反应釜放置在恒温的烘箱中,120℃下反应24h,冷却后,离心收集产物,并用DMF洗涤数次得到Zn-MOFs。将制备好的Zn-MOFs(0.1mol)、Ni(NO3)2·6H2O(0.1mol,29.08g)、Al(NO3)3·9H2O(0.4mol,150.05g)溶于500mL去离子水中,剧烈搅拌的情况下,缓慢滴加75mL氨水,在90℃下剧烈搅拌反应24h,冷却至室温,过滤,用去离子水洗涤至滤液呈中性,得滤饼,之后80℃烘干12h,750℃焙烧5h得到氧化前驱态催化剂。
计算得到CO2转化率83.89%,CH4转化率89.01%,产出物中H2/CO比例为0.83,反应300h,CO2、CH4转化率和H2/CO比例基本保持不变。
对比例1
称取六水合硝酸镍(0.1mol,29.08g)、Mg(NO3)2·6H2O(0.1mol,25.64g),Al(NO3)3·9H2O(0.1mol,75.02g)溶于500mL去离子水中,剧烈搅拌的情况下,缓慢滴加55mL氨水,在90℃下剧烈搅拌反应24h,冷却至室温,过滤,用去离子水洗涤至滤液呈中性,得滤饼,之后80℃烘干12h,750℃焙烧5h得到氧化前驱态催化剂。
计算得到CO2转化率71.26%,CH4转化率74.61%,产出物中H2/CO比例为0.74,反应300h,出现明显失活现象,催化剂热重分析积炭严重。
表1为实施例1-6和对比例1催化剂性能对比。由催化剂合成实验步骤可以看出,实施例1-6都是先制备得到了M1-MOFs,并与Ni、助剂前驱体M2进行了共沉淀反应,再通过洗涤、烘干、焙烧得到氧化前驱态催化剂。而对比例则是直接采用共沉淀法进行催化剂的制备。从表中数据,可以明显发现实施例1-6的平均粒径明显小于对比例平均粒径,而比表面积的差异趋势则正好相反,更小的粒径和更大的比表面积能够有效阻止碳的生成,提高催化剂的抗积炭性能,保证催化剂的高的稳定性和良好的活性。将实施例1-6和对比例1催化剂用于甲烷二氧化碳重整反应,实施例3具有最高的CO2和CH4转化率,且运行300h后CO2和CH4转化率基本保持不变,催化剂活性和稳定性良好。其他实施例催化剂的活性起初略低于实施例3催化剂活性,但运行300h后也基本维持稳定,同样具有好的稳定性和较高的催化活性。实施例3和对比例催化剂最初的反应活性相近,但对比例催化剂的CO2和CH4转化率则随着重整反应的进行而迅速下降,反应300h后,CO2和CH4转化率已远远低于实施例3的CO2和CH4转化率,同时也大幅度低于其他实施例的CO2和CH4转化率。同时发现催化剂床层积炭严重,证明对比例催化剂抗积炭性能较差,其活性和稳定性远远不如通过M1-MOFs制备的催化剂。
由此可以看出,通过合成M1-MOFs,能够利用其限阈效应在共沉淀时有效的控制金属Ni的分散度,再进行烘干、焙烧得到氧化前驱态催化剂,最终有效地降低Ni催化剂的粒径,增大比表面积,从而获得高CO2和CH4转化率以及高稳定性的重整催化剂,合成过程简单易操作,具有大规模制备和应用前景。
表1 实施例1-6与对比例1催化剂运行300h性能对比
Figure BDA0002764656020000081

Claims (6)

1.一种通过MOFs制备的重整催化剂在甲烷二氧化碳重整中的应用,其特征在于,所述催化剂的合成方法包括如下步骤:
步骤1):将助剂前驱体M1和有机配体同时在剧烈搅拌的状态下缓慢加入到有机溶剂中,使助剂前驱体M1充分溶解,形成透明澄清溶液,有机配体和助剂前驱体M1的摩尔比为1:(0.1~2);所述的助剂前驱体M1为Zn(NO3)2·5H2O、 Fe(NO3)3·9H2O和Mg(NO3)2·6H2O中的至少一种;所述的有机配体为对苯二甲酸、间苯二甲酸或均苯三甲酸;
步骤2):将步骤1)所得溶液转移至反应釜中,加热进行反应,反应结束后自然冷却至室温,得到浊液,将浊液进行离心、洗涤、烘干得到M1-MOFs前驱体;
步骤3):将M1-MOFs前驱体、Ni(NO3)2·6H2O、助剂前驱体M2溶解于去离子水,缓慢加入氨水,使pH控制在9~10,剧烈搅拌反应,冷却至室温,过滤,用去离子水洗涤至滤液呈中性,得滤饼;所述的助剂前驱体M2为Ce(NO3)3·6H2O、Al(NO3)3·9H2O和Zr(NO3)4·5H2O中的至少一种;所得滤饼中M2a+与Ni2+和M1b+的摩尔之和的摩尔比为0.25~2.5:1;Ni2+与M1b+的摩尔比为0.2~2:1;
步骤4):将所得滤饼在烘箱中干燥,再在马弗炉中焙烧后,得到氧化前驱态催化剂。
2.如权利要求1所述的应用,其特征在于,所述步骤1)中的有机溶剂为N,N-二甲基甲酰胺。
3.如权利要求1所述的应用,其特征在于,所述步骤1)中有机溶剂的用量为每0.1mol助剂前驱体M1溶解于200mL有机溶剂中。
4.如权利要求1所述的应用,其特征在于,所述步骤2)中反应的温度为120℃,时间为24h。
5.如权利要求1所述的应用,其特征在于,所述步骤3)中反应的温度为90℃,时间为24h。
6.如权利要求1所述的应用,其特征在于,所述步骤4)中干燥的温度为80℃,时间为12h;焙烧的温度为750℃,时间为5h。
CN202011229347.5A 2020-11-06 2020-11-06 一种通过MOFs制备重整催化剂的合成方法 Active CN112403473B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011229347.5A CN112403473B (zh) 2020-11-06 2020-11-06 一种通过MOFs制备重整催化剂的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011229347.5A CN112403473B (zh) 2020-11-06 2020-11-06 一种通过MOFs制备重整催化剂的合成方法

Publications (2)

Publication Number Publication Date
CN112403473A CN112403473A (zh) 2021-02-26
CN112403473B true CN112403473B (zh) 2022-12-30

Family

ID=74780453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011229347.5A Active CN112403473B (zh) 2020-11-06 2020-11-06 一种通过MOFs制备重整催化剂的合成方法

Country Status (1)

Country Link
CN (1) CN112403473B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129024A1 (de) * 2007-04-24 2008-10-30 Basf Se Mit katalysator-metallkomponenten beladene poröse metallorganische gerüstmaterialien
CN106582655A (zh) * 2016-11-29 2017-04-26 太原理工大学 一种高分散易还原负载型镍‑铝催化剂的制备方法
CN106902829A (zh) * 2017-04-01 2017-06-30 太原理工大学 一种负载型双金属重整催化剂及其制备方法和应用
CN108283939A (zh) * 2018-01-12 2018-07-17 湘潭大学 一种催化苯酚羟基化固体催化剂及其制备方法与应用
CN108704647A (zh) * 2018-06-15 2018-10-26 华东理工大学 一种抗积碳型甲烷干气重整包覆型镍催化剂及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129024A1 (de) * 2007-04-24 2008-10-30 Basf Se Mit katalysator-metallkomponenten beladene poröse metallorganische gerüstmaterialien
CN106582655A (zh) * 2016-11-29 2017-04-26 太原理工大学 一种高分散易还原负载型镍‑铝催化剂的制备方法
CN106902829A (zh) * 2017-04-01 2017-06-30 太原理工大学 一种负载型双金属重整催化剂及其制备方法和应用
CN108283939A (zh) * 2018-01-12 2018-07-17 湘潭大学 一种催化苯酚羟基化固体催化剂及其制备方法与应用
CN108704647A (zh) * 2018-06-15 2018-10-26 华东理工大学 一种抗积碳型甲烷干气重整包覆型镍催化剂及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Porous Nickel-Alumina Derived from Metal-Organic Framework (MIL-53): A New Approach to Achieve Active and Stable Catalysts in Methane Dry Reforming";Leila Karam et al.;《ChemCatChem》;20191114;第12卷;第373-385页 *

Also Published As

Publication number Publication date
CN112403473A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN109746022B (zh) 一种用于二氧化碳还原的高分散铜锌催化剂的制备方法及其使用方法
WO2014045570A1 (ja) PdRu固溶体型合金微粒子を用いた触媒
CN107597119B (zh) 抗积碳型钴基低温甲烷二氧化碳重整催化剂及其制备方法
CN110102294B (zh) 复合氧化物负载的Pd基催化剂及其制备方法和应用
WO2021042874A1 (zh) 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
CN111167518A (zh) 一种二氧化碳加氢合成甲醇催化剂CuZn/UiO-66及其制备方法
WO2023231474A1 (zh) 一种用于低碳烷烃脱氢制烯烃的催化剂及其应用
CN114272950A (zh) 一种ch4、co2重整制备合成气催化剂及其制备方法与应用
JP2020505227A (ja) マンガンをドープしたニッケル−メタン化触媒
CN111495378B (zh) 一种甲烷化催化剂及其制备方法
CN113694929B (zh) 负载型单原子铜基金属氧化物催化剂及制备方法和应用
CN113058613B (zh) 一种用于甲烷干气重整反应锆-锰-锌复合氧化物担载镍基催化剂及其制备和应用
CN114272927A (zh) 二氧化锆改性层状多孔蛭石负载镍基催化剂的制备方法
CN113908833A (zh) 一种逆水煤气变换催化剂及其制备方法和应用
CN112403473B (zh) 一种通过MOFs制备重整催化剂的合成方法
CN111111676B (zh) 一种包裹型镍基催化剂及其制备方法
CN113117689A (zh) 一种催化剂在费托合成反应中的应用
CN114195097B (zh) 一种重整制氢的方法、纳米氧化亚铜-氧化锌复合催化剂及其制备方法和循环再生方法
CN114870859A (zh) 铜基甲醇水蒸气重整制氢催化剂及其制备方法
CN114308061B (zh) NiAu双金属合金纳米催化剂及其合成与应用
CN113649014A (zh) 一种镍-锌基催化剂及其制备方法和应用
CN114308063A (zh) 一种PtCo/Co3O4-x-Al2O3多界面结构催化剂及其制备方法与应用
CN112619654A (zh) 一种甲烷二氧化碳重整制合成气的催化剂及其制备方法
CN113145127A (zh) 一种用于甲醇水蒸气重整制氢的Cu催化剂及其制备方法和应用
JPWO2020175558A1 (ja) 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant