CN112390642B - 一种负热膨胀材料Cu2V2-xPxO7及其制备方法 - Google Patents

一种负热膨胀材料Cu2V2-xPxO7及其制备方法 Download PDF

Info

Publication number
CN112390642B
CN112390642B CN202011383189.9A CN202011383189A CN112390642B CN 112390642 B CN112390642 B CN 112390642B CN 202011383189 A CN202011383189 A CN 202011383189A CN 112390642 B CN112390642 B CN 112390642B
Authority
CN
China
Prior art keywords
thermal expansion
negative thermal
preparing
expansion material
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011383189.9A
Other languages
English (en)
Other versions
CN112390642A (zh
Inventor
梁二军
曾高杰
袁焕丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202011383189.9A priority Critical patent/CN112390642B/zh
Publication of CN112390642A publication Critical patent/CN112390642A/zh
Application granted granted Critical
Publication of CN112390642B publication Critical patent/CN112390642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于无机非金属材料领域,公开了一种负热膨胀材料Cu2V2‑xPxO7及其制备方法。按目标产物Cu2V2‑xPxO7中化学计量摩尔比Cu:V:P=2:2‑x:x称取原料,采用固相烧结法、激光烧结法、溶胶凝胶法或水热法制备完成。本发明新型负热膨胀材料在宽温区内具有大的负热膨胀系数,且制备工艺简单,成本低,适合于工业化生产,具有很大的应用价值。

Description

一种负热膨胀材料Cu2V2-xPxO7及其制备方法
技术领域
本发明属于无机非金属材料领域,特别涉及了一种负热膨胀材料Cu2V2 -xPxO7及其制备方法。
背景技术
在温度剧烈变化或者温度变化范围比较大的时候。由于不同材料热膨胀系数不匹配引起的热应力会导致材料器件的技术指标变差、仪器的损坏等各种问题,如夏天下垂的高压电线,热膨胀仪和精密的光学器件产生的***误差,电路板的受热膨胀,航天器的隔热层等。对负热膨胀材料的研究有助于解决这些因热膨胀引起的问题。
自然界中大多数材料具有热胀冷缩的特性,但也有一些材料在一定温度范围内显示热缩冷胀的性质,比如ZrW2O8、ZrV2O7、Y2M3O12 (M = W、Mo)及Zr2(WO4)(PO4)2等等。目前,已有研究开始探索将负热膨胀材料与正热膨胀材料复合制备可控热膨胀系数或零膨胀材料,以最大限度地减少高温时材料的热应力,增加材料的抗热冲击强度。基于这些重要应用,负热膨胀材料逐渐引起大家的重视。然而,负热膨胀材料的研究还仍处于试验探索阶段,要大规模应用,还需要解决很多问题,如产品由于相变、吸水等特性导致机械性能和负热膨胀性能变差,原材料成本较高,生产工艺复杂等。
单斜相Cu2P2O7,在90℃附近会存在相变,相变之前为负热膨胀,相变之后表现为正膨胀,其仅在较窄的温区表现出负热膨胀的性质。α-Cu2V2O7相为正交相,属于Fdd2空间群;β-Cu2V2O7为单斜相,属于C2/c空间群;这两种相在很大温区范围内都表现出负热膨胀特性,但β-Cu2V2O7存在质地疏松、不容易成型、择优取向严重、膨胀系数小等问题。
发明内容
为克服现有技术中存在的不足之处,本发明的目的在于提供一种涵盖室温、宽温区、负热膨胀系数大、成本低的负热膨胀材料Cu2V2-xPxO7及其制备方法。
为实现上述目的,本发明采取的技术方案如下:
一种负热膨胀材料,该负热膨胀材料的化学式为Cu2V2-xPxO7,其中,0.0 < x <2.0。
所述负热膨胀材料为单斜相。
所述负热膨胀材料的制备方法:按目标产物Cu2V2-xPxO7中化学计量摩尔比Cu:V:P= 2 : 2-x : x称取原料,对原料进行预处理后采用固相烧结法制备完成。
所述负热膨胀材料的制备方法:按目标产物Cu2V2-xPxO7中化学计量摩尔比Cu:V: P= 2 : 2-x : x称取原料,对原料进行预处理后采用激光烧结法制备完成。
使用固相烧结法和激光烧结法制备本发明材料时,较好地,Cu原料选自金属Cu、CuO、Cu2O或CuCO3·Cu(OH)2·xH2O;V原料选自V2O5或NH4VO3;P原料选自NH4H2PO4或P2O5
使用固相烧结法和激光烧结法制备本发明材料时,较好地,所述预处理步骤具体为:将称量好的原料混合研磨2-5 h。
使用固相烧结法和激光烧结法制备本发明材料时,较好地,烧结温度为500-1000℃,烧结时间为0.5-5 h。
所述负热膨胀材料的制备方法:按目标产物Cu2V2-xPxO7中化学计量摩尔比Cu:V:P= 2 : 2-x : x称取原料,使用水热法制备完成。
所述负热膨胀材料的制备方法:按目标产物Cu2V2-xPxO7中化学计量摩尔比Cu:V:P= 2 : 2-x : x称取原料,使用溶胶凝胶法制备完成。
使用水热法和溶胶凝胶法制备本发明材料时,Cu原料选自CuCO3·Cu(OH)2·xH2O,V原料选自NH4VO3,P原料选自NH4H2PO4
本发明的有益效果在于:
1. 本发明新型负热膨胀材料Cu2V2-xPxO7(0.0 < x < 2.0),在宽温区内具有稳定的负热膨胀性质,且具有更大的负热膨胀系数;此外,该材料无吸水性,并且该材料无明显的择优取向,具有很好的应用价值;
2. 本发明负热膨胀陶瓷Cu2V2-xPxO7的制备方法,工艺简单,原料及工艺成本低,适合于工业化生产。
附图说明
图1为Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5, 2.0)的XRD图谱。
图2为Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5, 2.0)的拉曼光谱图。
图3为Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5, 2.0),低温膨胀仪测到的热膨胀曲线。
图4 为Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5, 2.0),高温热膨胀仪测到的热膨胀曲线。
图5为Cu2V1.0P1.0O7的变温XRD图谱,其中温度变化范围为(-193℃~300℃)。
图6为由图5 Cu2V1.0P1.0O7的变温XRD精修的a轴随温度变化结果。
图7为由图5 Cu2V1.0P1.0O7的变温XRD精修的b轴随温度变化结果。
图8为由图5 Cu2V1.0P1.0O7的变温XRD精修的c轴随温度变化结果。
图9为由图5 Cu2V1.0P1.0O7的变温XRD精修的beta角度随温度变化结果。
图10为由图5 Cu2V1.0P1.0O7的变温XRD精修的晶胞体积随温度变化结果,其中体膨胀系数达αv = -18.36×10-6
图11为Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5, 2.0)的热重曲线。
具体实施方式
以下结合具体实施例对本发明的技术方案做进一步地详细介绍,但本发明的保护范围并不局限于此。
实施例1
固相法制备Cu2V2.0O7陶瓷粉末:按摩尔比2 : 1称取原料CuO和V2O5,放到研钵内研磨2 h,用单轴方向压片机在200 MPa的压强下压制成直径10 mm、高10 mm的圆柱体;把样品放到方舟中,然后在高温管式炉中,以5℃/min升温至660 ℃烧结4 h,空气中自然降至室温。
实施例2
固相法制备Cu2V1.5P0.5O7陶瓷粉末:按摩尔比8 : 3 : 2取原料CuO、V2O5和NH4H2PO4,放到研钵内研磨2 h,用单轴方向压片机在200 MPa的压强下压制成直径10 mm、高10 mm的圆柱体;把样品放到方舟中,然后在高温管式炉中,以5℃/min升温至720 ℃烧结4h,空气中自然降至室温。
实施例3
固相法制备Cu2V1.0P1.0O7陶瓷粉末:按摩尔比4 : 1 : 2称取原料CuO、V2O5和NH4H2PO4,放到研钵内研磨2 h,用单轴方向压片机在200 MPa的压强下压制成直径10 mm、高10 mm的圆柱体;把样品放到方舟中,然后在高温管式炉中,以5℃/min升温至750 ℃烧结4h,空气中自然降至室温。
实施例4
固相法制备Cu2V0.5P1.5O7陶瓷粉末:按摩尔比8 : 1 : 6称取原料CuO、V2O5和NH4H2PO4放到研钵内研磨2 h,用单轴方向压片机在200 MPa的压强下压制成直径10 mm、高10 mm的圆柱体;把样品放到方舟中,然后在高温管式炉中,以5℃/min升温至800 ℃烧结4h,空气中自然降至室温。
实施例5
固相法制备Cu2P2.0O7陶瓷粉末:按摩尔比1 : 1称取原料CuO和P2O5,放到研钵内研磨2 h,用单轴方向压片机在200 MPa的压强下压制成直径10 mm、高10 mm的圆柱体;把样品放到方舟中,然后在高温管式炉中,以5℃/min升温至850 ℃烧结4 h,空气中自然降至室温。
实施例1-5制备所得Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5, 2.0)的XRD图谱见图1。XRD结果显示形成了纯的单斜相Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5, 2.0) (XRD中没有杂质相和原料的峰)。此外,如图1,在对样品进行X射线衍射实验时,发现Cu2V2-xPxO7(0.5< x < 1.5)无明显的晶格择优取向。
实施例1-5制备所得Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5, 2.0)的拉曼光谱图见图2。由图2可知:随着掺杂比例的改变拉曼光谱的峰逐渐变化,标志着晶体结构随着掺杂比例的增加而逐渐发生改变。
低温膨胀仪测试的实施例1-5制备所得Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5,2.0)的热膨胀曲线见图3,高温膨胀仪测试的实施例1-5制备所得Cu2V2-xPxO7(x = 0.0,0.5, 1.0, 1.5, 2.0)的热膨胀曲线见图4。
实施例3制备所得Cu2V1.0P1.0O7的变温XRD图谱见图5,由图5精修的a轴、b轴、c轴、beta角、晶胞体积随温度变化结果分别见图6、图7、图8、图9、图10。从图5-10中可以看出:a轴和c轴随温度升高而收缩,b轴随温度升高而伸长,beta角随温度升高而减小,整体上晶胞体积随温度的升高而收缩。
表1为从图3中得到的线膨胀系数值和从图10中得到的体膨胀系数值。
Figure 735402DEST_PATH_IMAGE001
从图1和表1中,可以看出:成功制备出了β-Cu2V2.0O7β-Cu2P2.0O7,两种材料都具有负热膨胀特性;Cu2V2-xPxO7(0.0 < x < 2.0)相较于Cu2P2O7能够显著拓宽材料的负热膨胀温区,增加材料的应用性。同时在固相烧结法中采用NH4H2PO4来部分取代有毒性的V2O5能够显著降低材料的制备成本,且对环境更加友好,使其具有更大的应用价值。
实施例1-5合成的Cu2V2-xPxO7(x = 0.0, 0.5, 1.0, 1.5, 2.0)的热重曲线图见图11。从图11中可以看出:材料在RT-600℃温区范围内没有失重现象,说明该系列材料没有吸水性。
上述实施例中给出了使用固相烧结法对材料进行制备的实验室步骤,当应用于工业生产时,可根据需要进行相应的适应性调整。
此外,除了使用固相烧结法外,Cu2V2-xPxO7(0.0 < x < 2.0)也可以通过激光烧结法进行制备,激光烧结法的制备过程可以参考Ref.1-Ref.4,在此不再赘述。也可以通过水热法制备本发明新型负热膨胀材料Cu2V2-xPxO7(0.0 < x < 2.0),水热法的制备过程可参考Ref.5,也可以通过溶胶凝胶法制备本发明新型负热膨胀材料Cu2V2-xPxO7(0.0 < x < 2.0),制备过程可参考Ref.6,在此不做赘述。
相对于激光烧结法、溶胶凝胶法和水热法,固相烧结法更有利于大量快速制备,因此也更具有工业应用价值。
另外,上述实施例中,Cu元素使用的原料都为CuO,V元素使用的原料都为V2O5,P元素使用的原料为NH4H2PO4或P2O5。但可以明确,只要在制备过程完成后只保留Cu、V、P、O四中元素即可,因此,还可根据材料价格或出于制备方式或其他考虑将Cu元素选取自Cu、Cu2O、CuCO3·Cu(OH)2·xH2O等,V元素选取自NH4VO3等。由于制备条件和测试仪器的差异,本专利保护的内容不仅限于上述的制备温度和膨胀系数。
参考文献:
Ref.1:Liang E J, Wu T A, Yuan B, et al. Synthesis, microstructure andphase control of zirconium tungstate with a CO2 laser [J]. Journal of PhysicsD: Applied Physics, 2007, 40(10): 3219.
Ref.2:王俊平, 陈庆东, 梁二军. 激光快速烧结合成HfW2O8及其特性的研究[J]. 光电子.激光, 2009(11期).
Ref.3:Liang E J, Wang S H, Wu T A, et al. Raman spectroscopic studyon the structure, phase transition and restoration of zirconium tungstate bl℃ks synthesized with a CO2 laser [J]. Journal of Raman Spectroscopy: AnInternational Journal for Original Work in all Aspects of Raman Spectroscopy,Including Higher Order Pr℃esses, and also Brillouin and Rayleigh Scattering,2007, 38(9): 1186-1192.
Ref.4:梁源, 邢怀中, 晁明举, 等. CO2激光烧结合成负热膨胀材料 Sc2(MO4)3(M = W, Mo) 及其拉曼光谱 [J]. 物理学报, 2014 (24): 376-385.
Ref.5:王勇. 钒酸铜材料的制备及电化学性能研究 [D]. 陕西科技大学, 2017.
Ref.6:Cao J, Wang X, Tang A, et al. Sol–gel synthesis and electr℃hemical properties of CuV2O6 cathode material [J]. Journal of alloys andcompounds, 2009, 479(1-2): 875-878.

Claims (9)

1.一种负热膨胀材料,其特征在于:该负热膨胀材料的化学式为Cu2V2-xPxO7,其中,0.0< x < 2.0;所述负热膨胀材料为单斜相。
2.一种如权利要求1所述的负热膨胀材料的制备方法,其特征在于:按目标产物Cu2V2- xPxO7中化学计量摩尔比Cu : V : P = 2 : 2-x : x称取原料,对原料进行预处理后采用固相烧结法制备完成。
3.一种如权利要求1所述的负热膨胀材料的制备方法,其特征在于:按目标产物Cu2V2- xPxO7中化学计量摩尔比Cu : V : P = 2 : 2-x : x称取原料,对原料进行预处理后采用激光烧结法制备完成。
4.如权利要求2或3所述的负热膨胀材料的制备方法,其特征在于:Cu原料选自金属Cu、CuO、Cu2O或CuCO3·Cu(OH)2·xH2O;V原料选自V2O5或NH4VO3;P原料选自NH4H2PO4或P2O5
5.如权利要求2或3所述的负热膨胀材料的制备方法,其特征在于,所述预处理步骤具体为:将称量好的原料混合研磨2-5 h。
6.如权利要求2或3所述的负热膨胀材料的制备方法,其特征在于:烧结温度为500-1000 ℃,烧结时间为0.5-5 h。
7.一种如权利要求1所述的负热膨胀材料的制备方法,其特征在于:按目标产物Cu2V2- xPxO7中化学计量摩尔比Cu : V : P = 2 : 2-x : x称取原料,使用水热法制备完成。
8.一种如权利要求1所述的负热膨胀材料的制备方法,其特征在于:按目标产物Cu2V2- xPxO7中化学计量摩尔比Cu : V : P = 2 : 2-x : x称取原料,使用溶胶凝胶法制备完成。
9.如权利要求7或8所述的负热膨胀材料的制备方法,其特征在于:Cu原料选自CuCO3·Cu(OH)2·xH2O,V原料选自NH4VO3,P原料选自NH4H2PO4
CN202011383189.9A 2020-12-01 2020-12-01 一种负热膨胀材料Cu2V2-xPxO7及其制备方法 Active CN112390642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011383189.9A CN112390642B (zh) 2020-12-01 2020-12-01 一种负热膨胀材料Cu2V2-xPxO7及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011383189.9A CN112390642B (zh) 2020-12-01 2020-12-01 一种负热膨胀材料Cu2V2-xPxO7及其制备方法

Publications (2)

Publication Number Publication Date
CN112390642A CN112390642A (zh) 2021-02-23
CN112390642B true CN112390642B (zh) 2023-01-31

Family

ID=74605704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011383189.9A Active CN112390642B (zh) 2020-12-01 2020-12-01 一种负热膨胀材料Cu2V2-xPxO7及其制备方法

Country Status (1)

Country Link
CN (1) CN112390642B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299602B (zh) * 2021-06-01 2022-07-29 季华实验室 一种电镀铜-焦矾酸铜复合互连材料和硅基板及制备方法
CN114315351B (zh) * 2022-01-24 2022-09-23 河南大学 一种高熵近零膨胀钒酸盐陶瓷材料及其烧结合成方法
CN115124015A (zh) * 2022-07-11 2022-09-30 中国科学院合肥物质科学研究院 一种增强Cu2P2O7负热膨胀效应的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000310A1 (en) * 2005-06-27 2007-01-04 K.U.Leuven Research & Development Process for producing sintered porous materials
CN104843663A (zh) * 2015-04-16 2015-08-19 东华大学 一种负膨胀材料ZrScMo2PO12及其固相烧结合成方法
CN105060913A (zh) * 2015-08-13 2015-11-18 中国科学院光电技术研究所 一种低热膨胀系数C/C-SiC复合材料的制备方法
CN105648248A (zh) * 2016-01-06 2016-06-08 郑州大学 可控热膨胀复合导电陶瓷材料α-Cu2V2O7-Al
CN107732183A (zh) * 2017-09-29 2018-02-23 陕西科技大学 一种钠离子电池正极材料用Cu3(PO4)2/Cu2P2O7复合材料的制备方法
CN111170295A (zh) * 2020-03-16 2020-05-19 管玲飞 一种导电性Mg-P共掺杂Cu2V2O7-石墨烯负热膨胀材料及其制法
CN112939591A (zh) * 2021-01-22 2021-06-11 北京科技大学 一种混合价态稀土铁基氧化物块体材料的合成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815929B (zh) * 2012-09-10 2014-02-26 山东轻工业学院 表面具有残余压应力的多元梯度自润滑陶瓷刀具材料及其制备方法
CN103825456B (zh) * 2014-02-12 2017-03-22 中国航天时代电子公司 一种h桥控制电路中的正负电源扩流装置
KR102655109B1 (ko) * 2018-02-27 2024-04-04 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 부열팽창 재료, 복합 재료 및, 부열팽창 재료의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000310A1 (en) * 2005-06-27 2007-01-04 K.U.Leuven Research & Development Process for producing sintered porous materials
CN104843663A (zh) * 2015-04-16 2015-08-19 东华大学 一种负膨胀材料ZrScMo2PO12及其固相烧结合成方法
CN105060913A (zh) * 2015-08-13 2015-11-18 中国科学院光电技术研究所 一种低热膨胀系数C/C-SiC复合材料的制备方法
CN105648248A (zh) * 2016-01-06 2016-06-08 郑州大学 可控热膨胀复合导电陶瓷材料α-Cu2V2O7-Al
CN107732183A (zh) * 2017-09-29 2018-02-23 陕西科技大学 一种钠离子电池正极材料用Cu3(PO4)2/Cu2P2O7复合材料的制备方法
CN111170295A (zh) * 2020-03-16 2020-05-19 管玲飞 一种导电性Mg-P共掺杂Cu2V2O7-石墨烯负热膨胀材料及其制法
CN112939591A (zh) * 2021-01-22 2021-06-11 北京科技大学 一种混合价态稀土铁基氧化物块体材料的合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Cu2V2O7负热膨胀特性的研究及Al/Cu2V2O7低热膨胀复合材料的研究";李立;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20160115;第23页第2-3段,第10页-12页第1.6节、1.6.3小节-1.6.5小节 *
"Strong Negative Thermal Expansion of Cu2PVO7 in a Wide Temperature Range";Naike Shi等;《Chemistry of Materials》;20210228;第1231-1239页 *
"ZrV2-xPxO7固溶体的相变与热膨胀性质的研究";袁焕丽;《物理学报》;20120919;摘要,第5页右栏第3段 *

Also Published As

Publication number Publication date
CN112390642A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN112390642B (zh) 一种负热膨胀材料Cu2V2-xPxO7及其制备方法
Hu et al. Significantly improved recoverable energy density and ultrafast discharge rate of Na0. 5Bi0. 5TiO3-based ceramics
Wang et al. A low-sintering temperature microwave dielectric ceramic for 5G LTCC applications with ultralow loss
CN111393149B (zh) 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
Li et al. Study of the structure, electrical properties, and energy storage performance of ZnO-modified Ba0. 65Sr0. 245Bi0. 07TiO3 Pb-free ceramics
CN103435946A (zh) 一种聚四氟乙烯复合微波陶瓷基板的制备方法
CN106747440B (zh) 一种可见光透明储能陶瓷及其制备方法
Li et al. Structure and energy storage properties of Mn-doped (Ba, Sr) TiO 3–MgO composite ceramics
Luo et al. Crystal structure refinement, microstructure and ionic conductivity of ATi2 (PO4) 3 (A= Li, Na, K) solid electrolytes
Liu et al. Improving the room temperature ionic conductivity of Al-Li7La3Zr2O12 ceramics by Ba and Y or Ba and W co-doping
Wang et al. Relaxor ferroelectric Bi0. 5Na0. 5TiO3–Sr0. 7Nd0. 2TiO3 ceramics with high energy storage density and excellent stability under a low electric field
Xiao et al. Crystal structure and microwave dielectric properties of low-permittivity Sr 2 MgSi 2 O 7 ceramic
Guo et al. Enhanced energy storage properties of ZrO2-doped (Na0. 5Bi0. 5) 0.4 Sr0. 6TiO3 Pb-free relaxor ferroelectric ceramics
Li et al. Effect of (Nb 2/3 Mg 1/3) 4+ complex on the dielectric and ferroelectric properties of (Ba 0.3 Sr 0.7) 0.35 (Bi 0.5 Na 0.5) 0.65 TiO 3 ceramics for energy storage
CN110451807A (zh) 高储能密度的铌酸铋钡钠基玻璃陶瓷材料及其制备和应用
CN110240409A (zh) 高储能密度的铌酸钡铅钠基玻璃陶瓷材料及其制备方法
Zhao et al. Fabrication and rheological behavior of tape‐casting slurry for ultra‐thin multilayer transparent ceramics
Zang et al. Low-temperature sintering and microwave dielectric properties of CaMoO4 ceramics for LTCC and ULTCC applications
Zhang et al. Effect of La (Nb1/3Mg2/3) O3 addition on phase transition behavior and energy storage properties of NaNbO3 ceramics
Huang et al. Low-temperature sintering vanadium-substituted ZnNb2O6 microwave dielectric ceramics for LTCC applications
Zhang et al. The preparation of MnO2-doped NaNbO3-based lead-free ceramics with enhanced energy storage performance and attractive electrocaloric effect
CN110357629B (zh) 一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法
Zhou et al. Sintering behavior and microwave dielectric properties of BBSZL glass-doped ZnTiO3 ceramics for LTCC applications
Yan et al. Rapid Fabrication and Thermal Performance of Ag3SI Super-Ionic Conductor
Yoshiasa et al. Phase relation of Na1− xKxMgF3 (0≤ x≤ 1) perovskite-type solid-solutions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant